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Abstract

Objective: Common variants in PDE8B are associated with TSH but apparently without any effect on
thyroid hormone levels that is difficult to explain. Furthermore, the stability of the association has not
been examined in longitudinal studies or in patients on levothyroxine (L-T4).
Design: Totally, four cohorts were used (nZ2557): the Busselton Health Study (thyroid function
measured on two occasions), DEPTH, EFSOCH (selective cohorts), and WATTS (individuals on L-T4).
Methods: Meta-analysis to clarify associations between the rs4704397 single nucleotide polymorphism
in PDE8B on TSH, tri-iodothyronine (T3), and T4 levels.
Results: Meta-analysis confirmed that genetic variation in PDE8B was associated with TSH
(PZ1.64!10K10 0.20 S.D./allele, 95% confidence interval (CI) 0.142, 0.267) and identified a
possible new association with free T4 (PZ0.023, K0.07 S.D./allele, 95% CI K0.137, K0.01), no
association was seen with free T3 (PZ0.218). The association between PDE8B and TSH was similar in
1981 (0.14 S.D./allele, 95% CI 0.04, 0.238) and 1994 (0.20 S.D./allele, 95% CI 0.102, 0.300) and even
more consistent between PDE8B and free T4 in 1981 (K0.068 S.D./allele, 95% CI K0.167, 0.031) and
1994 (K0.07 S.D./allele, 95% CI K0.170, 0.030). No associations were seen between PDE8B and
thyroid hormone parameters in individuals on L-T4.
Conclusion: Common genetic variation in PDE8B is associated with reciprocal changes in TSH and free
T4 levels that are consistent over time and lost in individuals on L-T4. These findings identify a possible
genetic marker reflecting variation in thyroid hormone output that will be of value in epidemiological
studies and provides additional evidence that PDE8B is involved in TSH signaling in the thyroid.

European Journal of Endocrinology 164 773–780
Introduction

Variation in thyroid function within the reference range
is associated with important differences in key biological
outcomes in the general population. These include body
mass index, lipid levels, blood pressure, childhood
development, and risk of fatal ischemic heart disease
events (1–5). Although nominally informative, these
studies have all relied upon measurements of serum
ndocrinology

e distributed under the terms of the European J

nd reproduction in any medium, provided the ori
thyroid hormone levels taken on a single occasion. This
approach may not represent an individual’s lifetime
exposure and is also susceptible to confounding factors
(6, 7). For example, cigarette smoking is associated
with reduced TSH concentrations, (8) making it difficult
to accurately assess the effect of thyroid dysfunction
on cardiovascular disease (5).

Genetic association studies represent an alternative
method to study life course differences in the thyroid
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hormone pathway and phenotypic outcomes. The
genetic approach avoids confounding and reverse
causation effects present in traditional epidemiological
studies. It may also better reflect lifetime exposure to
thyroid hormones than a single serum measurement.
For the genetic approach to be practical, robust genetic
associations with thyroid hormone levels need to be
established.

At present, the genetic and temporal architecture of
this important trait remains incompletely understood.
Genomewide association studies (GWAS) and candidate
gene studies have identified single nucleotide poly-
morphisms (SNPs) in a number of genes that have been
associated with variance in TSH levels or the free
thyroxine (T4)/free tri-iodothyronine (T3) ratio in the
normal population (9–11). However, to date, no genetic
variant has been confirmed at a high level of statistical
significance to be associated with the overall thyroid
function set point. Furthermore, no data exist on the
temporal stability of genetic associations with thyroid
function over time. Both these elements are key in
determining whether a genetic marker can be found
that is a valuable surrogate for lifetime thyroid hormone
exposure.

Arnaud-Lopez et al. (10) identified that variation in
rs4704397 SNP in PDE8B was associated with altered
TSH levels in the reference range. This initial study,
however, did not include free T3 and free T4 levels. As
PDE8B encodes a cAMP phosphodiesterase enzyme
(12), strongly expressed in the thyroid gland (13–15)
but undetectable in the pituitary gland (16), it was
postulated that its influence on thyroid hormone
parameters was via the hydrolysis and inactivation
of cAMP in the thyroid in response to TSH signaling.
This work raises the possibility that variation in PDE8B
influences the thyroid hormone set point by making the
thyroid less responsive to TSH, equivalent to a mild
degree of thyroid failure resulting in higher TSH levels.
Such a mode of action would be expected to also result
in changes in thyroid hormone levels, in a reciprocal
direction to the change in TSH.

