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Abstract Seasonal influenza viruses create a persistent global disease burden by evolving to

escape immunity induced by prior infections and vaccinations. New antigenic variants have a

substantial selective advantage at the population level, but these variants are rarely selected

within-host, even in previously immune individuals. Using a mathematical model, we show that the

temporal asynchrony between within-host virus exponential growth and antibody-mediated

selection could limit within-host antigenic evolution. If selection for new antigenic variants acts

principally at the point of initial virus inoculation, where small virus populations encounter well-

matched mucosal antibodies in previously-infected individuals, there can exist protection against

reinfection that does not regularly produce observable new antigenic variants within individual

infected hosts. Our results provide a theoretical explanation for how virus antigenic evolution can

be highly selective at the global level but nearly neutral within-host. They also suggest new avenues

for improving influenza control.

Introduction
Antibody-mediated immunity exerts evolutionary selection pressure on the antigenic phenotype of

seasonal influenza viruses (Hensley et al., 2009; Archetti and Horsfall, 1950). Influenza virus infec-

tions and vaccinations induce neutralizing antibodies that can prevent reinfection with previously

encountered virus antigenic variants, but such reinfections nonetheless occur (Clements et al.,

1986; Memoli et al., 2020; Javaid et al., 2020). At the human population level, accumulation of

antibody-mediated immunity creates selection pressure favoring antigenic novelty. Circulating anti-

genic variants typically go extinct rapidly following the population-level emergence of a new anti-

genic variant, at least for A/H3N2 viruses (Smith et al., 2004).

New antigenic variants like those that result in antigenic cluster transitions (Smith et al., 2004)

and warrant updating the composition of seasonal influenza virus vaccines are likely to be produced

in every infected host. Seasonal influenza viruses have high polymerase error rates (on the order of

10�5 mutations/nucleotide/replication [Nobusawa and Sato, 2006]), reach large within-host virus

population sizes (as many as 1010 virions [Perelson et al., 2012]), and can be altered antigenically by

single amino acid substitutions in the hemagglutinin (HA) protein (Koel et al., 2013;

Linderman et al., 2014).
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In the absence of antibody-mediated selection pressure, de novo generated antigenic variants

should constitute a tiny minority of the total within-host virus population. Such minority variants are

unlikely to be transmitted onward or detected with current next-generation sequencing (NGS) meth-

ods. But selection pressure imposed by the antibody-mediated immune response in previously

exposed individuals could promote these variants to sufficiently high frequencies to make them eas-

ily transmissible and NGS detectable. The potential for antibody-mediated antigenic selection can

be readily observed in infections of vaccinated mice (Hensley et al., 2009) and in virus passage in

eggs in the presence of immune sera (Davis et al., 2018).

Surprisingly, new antigenic variants are rarely observed in human seasonal influenza virus infec-

tions, even in recently infected or vaccinated hosts (Debbink et al., 2017; Dinis et al., 2016;

McCrone et al., 2018; Sobel Leonard et al., 2016; Han et al., 2019; Valesano et al., 2019;

Javaid et al., 2020; Figure 1A,B). These observations contradict existing models of within-host influ-

enza virus evolution (Luo et al., 2012; Volkov et al., 2010) and pathogen immune escape generally

(Kennedy and Read, 2017), which model strong within-host antibody selection from the beginning

of infection and therefore predict that new antigenic variants will be at consensus or fixation in

detectable reinfections of previously immune hosts. This raises a fundamental dilemma. If within-host

antibody selection is strong, why do new antigenic variants appear so rarely? If this selection is

weak, how can there be protection against reinfection and resulting strong population-level

selection?

We hypothesized that influenza virus antigenic evolution is limited by asynchrony between virus

diversity and antibody-mediated selection pressure. Antibody immunity at the point of transmission

in previously-infected or vaccinated individuals should reduce the initial probability of reinfection

(Le Sage et al., 2020); secretory IgA antibodies on mucosal surfaces (sIgA) are likely to play a large

role (Wang et al., 2017, see Appendix Section A2). But if viruses are not blocked at the point of

transmission and successfully infect host cells, an antibody-mediated recall response takes multiple

days to mount (Coro et al., 2006; Lam and Baumgarth, 2019, see detailed review in Appendix Sec-

tion A2). Virus titer—and virus shedding (Lau et al., 2010)—may peak before the production of new

antibodies has even begun, leaving limited opportunity for within-host immune selection. If immune

selection pressure is strong at the point of transmission but weak during virus exponential growth,

new antigenic variants could spread rapidly at the population level without being readily selected

during the timecourse of a single infection. Moreover, prior work has established tight population

bottlenecks at the point of influenza virus transmission (McCrone et al., 2018; Xue and Bloom,

2019). With a tight transmission bottleneck and weak selection during virus exponential growth,

antigenic diversity generated during any particular infection will most likely be lost, slowing the accu-

mulation of population-level antigenic diversity.

We used a mathematical model to investigate our hypothesis that realistically-timed antibody-

mediated immune dynamics slow within-host antigenic evolution. We found three modeling results:

(1) antibody neutralization at the point of inoculation can protect experienced hosts against reinfec-

tion and explain new antigenic variants’ population-level selective advantage. (2) If successful rein-

fection occurs, the delay between the start of virus replication and the mounting of a recall antibody

response renders within-host antigenic evolution nearly neutral, even in experienced hosts. (3) It is

therefore reasonable that substantial population immunity may need to accumulate before new anti-

genic variants are likely to observed in large numbers at the population level, whereas effective

within-host selection would predict that they should be readily observable even before they

proliferate.

Our modeling results suggest a plausible mechanism that can explain otherwise poorly-reconciled

empirical patterns, and should motivate further experimental investigation of the mechanisms of

immune protection and natural selection on influenza virus antigenic phenotypes at the point of

transmission.

Model overview
Our model reflects the following biological realities: (1) Seasonal influenza virus infections of other-

wise healthy individuals typically last 5–7 days (Suess et al., 2012); (2) In influenza virus-naive individ-

uals, it can take up to 7 days for anti-influenza virus antibodies to start being produced

(Wrammert et al., 2008), effectively resulting in no selection (Figure 1A); (3) In previously infected

(‘experienced’) individuals, sIgA antibodies can neutralize inoculated virions before they can infect
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Figure 1. Empirical within-host influenza virus variant frequencies and model within-host evolutionary dynamics. (A, B) meta-analysis of A/H3N2 viruses

from next-generation sequencing studies of naturally-infected individuals (Debbink et al., 2017; McCrone et al., 2018). (A) Fraction of infections with

one or more observed amino acid polymorphisms in the hemagglutinin (HA) protein, stratified by likelihood of affecting antigenicity: infections with a

substitution in the ‘antigenic ridge’ of 7 key amino acid positions found by Koel et al., 2013 in red, infections with a substitution in a classically-defined

‘antigenic site’, (Wiley et al., 1981) in blue, infections with HA substitutions only in non-antigenic regions in gray, infections with no HA substitutions in

cream. Infections grouped by whether individuals had been (left) vaccinated in a year that the vaccine matched the circulating strain, (center) vaccinated

in a year that the vaccine did not match the circulating strain, or (right) not vaccinated. (B) Distribution of plotted polymorphic sites from (A) by within-

host frequency of the minor variant. (C, D) heatmaps showing model probability of new antigenic variant selection to the NGS detection threshold of

1% (C) and to 50% (D) by 3 days post infection given the strength of immune selection d, the antibody response time tM and a founding population

composed of old variant virions. Probabilities calculated from Equation 27 in the Materials and methods. Calculated with cw ¼ 1; cm ¼ 0, but for tM>1,

replication selection probabilities are approximately equal for all cw; cm; k trios that yield a given d (see Materials and methods). Star denotes a plausible

influenza-like parameter regime: 25% escape from sterilizing-strength immunity (cw ¼ 1; cm ¼ 0:75; k ¼ 20) with a recall response at 2.5 days post

infection. Black lines are probability contours. (E–H) example model trajectories. Upper row: absolute counts of virions and target cells. Lower row:

variant frequencies for old antigenic variant (blue) and new variant (red). Dashed line shows 1% frequency, the detection limit of NGS. Dotted line

Figure 1 continued on next page
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host cells; (Wang et al., 2017) (4) However, if an inoculated virion manages to cause an infection in

an experienced individual, it takes 2–5 days for the infected host to mount a recall adaptive immune

response, including producing new antibodies (Coro et al., 2006; Zuccarino-Catania et al., 2014)

(see Appendix Section A2 for further discussion of motivating immunology). Importantly, this con-

trasts with previous within-host models of virus evolution, which have assumed that antibody-medi-

ated neutralization of virions during virus replication is strong from the point of inoculation onward

and is the mechanism of protection against reinfection (Luo et al., 2012; Volkov et al., 2010). It

also reflects new animal model evidence of sterilizing antibody immunity (Le Sage et al., 2020). We

discuss existing models and hypotheses for the rarity of population-level influenza antigenic variation

in Appendix Section A7.

Our model can be parameterized to reflect different hypothesized immune mechanisms, different

host immune statuses, and different durations of infection. In the model, virions Vi of antigenic type i

infect target cells C, replicate, mutate to a new antigenic type j at a rate �ij, and decay at a rate dv.

We model the innate immune response implicitly as depletion of infectible cells. We model the anti-

body-mediated immune response as an increase k in the virion decay rate in the presence of well-

matched antibodies. To model partial antibody cross reactivity, we scale k by a parameter ci 2 ½0; 1�;

ci reflects the binding strength of the host’s best-matched antibodies to antigenic type i. So in the

presence of an antibody response, virions Vi of type i decay at a rate dv þ cik.

The model can accommodate Nv antigenic variants i ¼ 1; 2; :::Nv linked by an arbitrary network of

possible substitutions and corresponding mutation probabilities �ij, but in practice we typically con-

sider two, the new variant m and the old variant w, and neglect back-mutation from new variant to

old variant (�wm>0, but �mw ¼ 0).

To assess the importance of transmission bottlenecks, initial virus diversity, and sIgA antibody

neutralization in virus evolution, we model the point of transmission as a series of stochastic events

which may ultimately lead to one of more virions invading cells and initiating an infection. The recipi-

ent host is inoculated with a random sample of within-host virus diversity from the transmitting host.

In experienced hosts, this inoculum is probabilistically thinned by host antibodies. The founding pop-

ulation that initiates the infection is then randomly sampled from among any remaining virions.

Mathematically, we model the number of inoculated virions as Poisson-distributed with a mean v,

so if variant i has frequency fi within the transmitting host, the number of variant i virions inoculated

is Poisson-distributed with mean vfi. The virions then encounter antibodies, which we interpret as

sIgA but can be understood to be any antigen-specific antibody-mediated protection that precedes

cell infection; each virion of variant i is independently neutralized with a probability ki. This probabil-

ity depends upon the strength of protection against homotypic reinfection k and the sIgA cross

immunity between variants sij, (0 � sij � 1). So if a host with antibodies to variant j is challenged

with variant i, those virions will be neutralized with a probability ki ¼ ksij. For simplicity, we assume

the same homotypic protection level across all variants and hosts, though in practice there may be

variation in the immunogenicity of individual variants and in the strength of responses generated by

individual hosts. We typically fix host immune histories to test the effect of host immune history on

selective dynamics. When necessary, we can model a novel (non-recall) antibody response to a strain

i by designating the host as experienced to i at some time tiN post-infection (see Materials and

methods).

The model is continuous-time and stochastic: cell infection, virion production, virus mutation, and

virion decay are stochastic events that occur at rates governed by the current state of the system,

with exponentially distributed (memoryless) waiting times. The system is approximately well-mixed:

we track counts of virions and cells without an explicit account of space within the upper respiratory

tract. We treat infected and dead or removed cells implicitly.

Figure 1 continued

shows an analytical prediction for new variant frequency according to Equations 15 and 16 (see Materials and methods). Model scenarios: (E) naive; (F)

experienced with tM ¼ 0; (G) experienced with tM ¼ 2; (H) experienced with tM ¼ 2 and new antigenic variant virion incoulated. Lines faded when

infection is below 5% transmission probability—approximately 107 virions with default parameters. All parameters as in Table 1 unless otherwise stated.
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Table 1. Model parameters, default values, and sources/justifications.

Parameter Meaning Units Value Source or justification

tM time post-infection of antibody response in
experienced hosts

days 2 literature (see review in
Appendix Section A2)

twN time post-infection of a novel immune response
to the old antigenic variant

days 6 literature (see review in
Appendix Section A2)

pC per-capita growth rate of target cells at low
density

1

days
0 ignored on the timescale of a single

infection

Cmax maximum number of target cells cells 4 � 108 standard in the modeling literature
(Baccam et al., 2006; Luo et al., 2012;
Hadjichrysanthou et al., 2016)

R0 within-host basic reproduction number for the
virus

unitless 5 empirical fits of target cell models
(Hadjichrysanthou et al., 2016)

rw average number of infectious virions produced
by a cell infected with old antigenic variant virus

virions 100 literature (Frensing et al., 2016)

rm average number of infectious virions produced
by a cell infected with new antigenic variant
virus

virions 100 no within-host deleteriousness for new
antigenic variants

�wm probability of mutation from old variant to new
variant

unitless 0.33 � 10–5 literature (Nobusawa and Sato, 2006)

�mw probability of mutation from new variant to old
variant

unitless 0 back-mutation neglected

b rate of infectious contact between virions and
target cells per cell per virion

1

virions cells days
calculated from R0

‘ number of target cells lost per infectious
contact

cells 1 one cell lost per cell infection

dv exponential decay rate of infectious virions 1

days
4 empirical fits of target cell models

(Hadjichrysanthou et al., 2016) and
modeling literature (Baccam et al.,
2006Luo et al., 2012)

k additional per-virion neutralization rate in the
presence of a well-matched antibody response

1

days
6 varied to test hypotheses

cw fractional cross reactivity during viral replication
between host antibodies and the old antigenic
variant

unitless 0 or 1 naive or homotypically reinfected hosts

cm fractional cross reactivity during viral replication
between host antibodies and the new antigenic
variant

unitless 0 full escape variant

kw probability that an individual old antigenic
variant virion inoculated into an experienced
host is neutralized in the respiratory tract
mucosa

unitless set from zw calculated from Equation 38

km probability that an individual new antigenic
variant virion inoculated into an experienced
host is neutralized in the respiratory tract
mucosa

unitless skw reduced relative to kw by immune
escape

s fractional cross immunity at the sIgA bottleneck
between old antigenic variant and new
antigenic variant

unitless 0 full escape variant

v number of virions encountering sIgA virions 10 � b

b size of final/cell infection bottleneck virions 1 NGS studies (McCrone et al., 2018;
Xue and Bloom, 2019)

V50 viral load at which there is a fifty percent
transmission probability

virions 108 chosen to give realistic transmission
window (Tsang et al., 2015) and based
on prior modeling studies (Russell et al.,
2012)

� transmission threshold for threshold model virions 107 chosen to be consistent with V50
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Parameterized as in Table 1, the model captures key features of influenza infections: rapid peaks

approximately 2 days post-infection and slower declines with clearance approximately a week post-

infection, with faster clearance in experienced hosts.

We give a full mathematical description of the model in the Materials and methods.

In addition to analyzing this within-host model, we explored the between-host and population-

level implications of these within-host dynamics using a simple transmission chain model and an SIR-

like population-level model, which we describe in the Materials and methods.

Results

Realistically-timed immune kinetics limit otherwise rapid adaptation
during exponential growth
In our model, sufficiently strong antibody neutralization during the virus exponential growth period

can potentially stop replication and block onward transmission, but this mechanism of protection

results in detectable new antigenic variants in each observable homotypic reinfection, since the

infection is terminated rapidly unless it generates a new antigenic variant that substantially escapes

antibody neutralization (Figure 2).

If there is antibody neutralization throughout virus exponential growth and it is not sufficiently

strong to control the infection, this facilitates the establishment of new antigenic variants: variants
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Figure 2. Example timecourses and distribution of outcomes when antibody immunity is active from the start of infection and sufficient to prevent

detectable reinfection. tM ¼ 0, k ¼ 20, yielding Rwðt ¼ 0Þ<1 for the old antigenic variant but Rmðt ¼ 0Þ>1 for the new antigenic variant, where RiðtÞ is

the within-host effective reproduction number for variant i at time t (see Materials and methods). No mucosal antibody neutralization (zw ¼ zm ¼ 0);

protection is only via neutralization during replication. Example timecourses from simulations with founding population (bottleneck) b ¼ 200. Since

neutralization during replication takes the place of mucosal sIgA neutralization, b here should be understood as comparable to the parameter v in

models with sIgA neutralization. (A–C) Top panels: absolute abundances of target cells (green), old antigenic variant virions (blue), and new antigenic

variant virions (red). Bottom panels: frequencies of virion types. Black dotted line is an analytical prediction for the new antigenic variant frequency

given the time of first appearance. Black dashed line is the threshold for NGS detection. (D) Frequencies of no infection, de novo new antigenic variant

infection, inoculated new antigenic variant infection, and old antigenic variant infection per 105 inoculations of an immune host by a naive host. Circles

are frequencies from simulation runs (106 runs for bottlenecks 1–10, 105 runs for bottlenecks 50–200). Plus-signs are analytical model predictions for

frequencies (see Appendix Section A3.6), with fmt set equal to the average from donor-host stochastic simulations for the given bottleneck. Parameters

as in Table 1 unless otherwise stated.
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can be generated de novo and then selected to detectable and easily transmissible frequencies

(Figure 1C,D,F, sensitivity analysis in Appendix 1—figure 3). We term selection on a replicating

within-host virus population ‘replication selection’. Virus phenotypes that directly affect fitness inde-

pendent of immune system interactions are likely to be subject to replication selection.

Adding a realistic delay to antibody production of two days post-infection (Lam and Baumgarth,

2019) curtails antigenic replication selection. There is no focused antibody-mediated response dur-

ing the virus exponential growth phase, and so the infection is dominated by old antigenic variant

virus (Figure 1C,D,G, sensitivity analysis in Appendix 1—figure 3). Antigenic variant viruses begin

to be selected to higher frequencies late in infection, once a memory response produces high con-

centrations of cross-reactive antibodies. But by the time this happens in typical infections, both new

antigenic variant and old antigenic variant populations have peaked and begun to decline due to

innate immunity and depletion of infectible cells, so new antigenic variants remain too rare to be

detectable with NGS (Figure 1G).

We find that replication selection of antigenic novelty to detectable levels becomes likely only if

infections are prolonged, and virus antigenic diversity and antibody selection pressure therefore

coincide (Figure 1G, see also Figure 7). This can explain existing observations: within-host adaptive

antigenic evolution can be seen in prolonged infections of immune-compromised hosts (Xue et al.,

2017), and prolonged influenza infections show large within-host effective population sizes

(Lumby et al., 2020).

Neutralization of virions at the point of transmission provides host
protection and population-level selection without rapid within-host
adaptation
Adding antibody neutralization of virions at the point of inoculation (e.g. by mucosal sIgA) to our

model produces realistic levels of protection against reinfection, and when reinfections do occur,

they are overwhelmingly old antigenic variant reinfections. New antigenic variants that arise during

these reinfections remain undetectably rare, reproducing observations from natural human infections

(Figures 1A–D,G–H, Figure 3B–C; Debbink et al., 2017; Dinis et al., 2016; McCrone et al., 2018;

Sobel Leonard et al., 2016). The combination of mucosal sIgA protection and a realistically-timed

antibody recall response explains how there can exist immune protection against reinfection—and

thus a population-level selective advantage for new antigenic variants—without observable within-

host antigenic selection in typical infections of experienced hosts.