Intriguingly, a recent study of 1017 pregnant women
(17) replicated the association of this SNP with TSH
levels but failed to find any evidence of association with
free T3 and free T4 levels. However, due to the log-linear
relationship between TSH and thyroid hormone levels,
small changes in thyroid hormone levels result in
relatively large changes in TSH; this study might,
therefore, have been underpowered to detect associ-
ations between PDE8B and free T3 and free T4 levels.

In this study, we undertook a meta-analysis to
investigate the association between variation at
rs4704397 SNP in PDE8B on free T3 and free T4 levels
in the general population and in individuals on thyroid
hormone replacement and assessed the temporal
stability of its effects in the Busselton cohort (18). As a
control, we also studied the temporal stability of the
rs2235544 SNP in the deiodinase 1 (DIO1) gene which
www.eje-online.org
our group previously identified was associated with
altered free T3/free T4 ratio (PZ3.6!10K13 effect size
0.2 S.D./allele S.E.M. 0.003) and altered free T4 levels
(PZ2.1!10K9) but not serum TSH levels (11).
Furthermore, we aimed to test whether variation
in PDE8B was still associated with TSH in individuals
on L-T4.

Finally, we also explored two new candidate SNPs,
rs10499559 in RAPGEF5 and rs9322817 in HACE1.
These two SNPs had the strongest associations with
TSH (PZ8.3!10K6 and 6.5!10K6 respectively)
where the identity of the gene tagged by the SNP was
defined (19) using generalized estimating equations
(GEE), from a GWAS of the Framingham Heart Study.
The GEE analysis from this study was utilized as it
estimates the average response over a population, rather
than familial aggregation and hereditability. Therefore,
SNPs identified with the GEE approach would be
potentially very applicable for use in Mendelian
Randomization studies in epidemiological cohorts.

Although these SNPs could have been identified due
to a type 1 error, RAPGEF5 is a member of the RAS
subfamily of GTPases and is the key link between cell
surface receptors and RAS activation. It is expressed in a
wide variety of tissues including the thyroid, and we
postulated that it may also be involved in TSH signaling.
HACE1 is expressed in multiple tissues including the
heart, brain, and kidney but is not thought to be present
in the thyroid gland. We postulated that its association
with TSH may be due to differences in detection of
thyroid hormone in the brain.
Subjects and methods

In this study, four cohorts were used: the Busselton
Health Study (Busselton), the Depression and Thyroid
Disease study (DEPTH), The Exeter Family Study of
Childhood Health (EFSOCH), and The Weston Area T3 T4

Study (WATTS). These studies have all been described
previously (11, 20–22). Busselton is a community-based
cohort in which individuals were tested for thyroid
function on two occasions 13 years apart (1981 and
1994), DEPTH is a primary care cohort of individuals
referred for thyroid function testing, EFSOCH is a cohort
of male partners of pregnant women recruited for a
family study, and WATTS is a cohort of patients on
thyroid hormone replacement recruited for an interven-
tion study. Baseline characteristics of all cohorts are
presented in Table 1. Further details of the cohorts/
collections can be found in the Supplementary data,
see section on supplementary data given at the end of
this article. All individuals in all cohorts were of white
European ancestry.

To examine the association of genetic variation with
endogenous thyroid hormone levels separately from the
effects of disease processes or medication that affects
thyroid function, individuals with any TSH, free T3, or

http://www.eje-online.org/cgi/content/full/EJE-10-0938/DC1


Table 1 Baseline characteristics of the cohorts (S.D. in brackets).