Tight bottlenecks lead to loss of generated diversity and mean new
variants reach consensus through founder effects
Regardless of host immune status, an antigenic variant that has been generated de novo within a

host must survive a series of population bottlenecks if it is to infect other individuals. To found a new

infection, virions must be expelled from a currently infected host (excretion bottleneck), must enter

another host (inter-host bottleneck), must escape mucus on the surface of the airway epithelium

(mucus bottleneck), must avoid neutralization by sIgA antibodies on mucosal surfaces (sIgA bottle-

neck), and must infect a cell early enough to form a detectable fraction of the resultant infection (cell

infection bottleneck) (Figure 3A). The sum of all of these effects is the net bottleneck and typically

results in infections being initiated by a single genomic variant (McCrone et al., 2018; Xue and

Bloom, 2019; Ghafari et al., 2020). That said, bottlenecks resulting from direct contact transmission

may be substantially wider than those associated with respiratory droplet or aerosol transmission

(Varble et al., 2014) and more human studies are required to quantify these differences.

We find that because antigenic variants appear at very low within-host frequencies when gener-

ated de novo and undergo minimal or no replication selection, new antigenic variants most com-

monly reach detectable levels within hosts through founder effects at the point of inter-host

transmission: a low-frequency antigenic variant generated in one host survives the net bottleneck to

found the infection of a second host (Figure 3D).

Given that influenza bottlenecks are thought to be on the order of a single virion

(McCrone et al., 2018), any replication-competent mutant that founds an infection should occur at

NGS-detectable levels, and likely at consensus. But for the same reason, these founder effects are

rare events. The sampling process that produces these founder effects could be a purely neutral. It
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Figure 3. Selection for antigenic variants at the point of transmission (inoculation selection). (A) Schematic of bottlenecks faced by both old antigenic

variant (blue) and new antigenic variant (other colors) virions at the point of virus transmission. Key parameters for inoculation selection are the mucus

bottleneck size v—the mean number of virions that encounter sIgA—and the cell infection bottleneck size b. (B–D) Effect of sIgA selection at the point

of inoculation with b ¼ 1. (B, C) Analytical model distribution of virions inoculated into an immune host immediately before (B) and after (C) mucosal

neutralization/the sIgA bottleneck. fmt set to mean of stochastic simulations. (D) Distribution of founding virion populations (after the cell infection

bottleneck) among individuals who developed detectable new antigenic variant infections in stochastic simulations. (E–F) Analytical model probability

that a variant survives the final bottleneck. Dashed horizontal lines indicate probability in naive hosts. fmt ¼ 9� 10
�5 (the approximate mean in

stochastic simulations for b ¼ 1). (E) Variant probability of surviving all bottlenecks, as a function of old antigenic variant neutralization probability kw
and new antigenic variant mucosal neutralization probability km. (F) New antigenic variant survival probability as a function of the ratio of v to b. (G, H)

Effect of host susceptibility model on the appearance of antigenic novelty. Per-inoculation rates of new variants surviving the bottleneck (H) depend on

Figure 3 continued on next page
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is likely quite close to neutral in a truly naive recipient host who does not possess well-matched anti-

bodies to the inoculated old variant: all inoculated virions, regardless of antigenic phenotype, have

an equal chance of becoming part of the new infection’s founding population. If there are v virions

that compete to found the infection and b ¼ 1, then each virion founds the infection with probability

1=v.

In our model, new antigenic variants therefore survive the transmission bottleneck upon inocula-

tion into a naive host with a probability approximately equal to the donor-host variant frequency fmt

times the bottleneck size b (see Materials and methods). New antigenic variant infections of naive

hosts should then occur on the order of 1 in 105 or 1 in 104 such infections given biologically plausi-

ble parameters (Figure 3E–H).

But if different virions have different chances of being neutralized at the point of transmission,

the founding process may be selective. Among the virions that encounter antibodies, those that are

less likely to be neutralized have a higher than average chance of undergoing stochastic promotion

to consensus while those that are more likely to be neutralized have a lower than average chance. A

new antigenic variant may then be disproportionately likely to survive the net bottleneck (Figure 3,

Appendix Section A4.2). We term this potential selection on inoculated diversity ‘inoculation selec-

tion’. Neutralization at the point of transmission thus not only gives new antigenic variant infections

their transmission advantage (population-level selection) but may also increase the rate at which

these new antigenic variant infections arise (inoculation selection).

There is some suggestive evidence of differential survival of particular (not necessarily antigenic)

influenza genetic variants at the point of transmission from experiments in ferrets (Wilker et al.,

2013; Moncla et al., 2016). But as Lumby and colleagues (Lumby et al., 2018) point out in a reanal-

ysis of those experiments, it is difficult empirically to distinguish selection that occurs at the point of

transmission from selection that occurs during early replication in the recipient host because of the

challenges associated with sampling the small virus populations present at the earliest stages of

infection. Here we define inoculation selection as selection on the bottlenecked virus population that

establishes infection in the recipient host before any virus replication has taken place in that host.

Inoculation selection depends on degree of founding competition and
degree of immune escape
The strength of inoculation selection depends on the ratio of the number of virions that compete to

found an infection in the absence of well-matched sIgA antibodies (the mucus bottleneck size v) to

the number of virions that actually found an infection (the final cell infection bottleneck size b). The

larger this v=b ratio is, the more inoculation selection in experienced hosts facilitates the survival of

new antigenic variants (Figure 3F, Appendix 1—figure 1).

When new antigenic variant immune escape is incomplete due to partial cross-reactivity with pre-

vious antigenic variants, increased antibody neutralization is a double-edged sword for new anti-

genic variant virions. Competition to found the infection from old antigenic variant virions is

reduced, but the new antigenic variant is itself at greater risk of being neutralized. The impact of

inoculation selection therefore depends on the degree of similarity between previously encountered

viruses and the new antigenic variant. An experienced recipient host could facilitate the survival of

large-effect antigenic variants (like those seen at antigenic cluster transitions [Smith et al., 2004])

while impeding the survival of variants that provide less substantial immune escape (Figure 3E,

Appendix 1—figure 1).

Inoculation selection is limited by the low frequency fmt of new antigenic variants in transmitting

donor hosts (due to weak replication selection), the potentially small mucus bottleneck size v, and

the fact that some hosts previously infected with the old variant or similar antigenic variants might

not possess well-matched antibodies due to original antigenic sin (Davenport and Hennessy,

1956), antigenic seniority (Lessler et al., 2012), immune backboosting (Fonville et al., 2014), or

Figure 3 continued

host immune status and on the relationship between virus antigenic phenotype and host susceptibility (1� zw) (G). Plotted with fmt ¼ 9� 10
�5, and 25%

susceptibility to (75% protection against, z1 ¼ 0:75) a variant one antigenic cluster away from host memory. Unless noted, parameters for all plots as in

Table 1.

Morris et al. eLife 2020;9:e62105. DOI: https://doi.org/10.7554/eLife.62105 9 of 77

Research article Evolutionary Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.62105


other sources of individual-specific variation in antibody production (Lee et al., 2019). These factors

combined make selection and onward transmission of new variants rare.

Immune hosts can facilitate the appearance of new variants without
producing rapid diversification
Onward transmission of new variants can be facilitated by natural selection—replication selection,

inoculation selection, or both. The degree of facilitation depends principally on four quantities: (1)

dt , the product of the replication selection fitness difference d ¼ kðcw � cmÞ and the time under repli-

cation selection t . This determines the degree to which the new variant is promoted by replication

selection prior to transmission (increasing fmt). (2) kw, the sIgA neutralization probability for the old

variant. This must be large enough to reduce competition for the final bottleneck. (3) v=b, the ratio

of the number of virions that encounter sIgA v to the cell infection (final) bottleneck size b. This

determines the degree of competition to found the infection, and thus sets the maximum potential

strength of inoculation selection when kw is large: a v
b
-fold improvement over drift for small b. (4)

1� km, how likely the new variant is to avoid neutralization at the sIgA bottleneck; this scales down

the maximum inoculation selective strength set by v=b. Inoculation selection can impede new variant

survival relative to drift if 1� km is small enough.

When dt is small and kw, v=b, and 1� km are large, new variant survival is most facilitated by inoc-

ulation selection. When the opposite is true, replication selection is most important. And there are

parameter regimes in which both replication and inoculation selection provide a substantial improve-

ment over drift (Figure 4, see Appendix Section A4.6 for mathematical intuition for these results).

At realistic parameter values and assuming all individuals develop well-matched antibodies to

previously encountered antigenic variants, only ~1 to 2 in 104 inoculations of an experienced host

results in a new antigenic variant surviving the bottleneck (Figure 4E,H, Figure 4). This rate is likely

to be an overestimate due to the factors mentioned above. Moreover, it is only about 2- to 3-fold

higher than the rate of bottleneck survival in naive hosts, where new antigenic variant infections

should occasionally occur via neutral stochastic founder effects. In short, even in the presence of

experienced hosts, antigenic selection is inefficient and most generated antigenic diversity is lost at

the point of transmission. Because of these inefficiencies, new antigenic variants can be generated in

every infected host without producing explosive antigenic diversification at the population level.

Inoculation selection produces realistically noisy between-host
evolution
To investigate the between-host consequences of adaptation given weak replication selection, tight

bottlenecks, and possible inoculation selection, we simulated transmission chains according to our

within-host model, allowing the virus to evolve in a 1-dimensional antigenic space (Smith et al.,

2004; Bedford et al., 2012) until a generated antigenic mutant became the majority within-host var-

iant. When all hosts in a model transmission chain are naive, antigenic evolution is non-directional

and recapitulates the distribution of within-host mutations (Figure 5A). When antigenic selection is

constant throughout infection and even a moderate fraction of hosts are experienced, antigenic evo-

lution is unrealistically adaptive: the virus evolves directly away from existing immunity and large-

effect antigenic changes are observed frequently (Figure 5B,C). When the model incorporates both

mucosal antibodies and realistically-timed recall responses, major antigenic variants appear only

rarely and the overall distribution of emerged variants better mimics empirical observations

(Figure 5D)—most notably, the phenomenon of quasi-neutral diversification within an antigenic clus-

ter seen in Figures 1 and 2 of Smith et al., 2004. A simple analytical model (see Methods) in which

generated antigenic mutants fix according to their replication and inoculation-selective advantages

also displays this behavior (Figure 5B–H).