Characteristic Busselton DEPTH WATTS
WATTS abnormal
TSH removed EFSOCH

n 825 387 544 387 801
% Male 50.1 22.7 16.5 14.5 100
Age (years) 45.1 (G14.2) 43.6 (G14.7) 57.0 (G11.1) 55.6 32.7 (G5.9)
TSH (mU/l) 1.47 1.72 1.47 1.61 1.99
Free T3 (pmol/l) 5.53 (G0.53) 4.67 (G0.63) 3.84 (G0.72) 3.78 (G0.69) 5.51 (G0.53)
Free T4 (pmol/l) 16.6 (G2.64) 16.3 (G2.65) 21.1 (G3.68) 20.3 (G3.23) 16.5 (G2.02)
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free T4 levels outside the reference ranges for the assays
used (see Supplementary data) were excluded from
the Busselton, DEPTH, and EFSOCH cohorts. These
exclusions were not applied to the WATTS cohort in
which subjects were on thyroid hormone replacement
and WATTS was, therefore, excluded from the meta-
analysis of the cohorts. Subgroup analysis was
subsequently performed for the WATTS-cohort individ-
uals with TSH, free T3, or free T4 levels outside the
reference range excluded.
Statistical analyses

Descriptive statistics of the three cohorts are presented
as means and S.D. TSH results across the cohorts were
not normally distributed; a loge transformation was,
therefore, used to normalize the data.

Within each cohort, the association per minor allele
of the different genotypes and serological markers was
assessed using ordinary least squares (OLS) linear
regression. Results are presented in both ‘natural’ and
‘standardized’ (per S.D.) units; all models were adjusted
for age and sex. Simple inverse variance weighted (fixed
effects) meta-analysis was performed to pool study
specific results and combined estimates and P values
presented along with metrics of heterogeneity.
Additional individual patient data (IPD) meta-analysis
was performed on genetic markers shown to be
associated with serological markers (i.e. P!0.05).
Table 2 Genotype frequencies and Hardy–Weinburg equilibrium (c2)

Genot

Gene SNP Cohort A:A A:G G:G

PDE8B (rs4704397) Busselton 116 (14.1) 397 (45.2) 317 (38

DEPTH 66 (17.1) 201 (51.9) 120 (31

WATTS 87 (16.9) 243 (41.2) 185 (35

EFSOCH 131 (16.35) 374 (46.7) 296 (37

DIO1 (rs223554)a Busselton 213 (25.9)

DEPTH 103 (27.2)

RAPGEF5 (rs10499559) Busselton

DEPTH

WATTS

HACE1 (rs9322817) Busselton 312 (37.8)

DEPTH 145 (41.2)

WATTS 171 (38.7)

aIncidences of the rs2235544 (DIO1) genotypes in the WATTS cohort has been
The IPD meta-analysis was performed with a multi-
level regression model using restricted maximum
likelihood estimation; cohort was entered as a random
effect to preserve the hierarchical nature of the data.
IPD meta-analysis models were successively adjusted for
sex, age, free T3, and free T4. We tested for heterogeneity
using the Q statistics.

To assess the temporal stability of the genetic effect,
the Busselton cohort was studied using a series of
multivariate seemingly unrelated regression (SUR)
models. SUR is a generalization of OLS linear regression,
which allows simultaneous model fitting between two
different outcomes (serological levels in 1981 and
1994), and a consistent genetic exposure. The SUR
enables the genetic effect between 1981 and 1994 to be
tested and the residual (error) correlation between
1981 and 1994 to be explored.

All data analysis was performed using STATA
version 11.0 (STATACORP, College Station, TX, USA).
Results

Study populations

Circulating levels of free T3 and free T4 were
approximately normally distributed in the Busselton,
DEPTH, EFSOCH, and WATTS cohorts. Log transfor-
mation of TSH led to a near-normal distribution. Table 2
by cohort.

ype and frequency (%)

A:C C:C C:T T:T Total c2

.4) 825 0.07

.1) 387 1.36

.9) 515 0.22

.0) 801 0.05

393 (47.8) 216 (26.2) 822 1.58

176 (46.8) 98 (25.9) 377 1.65

623 (75.3) 187 (23.0) 20 (2.4) 827 1.73

284 (77.7) 74 (20.1) 10 (2.72) 368 3.5

400 (82.1) 72 (14.7) 15 (3.1) 487 21.8

390 (47.2) 123 (14.9) 825 0

157 (44.6) 50 (14.2) 352 1.6

195 (44.2) 75 (17.1) 441 2.26

published previously (11).
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demonstrates that all SNPs were in Hardy–Weinberg
equilibrium (HWE) in all cohorts except for
rs10499559 in RAPGEF5 in the WATTS cohort.
There were difficulties in genotyping this SNP from
the DNA stores available, and this led to an unusually
high error rate; furthermore, there were difficulties in
distinguishing between the CC and the CT genotype. We
have presented the data for this SNP in WATTS, but it
should be interpreted with caution.
Effects on TSH and serum thyroid hormone
levels in individuals with intact thyroid
function