In particular, we note that whereas an immediate recall response would predict strong near-con-

stant directed evolution of virus antigenic phenotypes away from existing immunity (Figure 5B,C), a

realistically-timed recall response predicts that small-effect, drift-like antigenic substitutions will be

observed. Even substitutions that move a virus ‘backward’ in antigenic space— so that it is more

readily neutralized by existing antibodies than the ancestral variant—can be observed thanks to the

large role of stochasticity at the point of transmission. That said, there is a slight bias favoring for-

ward substitutions, especially those of sufficiently large effect to create a substantial selective
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Figure 4. Probability pnv of a new variant surviving the transmission bottleneck as a function of donor-host replication selection and recipient host

inoculation selection. Calculated according to Equation 43, and plotted as a function of degree of replication selection in the donor host dt , the

product of the selection strength d and the time duration t ¼ maxf0; tt � tMg between the onset of the antibody response at tM and the transmission

event at tt. Black dashed line: neutral (drift) expectation, where d ¼ 0 in the donor host and the recipient host does not neutralize either the old or the

new variant at the point of transmission (kw ¼ km ¼ 0). Purple dotted line: replication selection only: dt as given in the donor host, but a naive recipient

host. Green solid line: inoculation selection only: d ¼ 0 in the donor host, but a recipient host with well-matched antibodies to the old variant (kw ¼ 1),

with varying degrees of immune escape (km as given in the columns). Red dot-dashed line: combination of both replication selection in the donor host

as before and inoculation selection in the recipient host as before. Plotted with a final bottleneck of b ¼ 1 and a mean of v virions encountering sIgA as

given in the rows. Parameters as in Table 1 unless otherwise noted.
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advantage over the ancestral variant (Figure 5D). Coupled with the plausible assumption that large-

effect substitutions are rarer than small-effect substitutions (here captured qualitatively by the Gauss-

ian mutation kernel), this predicts the observed pattern of quasi-neutral diversification within anti-

genic clusters followed by rarer directional ‘jumps’ in phenotype. Exact rates of antigenic evolution

will depend upon how these emergence processes intersect with population-level epidemic dynam-

ics and competition among variants.

Epidemic dynamics can alter rates of inoculation selection
We used an epidemic-level model to study the consequences of individual-level inoculation selection

for population-level antigenic selection. If inoculation selection is efficient, an intermediate initial

fraction of immune hosts maximizes the probability that a new antigenic variant infection is created

during an epidemic (Figure 6). This is due to a trade-off between the frequency of naive or weakly

immune ‘generator’ hosts who can propagate the epidemic and produce new antigenic variants

through de novo mutation, and the frequency of strongly immune ‘selector’ hosts who, if inoculated,

are unlikely to be infected, but can facilitate the survival of these new antigenic variants at the point

of transmission. As selector host frequency increases, epidemics become rarer and smaller, eventu-

ally decreasing opportunities for evolution, but moderate numbers of efficient selectors can substan-

tially increase the rate at which new antigenic variants reach within-host consensus (Figure 6B,C).
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phenotypes are numbers in a 1-dimensional antigenic space and govern both sIgA cross immunity s and replication cross immunity c. A distance of � 1
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naive (gray) or experienced (green) host. In (B–D) distribution of host immune histories is 20% of individuals previously exposed to phenotype �0.8, 20%

to phenotype �0.5, 20% to phenotype 0 and the remaining 40% of hosts naive. In (E), naive hosts inoculate naive hosts. In (F–H) hosts with history �0.8

inoculate hosts with history �0.8. Initial variant has phenotype 0 in all sub-panels. Model parameters as in Table 1, except k ¼ 25. Spikes in densities

occur at 0.2 as this is the point of full escape in a host previously exposed to phenotype �0.8.
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Discussion
Any explanation of influenza virus antigenic evolution—and why it is not even faster—must explain

why population-level antigenic selection is strong, as evidenced by the typically rapid sequential

population-level replacement of old antigenic variants upon the emergence of a

major new antigenic variant, but within-host antigenic evolution is rarely observed.

We hypothesized that antibodies present in the respiratory tract mucosa at the time of virus

exposure can effectively block transmission, but have only a small effect on viral replication once

cells become productively infected. Antigenic selection after successful infection therefore begins

with the mounting of a recall response 48–72 hr post infection. In this case, selection pressure can

be strong at the point of transmission, but subsequently weak until after the period of virus expo-

nential growth. This mechanistic paradigm reconciles strong but not perfect sterilizing homotypic

immunity with rare observations of new antigenic variants in successfully reinfected experienced

hosts.

Alternative explanations for rare new antigenic variants
We consider several possible explanations for the observed phenomenon that new antigenic variants

are rare within experienced infected hosts and at the population level prior to cluster transitions. But

among these candidate hypotheses, only the mechanism of small inocula, transmission-blocking

mucosal antibodies, and a slow-to-mount recall adaptive immune response can explain all the afore-

mentioned empirical observations simultaneously.

Alternative possibilities include strong immune protection through antibody neutralization during

early viral replication (an immediate recall response), heterogeneous neutralization rates during early

viral replication, new antigenic variants that are deleterious in the absence of antibody selection, and

the need for new variants to emerge against a favorable genetic background.

As shown above, protection through antibody neutralization early in replication can result in rare

within-host observation of new antigenic variants, but it contradicts understanding of antibody kinet-

ics and makes other empirical predictions that are unrealistic. It implies that homotypic challenge

has a binary outcome: either it results in an undetectable infection that is rapidly cleared or it results
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Figure 6. Population-level antigenic dynamics resulting from inoculation selection. Analytical model results (see Materials and methods) for population-

level inoculation selection, using parameters in Table 1 and fmt ¼ 9� 10
�5 unless otherwise stated. (A) Probability per inoculation of a new antigenic

variant founding an infection, as a function of fraction of hosts previously exposed to the infecting old antigenic variant virus, mucus bottleneck size v

and sIgA cross immunity s ¼ km=kw. Red solid lines: v ¼ 10. Purple dotted lines: v ¼ 50. (B) Expected per-capita reinoculations of previously exposed

hosts during an epidemic, given the fraction of previously exposed hosts in the population, if all hosts that were previously exposed to the circulating

old antigenic variant virus are fully immune to that variant, for varying population-level basic reproduction number R0. (C) Probability per individual host
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in a visible infection dominated by an escape mutant (Figure 2). This is how influenza viruses have

been hypothesized to behave in previous models of immune escape (Luo et al., 2012). But empirical

work (Debbink et al., 2017; McCrone et al., 2018; Javaid et al., 2020) and human challenge stud-

ies (Clements et al., 1986; Memoli et al., 2020) have shown that detectable reinfection of experi-

enced hosts can occur without observable immune escape. Another empirical prediction of such a

model is that intermediately immune hosts should be efficient selectors, since they neutralize the old

variant virus poorly enough to allow it to grow, but strongly enough to impose antigenic selection

upon that growing population (Volkov et al., 2010). While such intermediately immune hosts should

be present from the beginning of a new antigenic cluster’s circulation (Fonville et al., 2014), new

variants are rarely observed until a new variant has circulated for multiple years (Smith et al., 2004).

Antibody neutralization during early replication could avoid binary outcomes if individual hosts

are heterogeneous in the strength of their neutralizing response, so some individuals clear the infec-

tion rapidly while others barely exert antibody selection upon it. But while heterogeneity in immunity

exists (Lee et al., 2019), this explanation requires extreme, bimodal hetegoneity to avoid the inter-

mediately immunity regime in which replication selection is efficient (Volkov et al., 2010) and again

requires an unrealistically early antibody response.

New antigenic variants could be replication-competent, but weakly deleterious within-host in the

absence of immune selection and/or compensatory substitutions. Two studies (Gog, 2008;

Kucharski and Gog, 2012) have invoked this hypothesis to explain population-level antigenic

dynamics. However, a realistically strong antibody response during virus replication could still pro-

mote new variants during infections of experienced hosts, even in the absence of compensatory

mutations (see Appendix Section A7.4 for a model analysis). So a hypothesis to explain the relative

weakness of selection during replication is still required, especially for weakly deleterious mutants

that offer substantial immune escape. That said, under our hypothesis of founder effects and possi-

ble inoculation selection, weak new variant deleteriousness could further limit the rate of antigenic

evolution by reducing the probability that new variants are inoculated into hosts (see Appendix Sec-

tion A7.4).

Finally, it has been hypothesized that antigenic mutants can only proliferate at the population

level if they arise against a favorable genetic background (Koelle and Rasmussen, 2015)—in the

absence of deleterious substitutions elsewhere in the genome. But antigenic cluster transitions are

frequently polyphyletic (see Appendix Section A6): a new variant emerges quasi-simultaneously in

multiple virus lineages. Since these lineages should have different genetic backgrounds, this sug-

gests that favorable backgrounds are readily available, and that emergence is limited instead by the

presence or absence of selection pressure.

We discuss these alternative explanations in more depth in the Appendix (Section A7.4).

Relationship to prior influenza virus transmission bottleneck literature
Previous literature on influenza virus transmission mentions a ‘selective bottleneck’ (Wilker et al.,

2013; Moncla et al., 2016; Sobel Leonard et al., 2016), but those studies do not refer to antigenic

inoculation selection. Rather, a ‘selective bottleneck’ typically refers either to a tight neutral bottle-

neck that leads to stochastic loss of diversity or to non-antigenic factors that lead to preferential

transmission of certain variants (Moncla et al., 2016). An important exception is (Lumby et al.,

2018). Those authors studied ferret transmission experiments and partitioned selection for adaptive

mutants (not necessarily antigenic) into selection for transmissibility (acting at a potentially tight bot-

tleneck) and selection during exponential growth. Subsequently, several studies have hypothesized

that influenza virus antigenic selection might be weak in short-lived infections of individual experi-

enced hosts and might occur at the point of transmission (Petrova and Russell, 2018; Han et al.,

2019; Lumby et al., 2020).