The meta-analysis of three cohorts of individuals not on
thyroid hormone replacement reconfirmed the associ-
ation between the rs4704397 SNP in the PDE8B on
TSH levels (PZ1.64!10K10). Table 3 shows results
for the individual cohorts, and the results of the meta-
analysis are shown in Table 4. Minimal attenuation of
the effect was observed (see Fig. 1) after adjusting for
multiple covariates including free T4, and only a small
increase in the S.E.M. was observed, resulting in a small
increase in the P value from PZ2.95!10K10

(unadjusted) to PZ1.64!10K10 (fully adjusted).
Meta-analysis also revealed an association with free T4

levels (PZ0.023), in the opposite direction to the
association seen with TSH.

Our meta-analysis also validated the association
with the rs223554 SNP in the DIO1 gene on free T4

(PZ0.001) and free T3/free T4 ratio (PZ9.26!10K4)
and confirmed that there was no association with
TSH (PZ0.32).
The effect of variation in the PDE8B and DIO1
genes on serum thyroid hormone and TSH
levels over time in the same individuals in
the Busselton cohort

In the Busselton cohort, the effect size per minor A allele
of the rs4704397 SNP of the PDE8B gene on TSH levels
in 1981 was 0.141 S.D./allele (PZ0.005 (95% confi-
dence interval (CI) 0.04, 0.24)), and on repeat testing in
1994, there was no evidence for difference in effect
estimate at 0.189 S.D./allele (PZ0.0001 (95% CI 0.09,
0.28)). There was also a similar effect size per minor A
allele on free T4 in 1981 of K0.068 S.D./allele (95% CI
K0.167, 0.031)) and in 1994 K0.07 S.D./allele (95%
CI K0.170, 0.030)). Testing the difference in genetic
effects for PDE8B on TSH between 1981 and 1994
showed that there was no evidence of any difference
(PZ0.32). The residual error correlation between 1981
and 1994 was also very high (rZ0.5467, PZ0.0001),
again indicating commonality of effect.

Very similar results were obtained for the effect
size per minor C allele of the rs2235544 SNP of the
DIO1 gene on T4 levels in 1981: K0.136 S.D./allele
(PZ0.0054 (95% CI K0.23, K0.042)) versus 0.131
www.eje-online.org
S.D./allele (PZ0.006 95% CI K0.225, K0.037) in
1994. Testing the difference in genetic effects between
1981 and 1994 showed that there was no evidence
of any difference (PZ0.93) and the residual error
correlation between 1981 and 1994 was also high
(rZ0.368), again indicating commonality of effect.
The associations between PDE8B and thyroid
hormone parameters on TSH in individuals
on thyroid hormone replacement

The WATTS cohort (individuals on thyroid hormone
replacement) was analyzed separately. In this cohort,
unlike the general population, we observed no evidence
of association with the rs4704397 SNP in the PDE8B
gene on TSH levels (PZ0.99). Similarly, no effect of this
PDE8B SNP was seen on free T4 (PZ0.59) or free T3

levels (PZ0.90). By contrast, an effect was seen on free
T4/free T3 ratio with the DIO1 SNP in this cohort as
previously reported (11).

Our meta-analysis failed to confirm any association
between genetic variation in rs10499559 in RAPGEF5
on TSH (PZ0.67), free T3 (PZ0.21), or free T4

(PZ0.49). Our meta-analysis also found no evidence
of association between genetic variation in rs9322817
in HACE1 on TSH (PZ0.93), free T3 (PZ0.94), or free
T4 (PZ0.09).
Discussion

Our meta-analysis has confirmed that the rs4704397
SNP in the PDE8B gene is associated with variation in
TSH levels, in keeping with the initial report of Arnaud-
Lopez et al. (10) and a subsequent study in pregnant
women (20). However, the additional power available to
us in this meta-analysis enabled us to detect that this
SNP is also reciprocally associated with free T4 levels.
For each additional minor A allele at this SNP, there was
an increase in TSH levels and a reduction in free T4

levels, indicating relative hypothyroidism (Fig. 1).
Although the level of significance for the association
with free T4 remains modest, and further larger
confirmatory studies are required to validate this, our
finding is supported by its replication in the same
individuals 13 years later in the Busselton cohort.
Associations with the rs2235544 SNP in DI01 were
also consistent over time, but by contrast, this SNP was
associated with free T4/free T3 ratio and not TSH (11).
We found no evidence of association between SNPs,
rs10499559 in RAPGEF5 gene and rs9322817 in
HACE1 gene, on thyroid hormone parameters.