To our knowledge, however, ours is the first study to undertake a mechanistic, model-based com-

parison between the role of antigenic selection at the point of transmission and that of antigenic

selection during replication, to show that immunologically plausible mechanisms could make the for-

mer more salient than the latter, and to connect that finding to the rarity of observable new anti-

genic variants in homotypically reinfected human hosts. We discuss the relationship between this

paradigm and those put forward in previous modeling studies at further length in Appendix Section

A7.
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Limitations and remaining uncertainties
The study presented here nonetheless has important limitations that suggest opportunities for future

investigation. This is a modeling study, and a mainly theoretical one. That is out of necessity. Quality

experiments of the kind that are necessary to observe selection at the point of transmission directly

and measure its strength have not been published, and we were unable to find any experimental

measurements of within-host competition between known antigenic variants. For additional discus-

sion of unmodeled biological realities and mechanistic uncertainties, see Appendix Sections A2 and

A5.

Within-host model
Our within-host model is a simple target cell-limited model, but the decrease in infectible cells as

the infection proceeds can be qualitatively interpreted as any and all antigenicity-agnostic limiting

factors that come into play as the virion and infected cell populations grow. This could include the

action of innate immunity, which acts in part by killing infected cells and by rendering healthy cells

difficult to infect via inflammation (see immunological review in Appendix Section A2). The key

mechanistic role played by the target cells in our model is to introduce a non-antigenic limiting fac-

tor on infections. This prevents an infection from repeatedly evolving out from under successive

well-matched antibody responses, as occurs in HIV and in influenza patients with compromised

immune systems (Xue et al., 2017). These factors limit the virus regardless of whether the infection

remains confined to the upper respiratory tract or also infect the lower respiratory tract, thereby

gaining access to additional target cells (Koel et al., 2019). The key is that non-antigenic factors pre-

vent persistent large virus populations.

Similarly, the antibody response we introduce at 48 hours is qualitative—it is modeled simply as

an increase in the virion decay rate for antibody-matching virions. This response could represent IgA

targeted at HA, but other antigenicity-specific modes of virus control could also be subsumed under

the increased virion decay rate, for instance IgG antibodies, antibody dependent cellular cytotoxicity

(ADCC), antibodies against the neuraminidase protein, or others. The key point we establish is that

none of these mechanisms efficiently replication select because they all emerge once non-antigenic

limiting factors have come into play. They speed clearance, but should not substantially alter virus

evolution. A corollary to this point is that there are many mechanisms—and interventions—that

could reduce the severity of influenza infections without substantially speeding up antigenic evolu-

tion, including universal vaccines.

Point of transmission
A key proposal of our study is that population-level antigenic selection and homotypic protection

are mediated by antibody neutralization (likely sIgA) at the point of transmission. Currently, empirical

evidence for antibody protection at the point of transmission is mostly indirect. Most of this evidence

comes from human and animal challenge studies (Clements et al., 1986; Memoli et al., 2020;

Le Sage et al., 2020). In these studies, individuals who are challenged with the same antigenic vari-

ant sometimes display apparent sterilizing immunity, but other times develop detectable infections.

The study by Memoli et al., 2020 is notable for having used very large inocula—106 or 107 TCID50.

Despite these high doses, two of the challenge subjects had neither detectable virus nor seroconver-

sion. Similarly, ferret experiments (Le Sage et al., 2020) found that many experienced ferrets devel-

oped sufficiently sterilizing immunity to prevent the virus from ever being detected, while some

experienced ferrets showed briefly detectable infections that were then cleared. While we cannot

rule out a powerful immediate cellular response that was differentially evaded in the various subjects,

we believe that our model, coupled with existing understanding of the timing of cellular responses

and the speed of influenza virus replication, provides a more parsimonious explanation.

Another limitation of our study is that, while we put forward mucosal sIgA as a biologically-docu-

mented potential mechanism of immune protection at the point of inoculation that would not lead

to strong selection during early viral replication, no modeling study can establish such a mechanism

without empirical investigation. Our study reveals that such an empirical investigation would be of

substantial scientific value.

We model neutralization at the point of transmission as a binomial process. Each virion is inde-

pendently neutralized with a probability ki that depends on its antigenic phenotype and the host’s
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immune history. As we discuss in Appendix Section A5.2, this assumption of independence may be

violated in practice. Careful experiments are required to develop a more realistic model of neutrali-

zation at the point of transmission.

Moreover, individual variation in immune system properties and complex effects of host immune

history (Fonville et al., 2014; Lee et al., 2019) mean that even a pair of hosts who have both been

previously exposed to the currently circulating variant may exert different selection pressures at the

point of transmission. Modeling neutralization as a series of independent events that depend only

on host history and virus phenotype is a baseline: it allows us to establish that antigenic selection at

the point of transmission is possible and to show what its consequences might be. But a more realis-

tic model will be required to predict the selective pressures imposed by real hosts with real immune

histories on real virions.

Finally, while we believe neutralization at the point of transmission is a crucial mechanism of pro-

tection against detectable reinfection for influenza, this may not be true for all RNA viruses. Some,

such as measles and varicella, have long incubation periods even in naive hosts and induce reliable,

long-lasting immune protection against detectable reinfection. This may be because they replicate

slowly enough that they cannot ‘outrun’ the adaptive response as influenza can. Neither shows influ-

enza virus-like patterns of clocklike immune escape, suggesting that (1) escape mutants may be less

available and (2) the adaptive response acts on a small population and is forceful.

Parameter uncertainties
We parameterized our models based on estimates from previous studies, but there are not good

estimates for several important quantities. There are no high quality estimates of the rate of anti-

body-mediated neutralization in the presence of a homotypic antibody response or of how much

this rate is reduced by particular antigenic substitutions, and there may be substantial inter-individual

variation (Lee et al., 2019). Within-host timeseries data from antigenically heterogeneous infections

are needed to estimate these quantities. Similarly, there are no good empirical data on the size of

the bottlenecks that precede or follow the sIgA bottleneck (Figure 3A). Better estimates of these

bottlenecks, and of the probabilities of neutralization for individual virions encountering mucosal

sIgA antibodies, would give more certainty about the strength of inoculation selection relative to

neutral founder effects.

We also do not have a clear sense of exactly how neutralization probability in the respiratory tract

mucosa (parameter k in our model) and neutralization rate during replication (parameter k in our

model) relate. We expect them to be positively related, but the exact strength and shape of this

relationship is unknown. Knowing whether major antigenic changes reduce both equally or reduce

one more than the other could help us better quantify the potential strength of inoculation selection

and replication selection. In short, better mechanistic understanding of mucosal antibody neutraliza-

tion could be extremely valuable for understanding and potentially predicting influenza virus

evolution.

Scaling up to the population level
How readily a particular individual host or host population helps new antigenic variants reach within-

host consensus depends upon several unknown quantities: (1) how host susceptibility changes with

extent of antigenic dissimilarity, (2) the ratio of virions that encounter sIgA to virions that found the

infection (v=b), (3) the probability that a single new antigenic variant virion inoculated alongside old

antigenic variant virions evades neutralization 1� km (Figure 3E–H), (4) the duration t from the

onset of the antibody response to the time of transmission. Better empirical estimates of these quan-

tities could shed light on how the distribution of host immunity shapes antigenic evolution. However,

over a range of biologically plausible parameter values, our model contradicts the existing hypothe-

sis that antigenic novelty appears when moderately immune hosts fail to block transmission and then

select upon a growing virus population (Grenfell et al., 2004; Volkov et al., 2010). For influenza

viruses, hosts whose mucosal immunity regularly blocks old antigenic variant transmission may be

crucial. Mucosal immunity not only produces a population-level advantage for new variants but may

also play a role in their within-host emergence (Figure 3E,H).
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Implications
Our study has a number of implications for the study and control of influenza viruses.

Importance of host heterogeneity
Experienced hosts are undoubtedly heterogeneous in their immunity to a given influenza variant

(Lee et al., 2019), so the overall population average protection against homotypic reinfection with

variant i, zi, is in fact an average over experienced hosts. Our model implies that the degree of neu-

tralization difference between ancestral variant virions and new antigenic variant virions at the point

of transmission strongly affects the probability of inoculation selection. Hosts with more focused

immune responses—highly-specific antibodies that neutralize old antigenic variant virions well and

new antigenic variant virions poorly—could be especially good inoculation selectors and important

sources of population-level antigenic selection. Hosts who develop less specific memory responses,

such as very young children (Neuzil et al., 2006), could be less important. Similarly, immune-com-

promised hosts are excellent replication selectors (Xue et al., 2017; Lumby et al., 2020), and so

their role in the generation of antigenic novelty and their impact on overall population-level diversifi-

cation rates deserve further study.

Small-population-like evolution
Prior modeling has suggested that despite repeated tight bottlenecks at the point of transmission,

evolution of influenza viruses should resemble evolution in idealized large populations (Sigal et al.,

2018). In large populations, advantageous variants with small selective advantages should gradually

fix and weakly deleterious variants should be purged. In Sigal et al., 2018, diversity is rapidly gener-

ated and fit variants are selected to frequencies at which they are likely to pass through even a tight

bottleneck. This is likely true of the phenotypes modeled, which include receptor-binding avidity

and virus budding time (Sigal et al., 2018). These phenotypes affect virus fitness throughout the

timecourse of infection, so they can be efficiently replication-selected (where selection is manifest in

the direct competition to infect cells rather than the indirect competition to escape antibodies).

Indeed, next-generation sequencing studies have found observable adaptative evolution of non-anti-

genic phenotypes in individual humans infected with avian H5N1 viruses (Welkers et al., 2019).

Seasonal influenza antigenic evolution does not resemble idealized large population evolution.

Within an antigenic cluster, influenza viruses acquire substitutions that change the antigenic pheno-

type by small amounts. Given the large influenza virus populations within individual hosts, we might

expect a quasi-continuous directional pattern of evolution away from prior population immunity.

Between clusters, evolution is indeed strongly directional: only ‘forward’ cluster transitions are

observed. These are jumps—large antigenic changes. But incremental within-cluster evolution is not

directional: the virus often evolves ‘backward’ or ‘sideways’ in antigenic space toward previously cir-

culated variants (see Figures 1 and 2 of Smith et al., 2004).