These findings are important for two reasons. First,
they potentially resolve the paradox raised by Shields
et al. (17), which demonstrated an association with the
rs4704397 SNP of PDE8B on TSH, but no evidence of
association with free T3 or T4. Therefore, we have
provided evidence that this SNP is a valuable marker for



Table 3 The effect of variation in rs4704397 in PDE8B, rs223554 in DIO1, rs10499559 in RAPGEF5, and rs9322817 in HACE1 on TSH
and serum thyroid hormone levels by cohort.

b estimate

n Natural Std. Std. 95% CI P r 2

TSH
PDE8B
Busselton 1981 825 0.066 0.139 0.040 to 0.238 0.0062 0.011
Busselton 1994 825 0.095 0.201 0.102 to 0.300 0.0001 0.031
DEPTH 387 0.122 0.225 0.079 to 0.371 0.0026 0.025
WATTS 515 0 0 K0.123 to 0.122 0.9970 0.001
EFSOCH 801 0.096 0.199 0.101 to 0.297 0.0001 0.02
DIO1
Busselton 1981 822 0.029 0.06 K0.035 to 0.155 0.2160 0.004
Busselton 1994 818 0.001 0.001 K0.093 to 0.096 0.9770 0.012
DEPTH 377 K0.068 K0.125 K0.262 to 0.013 0.0760 0.012
RAPGEF5
Busselton 1981 827 0.017 0.037 K0.104 to 0.177 0.6098 0.002
Busselton 1994 822 K0.016 K0.033 K0.173 to 0.107 0.6453 0.012
DEPTH 368 K0.005 K0.009 K0.217 to 0.199 0.9302 0.002
WATTS 487 K0.165 K0.104 K0.291 to 0.083 0.2779 0.006
HACE1
Busselton 1981 825 0.034 0.072 K0.027 to 0.171 0.1527 0.005
Busselton 1994 821 0.008 0.017 K0.082 to 0.116 0.7333 0.012
DEPTH 352 K0.028 K0.052 K0.203 to 0.098 0.4950 0.002
WATTS 441 K0.022 K0.014 K0.147 to 0.12 0.8405 0.002

Free T3
a

PDE8B
Busselton 1994 825 K0.034 K0.048 K0.147 to 0.050 0.3343 0.04
DEPTH 387 K0.03 K0.048 K0.195 to 0.100 0.5271 0.001
WATTS 515 0.006 0.008 K0.116 to 0.133 0.8955 0.004
EFSOCH 801 K0.014 K0.027 K0.123 to 0.070 0.5859 0.053
DIO1
Busselton 1994 818 0.066 0.094 0.000 to 0.187 0.0492 0.043
DEPTH 377 0.003 0.005 K0.133 to 0.144 0.9399 0
RAPGEF5
Busselton 1994 822 K0.063 K0.089 K0.227 to 0.049 0.2054 0.04
DEPTH 368 K0.024 K0.038 K0.247 to 0.171 0.7242 0.001
WATTS 487 0.11 0.152 K0.038 to 0.343 0.1181 0.007
HACE1
Busselton 1994 821 K0.012 K0.017 K0.115 to 0.081 0.7352 0.039
DEPTH 352 0.018 0.029 K0.122 to 0.179 0.7111 0.001
WATTS 441 0.08 0.11 K0.023 to 0.243 0.1058 0.007