This noisy jump pattern is easy to explain in light of the weakness of replication selection and the

importance of antigenic founder effects. Selection acts on the small sub-sample of donor-host diver-

sity that passes through the excretion, inter-host, and mucus bottlenecks to encounter the sIgA bot-

tleneck. Evolution via inoculation selection is therefore slower and more affected by stochasticity

than evolution via replication selection (Figure 3E–F). It resembles evolution in small populations—

weakly adaptive and weakly deleterious substitutions become nearly neutral (Kimura, 1968;

Ohta, 1992). If influenza virus evolution were not nearly neutral for small-effect substitutions at the

within-host scale, it would be surprising to observe ‘backward’ antigenic changes and noisy evolution

at higher scales (Figure 5A–D). In fact, there may be analogous ‘neutralizing’ population dynamics

at higher scales as well, and those may also be needed to explain population-level noisiness. But

whatever happens at higher scales, within-host replication selection creates a strong directional bias

in population-level antigenic diversification, introducing many small forward antigenic changes

(Figure 5A–D). Inoculation selection does not necessarily do this.

Population level neutralizing dynamics
Local influenza virus lineages rarely persist between epidemics (Russell et al., 2008; Bedford et al.,

2015), and so new antigenic variants must establish chains of infections in other geographic loca-

tions in order to survive. New antigenic variant chains are most often founded when inoculations are
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common—that is, when existing variants are causing epidemics. Epidemics result in high levels of

local competition between extant and new antigenic variant viruses for susceptible hosts

(Hartfield and Alizon, 2015) as well as metapopulation-scale competition to found epidemics in

other locations. These dynamics could create tight bottlenecks between epidemics similar to those

that occur between hosts, resulting in dramatic epidemic-to-epidemic diversity losses. That said, if

immune hosts are present at the start of an epidemic, there will not be asynchrony between diversity

and selection pressure, so new variants may pass through between-epidemic bottlenecks more read-

ily than through between-host bottlenecks. Further work is needed to elucidate mechanisms at the

population and meta-population scales.

Population immunity sets the clock of antigenic evolution
Our work suggests a simple mechanism by which accumulating immunity to an antigenic variant

could produce punctuated population-level antigenic evolution. Population-level modeling has

shown that influenza virus global epidemiological and phylogenetic patterns can be reproduced if

new antigenic variants emerge at the population level with increasing frequency the longer an old

antigenic variant circulates (Koelle et al., 2009).

If immunity to the old variant only gives new variants a population-level transmission advantage

(population-level selection), we anticipate a constant rate of population-level antigenic diversifica-

tion, with selective sweeps once a new variant has a sufficient population-level advantage over the

old variant. If population immunity also helps new variants become the dominant within-host variant

through inoculation selection, increasing population immunity to an old variant can produce increas-

ing rates of new variant emergence (Figure 6A). Whether this occurs in practice depends on the

ecology of hosts and the relative strength of inoculation selection versus drift in partially and fully

immune hosts (Figure 4).

Potential synergy between brief antigenic replication selection late in infection and subsequent

inoculation selection (Figure 4) could further promote new variant emergence as population immu-

nity accumulates. However, it is difficult to estimate how much this synergy matters in practice with-

out knowing more about the kinetics of homotypic and heterotypic re-inoculation and reinfection.

One suggestive population-level pattern is that new antigenic variants frequently are observed

quasi-simultaneously on multiple branches of the influenza virus phylogeny shortly prior to sweeping

(see Appendix Section A6). This suggests that emergence rate and population-level selection pres-

sure do increase together. That said, alternative explanations are possible, such as reduced rates of

stochastic loss of new variants at higher scales (e.g. the epidemic scale) with increased population

immunity.

Regardless of the strength of these effects, however, our prediction is that new antigenic variant

infection foundation events should constitute a rare but non-negligible fraction of transmission

events: on the order of 1 in 105 or 1 in 104. This parsimoniously explains why new antigenic variants

lineages are hard to observe prior to undergoing positive population-level selection but are readily

available to be selected upon (see Appendix Section A6) once that population-level selection pres-

sure has become sufficiently strong. Before that point, they could be rendered unobservable by pop-

ulation-level neutralizing dynamics or by clonal interference from non-antigenic weakly adaptive

mutants (Strelkowa and Lässig, 2012).

The slow rate of antigenic evolution of A/H3N2 viruses in swine lends further support to this argu-

ment. A/H3N2 viruses accumulate genetic mutations at a similar pace in swine and humans, but anti-

genic evolution is much slower in swine (ESNIP3 consortium et al., 2016; de Jong et al., 2007).

Slaughter for meat means that pig population turnover is high. It follows that the frequency of expe-

rienced hosts rarely becomes sufficient to facilitate the appearance of observable new antigenic

variants.

The population-level emergence of new antigenic variants, in other words, tracks the accumula-

tion of immunity in the population, not the accumulation of genetic diversity. This suggests that A/

H3N2 evolution is indeed selection-limited, not diversity-limited. But much generated antigenic

diversity is invisible to surveillance: in the absence of positive selection, it is likely to be lost at

bottlenecks.
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Implications for other pathogens
The inoculation and replication selection paradigm has implications for the understanding and man-

agement of other pathogens. For example, HIV does not readily evolve resistance to contemporary

pre-exposure prophylaxis (PrEP) antiviral drugs, but it can do so when these antivirals are taken by

an individual who is already infected with HIV (Partners PrEP Study Team et al., 2016). Developing

resistance at the moment of exposure is a difficult problem of inoculation selection for the virus, but

developing resistance during an ongoing infection is an easier problem of replication selection.

Selection on small un-diverse introduced populations may also be of interest in invasion biology and

island biogeography.

Conclusion
The asynchrony between within-host virus diversity and antigenic selection pressure provides a sim-

ple mechanistic explanation for the phenomenon of weak within-host selection but strong popula-

tion-level selection in seasonal influenza virus antigenic evolution. Measuring or even observing

antibody selection in natural influenza virus infections is likely to be difficult because it is inefficient

and consequently rare. Theoretical studies are therefore essential for understanding these phenom-

ena and for determining which measurable quantities will facilitate influenza virus control. Our study

highlights a critical need for new insights into sIgA neutralization and IgA responses to natural influ-

enza virus infection and vaccination. Cross-scale dynamics can decouple selection and diversity,

introducing randomness into otherwise strongly adaptive evolution.

Materials and methods

Model notation
In all model descriptions, X þ¼ y and X �¼ y denote incrementing and decrementing the state vari-

able X by the quantity y, respectively, and X ¼ y denotes setting the variable X to the value y. _X

denotes the rate of event X.

Within-host model overview
The within-host model is a target cell-limited model of within-host influenza virus infection with three

classes of state variables:

. C: Target cells available for the virus to infect. Shared across all virus variants.

. Vi: Virions of virus antigenic variant i

. Ei: Binary variable indicating whether the host has previously experienced infection with anti-
genic variant i (Ei ¼ 1 for experienced individuals; Ei ¼ 0 for naive individuals).

New virions are produced through infections of target cells by existing virions, at a rate bCVi.

Infection eventually renders a cell unproductive, so target cells decline at a rate ‘bC�V , where �V is

the total number of virions of all variants. The model allows mutation: a virion of antigenic variant i

has some probability �ij of producing a virion of antigenic variant j when it reproduces.

Virions have a natural per-capita decay rate dv. A fully active specific antibody-mediated immune

response to variant i increases the virion per-capita decay rate for variant i by a factor k (assumed

equal for all variants). The degree of activation of the antibody response during an infection is given

by a function MðtÞ, where t is the time since inoculation.

We use a parameter cij to denote the protective strength of antibodies raised against a strain j

against a different strain i. cii ¼ 1 by definition and cij ¼ 0 indicates complete absence of cross-pro-

tection. So if host has antibodies against a strain j but not against the infecting strain i, a fully active

antibody response raises the virion decay rate for strain i by cijk. If there are multiple candidate forms

of cross protection cij and cik, we choose the strongest. We typically assume that cij ¼ cji.

We assume that an antibody immune response is raised whenever the host has experienced a

prior infection with a partially cross-reactive strain. For notational ease, we define the host’s stron-

gest cross-reactivity against strain i, ci, by:

ci ¼maxfcijEjg (1)
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So a recall antibody response is raised during an infection with strains i; j; ::: whenever one of

ci;cj; :::>0.

For this study, we consider a two-antigenic variant model with an ancestral ‘old antigenic variant’

virions Vw and novel ‘new antigenic variant’ virions Vm, though the model generalizes to more than

two variants. The state variables are charged by the following stochastic events:

Cþ : Cþ¼ 1

C� : C�¼ 1

Vþ
w : Vw þ¼ 1

V�
w : Vw �¼ 1

Vþ
m : Vm þ¼ 1

V�
m : Vm �¼ 1

(2)

These events occur at the following rates:

_C� ¼ ‘bCðVwþVmÞ

_Cþ ¼ pCC 1�C=Cmaxð Þ

_Vþ
w ¼ bCVwrwð1��Þ

_V�
w ¼ Vwðdv þ cwkMðtÞÞ

_Vþ
m ¼ bCðVmrmþVwrw�Þ

_V�
m ¼ Vmðdvþ cmkMðtÞÞ

(3)

where MðtÞ is a minimal model of a time-varying antibody response given by:

MðtÞ ¼
1; t>tM

0; otherwise

�

(4)

For simplicity, the equations are symmetric between old antigenic variant and new antigenic vari-

ant viruses, except that we neglect back mutation, which is expected to be rare during a single infec-

tion, particularly before mutants achieve large populations. The parameters rw and rm allow the two

variants optionally to have distinct within-host replication fitnesses; for all results shown, we assumed

no replication fitness difference (rw ¼ rm ¼ r) unless otherwise stated. A de novo antibody response

raised to a not-previously-encountered variant i can be modeled by setting Ei ¼ 1 at a time tiN � tM

post-infection. By default, we model such a de novo response only for fully naive hosts, and assume

that it is mounted only against the variant that was most common at the start of infection, which is

typically w.