Free T4

PDE8B
Busselton 1981 825 K0.179 K0.068 K0.167 to 0.031 0.1791 0.029
Busselton 1994 825 K0.186 K0.07 K0.170 to 0.030 0.1696 0.003
DEPTH 387 K0.276 K0.104 K0.251 to 0.043 0.1665 0.006
WATTS 515 0.126 0.034 K0.090 to 0.158 0.5897 0.001
EFSOCH 801 K0.13 K0.064 K0.163 to 0.035 0.2032 0.002
DIO1
Busselton 1981 822 K0.35 K0.133 K0.226 to K0.040 0.0052 0.035
Busselton 1994 818 K0.341 K0.129 K0.224 to K0.034 0.0079 0.01
RAPGEF5
Busselton 1981 827 0.119 0.045 K0.093 to 0.184 0.5219 0.026
Busselton 1994 822 K0.05 K0.019 K0.160 to 0.122 0.7924 0.001
DEPTH 368 K0.239 K0.09 K0.300 to 0.119 0.3989 0.002
WATTS 487 0.055 0.015 K0.171 to 0.201 0.8751 0.001
HACE1
Busselton 1981 825 K0.048 K0.018 K0.116 to 0.079 0.7160 0.027
Busselton 1994 821 K0.102 K0.039 K0.138 to 0.061 0.4471 0.002
DEPTH 352 K0.387 K0.146 K0.293 to 0.001 0.0524 0.016
WATTS 441 K0.045 K0.012 K0.142 to 0.118 0.8544 0

Std., standardized.
aFree T3 levels not available in the Busselton 1981 data set.
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Table 4 Meta-analysis to show associations between variation in rs4704397 in PDE8B, rs223554 in DIO1, rs10499559 in RAPGEF5, and
rs9322817 in HACE1 on TSH and thyroid hormone levels. Cohort 1Z Busselton, Cohort 2Z Depth, and Cohort 3Z EFSOCH.

Cohorts Gene b 95% CI P value Q p(Q)R

TSH
1, 2, 3 PDE8B 0.205 (0.142, 0.267) 1.64!10K10 0.093 0.955
1, 2 DIO1 K0.04 (K0.118, 0.038) 0.324 2.188 0.139
1, 2 RAPGEF5 K0.026 (K0.142, 0.091) 0.667 0.035 0.861
1, 2 HACE1 K0.004 (K0.087, 0.079) 0.928 0.562 0.453

T3

1, 2, 3 PDE8B K0.039 (K0.102, 0.023) 0.218 0.106 0.948
1, 2 DIO1 0.066 (K0.011, 0.144) 0.093 7.501 0.006
1, 2 RAPGEF5 K0.073 (K0.189, 0.042) 0.211 0.159 0.69
1, 2 HACE1 K0.003 (K0.086, 0.079) 0.936 0.251 0.616

T4

1, 2, 3 PDE8B K0.074 (K0.137, K0.010) 0.023 0.205 0.902
1, 2 DIO1 K0.132 (K0.210, K0.054) 0.001 0.014 0.907
1, 2 RAPGEF5 K0.041 (K0.158, 0.076) 0.491 0.304 0.582
1, 2 HACE1 K0.072 (K0.155, 0.010) 0.086 1.365 0.243

T3:T4

1, 2, 3 PDE8B 0.027 (K0.036, 0.089) 0.407 0.469 0.791
1, 2 DIO1 0.148 (0.071, 0.226) 9.2!10K4 0.158 0.691
1, 2 RAPGEF5 K0.018 (K0.133, 0.098) 0.737 0.749 0.387
1, 2 HACE1 0.055 (K0.027, 0.138) 0.189 2.617 0.106
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use in large epidemiological studies to examine the
impact of small reductions in thyroid gland function
on biological phenotypes and common diseases in the
population. Such an approach can also then be used to
explore the potential benefits of thyroid hormone
supplementation in subjects with thyroid function in
the lower parts of the reference range.

Second, our finding of reciprocal changes in TSH and
free T4 with common genetic variation in PDE8B
provides further support for the suggestion, arising from
the data of Arnoud-Lopez et al. (10) that PDE8B plays a
role in TSH signaling in the thyroid gland rather than
operating at the level of central control of TSH secretion.
This is entirely consistent with the predominant
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rs4704397 (PDE8B) genotype.
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expression of the PDE8B gene in the thyroid gland
(14), with expression to a lesser extent in the brain (13).