We characterize a virus variant i by its within-host basic reproduction number Ri
0
, the mean num-

ber of progeny virions produced by a single virion at the start of infection in a naive host:

Ri
0
�
bCmaxri

dv
(5)

When parametrizing our model, we fixed the within-host basic reproduction number Ri
0
, the initial

target cell population Cmax, the virus reproduction rate ri, and the shared virion decay rate dv. We

then calculated the implied b according to Equation (5).

Another useful quantity is the within-host effective reproduction number RiðtÞ of variant i at time

t: the mean number of progeny virions produced by a single virion of variant i at a given time t post-

infection.

RiðtÞ �
bCðtÞri

dv þ cikMðtÞ
(6)

Note that Ri
0
is Rið0Þ in a naive host, and that if Ri<1, the variant i virus population will usually

decline.

We denote the frequency of new variant virions at time t by fmðtÞ ¼
VmðtÞ

VwðtÞþVmðtÞ
.
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The distribution of virions that encounter sIgA antibody neutralization depends on the mean

mucosal bottleneck size v (i.e. the mean number of virions that would pass through the respiratory

tract mucosa in the absence of antibodies) and on the frequency of new antigenic variant

fmt ¼ fmðtinocÞ in the donor host at the time of inoculation tinoc. nw old antigenic variant virions and nm
new antigenic variant virions encounter sIgA. The total number of virions ntot ¼ nw þ nm is Poisson-

distributed with mean v and each virion is independently a new antigenic variant with probability fmt

and otherwise an old antigenic variant. The principle of Poisson thinning then implies:

nm ~PoissonðvfmtÞ

nw ~Poissonðvð1� fmtÞÞ
(7)

Note that since fmt is typically small, the results should also hold for a binomial model of nw and

nm with a fixed total number of virions encountering sIgA antibodies: vtot ¼ v.

We then model the sIgA bottleneck—neutralization of virions by mucosal sIgA antibodies. Each

virion of variant i is independently neutralized with a probability ki. This probability depends upon

the strength of protection against homotypic reinfection k and the sIgA cross immunity between var-

iants s (0 � s � 1):

kw ¼ kmaxfEw;sEmg

km ¼ kmaxfEm;sEwg
(8)

Since each virion of strain i in the inoculum is independently neutralized with probability ki, then

given nw and nm, the populations that compete the pass through the cell infection bottleneck xw and

xm are binomially distributed:

xw ~Binomialðnw;kwÞ

xm ~Binomialðnm;kmÞ
(9)

By Poisson thinning, this is equivalent to:

xw ~Poissonðvð1� fmtÞð1�kwÞÞ

xm ~Poissonðvfmtð1�kmÞÞ
(10)

At this point, the remaining virions are sampled without replacement to determine what passes

through the cell infection bottleneck, b, with all virions passing through if xwþ xm � b, so the final

founding population is hypergeometrically distributed given xw and xm.

If kw ¼ km ¼ 0, fmt is small, and v is large, this is approximated by a binomially distributed found-

ing population of size b, in which each virion is independently a new antigenic variant with (low)

probability fmt and is otherwise an old antigenic variant. Alternatively, it can be approximated by a

Poisson distribution with a small mean: fmtb � 1. So the probability that a new variant survives the

bottleneck in the absence of mucosal neutralization is:

pdrift »1�ð1� fmtÞ
b
» fmtb (11)

When there is mucosal antibody neutralization, the variant’s survival probability can be reduced

below this (inoculation pruning) or promoted above it (inoculation promotion), depending upon

parameters. There can be inoculation pruning even when the new antigenic variant is more fit (neu-

tralized with lower probability, positive inoculation selection) than the old antigenic variant (see

Figure 3E).

Within-host model parameters
Default parameter values for the minimal model and sources for them are given in Table 1.

Selection and drift within hosts
In this section, we derive analytical expressions for the within-host frequency of the new variant over

time in an infected host (Figure 7), the probability distribution for the time of the first de novo
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Figure 7. Variant within-host frequency as a function of time and initial variant frequency, according to derived replicator equation (Equations 13, 15).

(A, B) Variant frequency over time for an initially present new variant. (A) Selection strength d varied, with initial frequency f0 equal to the mutation rate

� ¼ 0:33� 10
�5. (B) Initial frequency f0 varied, with d ¼ 6. (C, D) Variant frequency over time when antigenic selections begins at t ¼ 2 days after first

variant emergence, with ongoing mutation prior to that point. (C) d varied and f0 fixed as in (A); (D) f0 varied and d fixed as in (B). Parameters as in

Table 1 unless otherwise noted.
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mutation to produce a surviving new variant lineage, and the approximate probability of replication

selection to frequency x by time t given our parameters.

Within-host replicator equation
The within-host frequency of the new variant, fm, obeys a replicator equation of the form:

dfm

dt
¼ fmð1� fmÞdðtÞ (12)

where dðtÞ is the fitness advantage of the new antigenic variant over the old antigenic variant at time

t (see Appendix Section A3 for a derivation).

If the variant is neutral in the absence of antibodies, then dðtÞ ¼ kðcw � cmÞ if t>tM and dðtÞ ¼ 0 oth-

erwise. Let te denote the first time during the infection that a de novo mutation produces a surviving

new antigenic variant lineage. If te � tM , then at a time t � tM :

fmðtÞ ¼
edðt�tM Þ

edðt�tM Þþ f�1
M � 1

(13)

where d¼ kðcw� cmÞ and fM ¼ fmðtMÞ.

When additional mutations after the first cannot be neglected, we add a correction term to dfm
dt

for

te<t<minftM ; tpeakg (Figure 7), where tpeak is the time of peak virus population:

dfm

dt
¼ fmð1� fmÞdðtÞþ�R0dvð1� 2fmþ f 2mÞ (14)

which for d 6¼ 0 yields:

fmðtÞ »
AexpðdtÞþ�g0

AexpðdtÞþ�g0� d

A ¼
f0

1� f0
ð�g0� dÞ�

�g0
f0

(15)

And when d¼ 0:

fmðtÞ»
1

1�f0
þ�g0t� 1

1

1�f0
þ�g0t

(16)

where g0 ¼R0dv and f0 ¼ fmðteÞ. See Appendix Section A3.2 for derivations and discussion.

Distribution of first mutation times
In our stochastic model, new variant lineages that survive stochastic extinction are produced by de

novo mutation according to a continuous-time, variable-rate Poisson process. The cumulative distri-

bution function for the time of the first successful mutation, te, depends on the mutation rate m and

the per-capita rate at which old antigenic variant virions are produced, gwðtÞ ¼ rwbCðtÞ. It also

depends on psse, the probability that the generated new antigenic variant survives stochastic extinc-

tion. Denoting the new variant per-capita virion production rate gmðtÞ ¼ rmbCðtÞ, we calculate psse

using a branching process approximation (Ball et al., 2016).

psse ¼
gmðtÞ

gmðtÞþ dvþ kMðtÞmaxfEm;cEwg
(17)

Surviving mutants therefore occur at a rate lmðtÞ:

lmðtÞ ¼ �gwðtÞVwðtÞpsse (18)

We define the cumulative rate LmðxÞ:
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LmðxÞ ¼

Z x

0

lmðxÞdx (19)

It follows that the CDF of the first mutation time te is:

Pðte<xÞ ¼ 1� e�LmðxÞ (20)

This expression is exact for any given realization of the stochastic model if the realized values of

the random variables VwðtÞ, CðtÞ, and gwðtÞ are used. In practice, we mainly use it to get a closed

form for the CDF of te by making the approximation that CðtÞ»Cmax early in infection. This yields

approximations for gwðtÞ, gmðtÞ, and VwðtÞ:

gwðtÞ;gmðtÞ»g0 �R0dv (21)

VwðtÞ

bexpððg0 � dvÞtÞ t � tM

bexpððg0 � dvÞtMÞexpððg0 � dv� cwkÞðt� tMÞÞ t > tM

8

>

<

>

:

(22)

The resultant approximate solution for the CDF of new variant mutation times agrees well with

simulations (Figure 8).

The slightly earlier simulated mutation times in the immediate recall response case (Figure 8A)

would only make replication selection more likely in that case than our analytical approximation

suggests.

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

cu
m
ul
at
iv
e
pr
ob
ab
ili
ty

A immediate recall response

analytical

simulated

0.0 0.5 1.0 1.5 2.0

B delayed recall response

0.0 0.2 0.4 0.6 0.8 1.0

time of first mutation (days)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8. Comparison of analytically calculated cumulative distribution function (CDF) for time of first successful de novo mutation with simulations.

Black line shows analytically calculated CDF. Blue cumulative histogram shows distribution of new variant mutation times for 250,000 simulations from

the stochastic within-host model with (A) an immediate recall response (tM ¼ 0) and (B) a realistic recall response at 48 hr post-infection (tM ¼ 2). Other

model parameters as in Table 1. Note that time of first successful mutation tends to be later with an immediate recall response than with a delayed

recall response. This occurs because the cumulative number of viral replication events grows more slowly in time at the start of the infection because of

the strong, immediate recall response.
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Required mutation time for a variant to reach a given frequency
By inverting the within-host replicator equation, we can also calculate the time t�ðx; tÞ by which a new

variant must emerge if it is to reach at least frequency x by time t. We show (see Appendix Section

A9.4 for derivation) that there are two candidate values for t�, depending on whether the time that

the new variant first emerges (te) is before or after the onset of the antibody response (tM ):

If te � tM :

t��ðx; tÞ ¼
ln 1�x

x
expðdðt� tMÞÞþ 1

� �

� lnb

g0 � dv
(23)

If te>tM :

t�þðx; tÞ»
lnð1�x

x
Þ� lnðbÞþ dt� cwktM

g0� dv � cwkþ d
(24)

It may be that t�þðx; tÞ>t and t��ðx; tÞ>t. This indicates that the mutant will be at frequency x if it

emerges at t itself. In that case, we therefore have t�ðx; tÞ ¼ t. So combining:

t�ðx; tÞ ¼

t��ðx; tÞ t��ðx; tÞ < t and t��ðx; tÞ � tM

t�þðx; tÞ t�þðx; tÞ < t and t��ðx; tÞ > tM

t otherwise

8

>

<

>

:

(25)

Finally, it is worth noting that in the case of a complete escape mutant (cm ¼ 0, d¼ cwk), the

approximate expression for t�þ is exactly equal to the equivalent approximate expression for t��:

t�ðx; tÞ»
lnð1�x

x
Þ� lnðbÞþ cwkðt� tMÞ

g0� dv
(26)

This is a linear function of t.