The observation that the association with TSH is lost
in subjects on thyroid hormone replacement is unlikely
to be an issue of statistical power, as an association with
TSH was seen in the DEPTH cohort (not on T4) that is
smaller in number than WATTS (Table 3). This finding
is also consistent with PDE8B having an effect at the
level of the thyroid, as in these individuals thyroid
responsiveness to TSH will play little or no role in
determining thyroid hormone levels. In this context, it is
interesting to note that individuals in the WATTS cohort
have a higher free T4 (P%0.001) and a lower free T3

(PZ0.04), despite having a similar TSH (PZ0.74) level
to subjects in the Busselton cohort (general population)
in keeping with previous reports (23). This trend
persisted even when individuals with abnormal and
suppressed TSH levels were removed from the WATTS
cohorts; individuals in WATTS had a higher T4

(P!0.001) and a lower free T3 (PZ0.03) despite
having similar TSH levels (PZ0.24). This observation
emphasizes that although thyroid hormone replace-
ment may restore an individual’s TSH levels to within
the ‘normal population range’, this may be outside an
individual’s genetically determined set point.

The rs4704397 SNP is present in intron 1 of the
PDE8B gene. However, it is possible that this SNP is not
itself functional but linked to functional locus outside
intron 1. Arnaud-Lopez et al. (10) have previously
demonstrated that the rs4704397 SNP shows linkage
disequilibrium with SNPs in neighboring regions. It is,
however, unlikely to be involved in a coding region
because sequence analysis of 20 subjects homozygous
for the rare and 20 subjects for the common allele of
rs4704397 did not demonstrate any coding variants
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and adjustment.
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(10). We propose that the presence of additional minor
A alleles results in increased phosphodiesterase activity
of PDE8B and hence a reduced ability of the thyroid
gland to generate free T4 (and free T3) when stimulated
by TSH. This ultimately results in a reduction in free T4

and free T3 levels with a subsequently higher steady
TSH level. As its mechanism of effect had been in the
brain in altering the detection and subsequent set point
of TSH, one would have expected higher TSH levels to be
associated with higher thyroid hormone levels rather
than a reciprocal relationship. Consistent with this, a
recent report shows that variants in PDE8B associated
with increased TSH levels segregate separately from a
rare inactivating variant (H305P) in PDE8B (24).

The lack of association with free T3 levels in this study
is likely to relate to the observation that TSH levels are
more sensitive to free T4 than free T3 levels, both outside
(25) and within (20) the normal range. Therefore, we
suggest that the rs47044397 SNP probably influences
free T3 levels in addition to free T4 (and indeed the
trends in changes in free T3 were consistently in the
same direction as free T4 and reciprocal to TSH – Tables 3
and 4), but the current meta-analysis was still
underpowered to detect this. Adjusting for free T4 and
free T3 levels only partially attenuates the effect of the
PDE8B SNP on TSH levels (Fig. 2). This implies that
even given the log-linear relationship between TSH and
free T4, the fall in T4 is insufficient to account for the
whole rise in TSH. This discrepancy currently remains
unexplained.

We were unable to confirm the association between
the rs10499559 SNP in RAPGEF5 and the rs9322817
SNP in HACE1 with serum TSH levels. Genetic variation
in rs932281 in HACE1 was evenly distributed in our
cohorts, and our study was sufficiently powered to
detect an effect of 0.10 S.D./allele. The initial identifi-
cation of an association between this SNP and TSH may
be due to a type 1 error or else its effect is only modest.
By contrast, the mean allele frequency of rs10499559
in RAPGEF5 is low, at 0.15, in our cohorts and we
were, therefore, only sufficiently powered to detect an
association of 0.15 S.D./allele or higher. This SNP will
require further replication studies in several large
epidemiological cohorts with thyroid function available
to fully assess its effect.

We were able to demonstrate the continuing
association between genetic variation due to SNPs on
TSH and thyroid hormone levels, and to our knowledge,
this report is the first to provide evidence for this. The
marked similarity in effect size per additional minor
allele for both the rs4704397 SNP in PDE8B on TSH
and free T4 and the rs2235544 SNP in DIO1 on free T4

over a 13-year period provides compelling evidence for
the consistent associations of these SNPs on thyroid
hormone parameters over time. Indeed, over this time
interval, there was a mean increase in serum TSH of
0.31 mIU/ml, and yet the relative genetic effect of these
SNPs remained constant. This suggests that the genetic
approach better reflects lifelong trends in TSH and
thyroid hormone levels compared with individual
serum values.
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