Probability of replication selection
Given this and the new variant first mutation time CDF calculated in Equation 20, it is straightfor-

ward to calculate the probability of replication selection to a given frequency a by time t, assuming

that Rw
0
>1 early in infection:

preplða; tÞ ¼ Pðte<t
�ða; tÞÞ ¼ 1� e�Lðt�ða;tÞÞ (27)

This analytical model agrees well with simulations (Figure 9). We use it used to calculate the heat-

maps shown in Figure 1, with the CðtÞ»Cmax early infection approximations that give us a closed

form for LmðxÞ.

When t�>tM , the integral
R t�

0
lmðxÞdx can be evaluated piecewise, first from 0 to tM , and then from

tM to t�. A similar approach can be used to evaluate the probability density function (PDF) of first

mutation times, as needed.

Finally, note that for te<tM , the expression for prepl in practice depends only on d ¼ ðcw � cmÞk, not

on cw, cm and k separately. In the absence of an antibody response, the mutant is generated with

near certainty by 1 day post-infection (Pðte<1Þ» 1, Figure 8B). So when tM � 1, values for prepl calcu-

lated with cw ¼ 1; cm ¼ 0, and d ¼ k—as in (Figure 1C,D)—will in fact hold for any cw, cm, and k that

produce that fitness difference d.

When Rw
0
<1 early in infection, the probability of replication selection depends on the probability

of generating an escape mutant before the infection is extinguished:

prepl »
Rwð0Þ

1�Rwð0Þ
b�psse (28)

See Appendix Section A3.6 for a derivation.
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Figure 9. Comparison of analytically calculated probability of replication selection with stochastic simulations. Probability of replication selection to one

percent (left column) or consensus (right column) by t ¼ 3 days post-infection as a function of k and tM for 250,000 simulations from the stochastic

within-host model. cw ¼ 1; cm ¼ 0 (so the fitness difference d ¼ k). Other model parameters as parameters in Table 1. Dashed lines show analytical

prediction and dots show simulation outcomes.
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Point of transmission model
In this section, we describe our model of the point of transmission, including how sIgA neutralization

may impose selection pressure.

Transmission probability
Given contact between an infected host and an uninfected host, we assume that a transmission

attempt occurs with probability proportional to the current virus population size Vtot in the infected

host:

PðtransmitÞ ¼ 1� exp logð2Þ
Vtot

V50

� �

(29)

The parameter V50 sets the scaling, and reflects virus population size at which there is a 50%

chance of successful transmission to a naive host. We used a default value of V50 ¼ 1� 10
8 virions. In

addition to this probabilistic model, we also consider an alternative threshold model in which a trans-

mission attempt occurs with certainty if Vtot is greater than a threshold � and does not occur

otherwise.

Bottleneck survival
If there are xw old antigenic variant virions and xm new variant virions competing to pass through the

cell infection bottleneck, at least one new variant virion passes through with probability:

pcibðxw;xm;bÞ ¼ 1�

xw

b

� �

xw þ xm

b

� � (30)

Summing pcibðxw;xmÞ over the possible values of xw and xm weighted by their joint probabilities

yields the new variant’s overall probability of successful onward transmission psurvðfmt;v;b;k;cÞ:

psurv ¼
X

xm ;xw

Pðxm;xwÞpcibðxw;xm;bÞ (31)

Pðxw;xmÞ is the product of the probability mass functions for xw and xm:

Pðxm;xwÞ ¼
�wxw

xw!

�mxm

xm!
e�ðxwþxmÞ (32)

where �w¼ vð1� fmtÞð1�kwÞ and �m¼ vfmtð1�kmÞ.

At low donor-host variant frequencies fmt � 1, psurv can be approximated using the fact that

almost all probability is given to xm ¼ 0 or xm ¼ 1 (0 or 1 new antigenic variant after the sIgA

bottleneck).

At least one new antigenic variant survives the sIgA bottleneck with probability:

pinocðkm;v; fmtÞ ¼ 1� e�vfmtð1�kmÞ (33)

If fmt is small, there will almost always be at most one such virion (xm ¼ 1). That new antigenic vari-

ant virion’s probability of surviving the cell infection bottleneck depends upon how many old anti-

genic variant virions are present after neutralization, xw:

pcibðxw;1;bÞ ¼ 1�

xw

b

� �

xwþ 1

b

� �¼ 1�
xw� bþ 1

xwþ 1
¼

b

xwþ 1
(34)

Summing over the possible xw, we obtain a closed form for the unconditional probability

pcibðkw;v;bÞ (see Appendix Section A9.5 for a derivation):
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pcibðkw;v;bÞ ¼ ð1� e��wÞ
b

�w
þ e��w

X

b�1

j¼0

�wj

j!
ð1�

b

jþ 1
Þ (35)

where �w¼ vð1� fmtÞð1�kwÞ is the mean number of old antigenic variant virions present after sIgA

neutralization. If b¼ 1, this reduces the just the first term, and it is approximately equal to just the

first term when �w is large, since e��w becomes small.

It follows that there is an approximate closed form for the probability that a new variant survives

the final bottleneck:

psurvðkm;kw;v;b; fmtÞ»pinocðkm;v; fmtÞ � pcibðkw;v;bÞ (36)

We use this expression to calculate the analytical new variant survival probabilities shown in the

main text, and to gain conceptual insight into the strength of inoculation selection relative to neutral

processes (see Appendix Section A4.5).

Neutralization probability and probability of no infection
A given per-virion sIgA neutralization probability ki implies a probability zi that a transmission event

involving only virions of variant i fails to result in an infected cell.

Some transmissions fail even without sIgA neutralization; this occurs with probability expð�vÞ.

Otherwise, with probability 1� expð�vÞ, ni virions must be neutralized by sIgA to prevent an infec-

tion. We define zi as the probability of no infection given inoculated virions in need of neutralization

(i.e. given ni>0).

The probability that there are no remaining virions of variant i after mucosal neutralization is

expð�vð1� kiÞÞ. So we have:

zi ¼
expð�vð1�kiÞÞ� expð�vÞ

1� expð�vÞ
(37)

This can be solved algebraically for ki in terms of zi, but it is more illuminating to express ki in

terms of the overall probability of no infection given inoculation pno and then find pno in terms of zi:

pno ¼ expð�vð1�kiÞÞ

ki ¼ 1þ
lnðpnoÞ

v

(38)

An infection occurs with probability ð1� expð�vÞÞð1� ziÞ (the probability of at least one virion

needing to be neutralized times the conditional probability that it is not) so pno in terms of zi is:

pno ¼ 1�ð1� expð�vÞÞð1� ziÞ (39)

This yields the same expression for ki in terms of zi as a direct algebraic solution of Equation 37.

For moderate to large v, 1� expð�vÞ approaches 1, so pno approaches zi and ki approaches

1þ lnðziÞ
v
. This reflects the fact that for even moderately large v, it is almost always the case that ni>0:

a least one virion must be neutralized to prevent infection. In those cases, zi can be interpreted as

the (approximate) probability of no infection given a transmission event (i.e. as pno).

Note also that seeded infections can also go stochastically extinct; this occurs with approximate

probability 1

R0

. At the start of infection, if there is no antibody response and R0 is large (5 to 10), sto-

chastic extinction probabilities should be low (1
5
to 1

10
), and equal in immune and naive hosts. We

have therefore parametrized our model in terms of zi, the probability that no cell is ever infected, as

that probability determines to leading order the frequency with which immunity protects against

detectable reinfection given challenge.

Susceptibility models
Translating host immune histories into old antigenic variant and new antigenic variant neutralization

probabilities for the analysis in Figure 3G,H requires a model of how susceptibility decays with anti-

genic distance, which we measure in terms of the typical distance between two adjacent ‘antigenic

clusters’ (Smith et al., 2004). Figure 3 shows results for two candidate models: a multiplicative
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model used in a prior modeling and empirical studies of influenza evolution (Boni et al., 2006;

Asaduzzaman et al., 2018), and a sigmoid model as parametrized from data on empirical HI titer

and protection against infection (Coudeville et al., 2010).

In the multiplicative model, the probability zði; xÞ of no infection with variant i given that the near-

est variant to i in the immune history is variant x is given by:

zði;xÞ ¼ z0
z1

z0

� �dði;xÞ

(40)

where z0 is the probability of no infection given homotypic reinfection, dði;xÞ is the antigenic dis-

tance in antigenic clusters between i and x, and z1 is the probability of no infection given dði;xÞ ¼ 1.

In the sigmoid model:

zði;xÞ ¼ 1�
1

1þ eb lnðTði;xÞÞ�að Þ
(41)

where a¼ 2:844 and b¼ 1:299 (a and b estimated in Coudeville et al., 2010) and Tði;xÞ is the individ-

ual’s HI titer against variant i (Coudeville et al., 2010). To convert this into a model in terms of z0
and z1 we calculate the typical homotypic titer T0 implied by z0 and the n-fold-drop D in titer per

unit of antigenic distance implied by z1, since units in antigenic space correspond to a n-fold reduc-

tions in HI titer for some value n (Smith et al., 2004). We calculate T0 by plugging z0 and T0 into

Equation 41 and solving. We calculate D by plugging z1 and T1 ¼ T0D
�1 into Equation 41 and solv-

ing. We can then calculate Tði;xÞ as:

Tði;xÞ ¼ T0D
�dði;xÞ (42)

Probability of bottleneck survival
With these analyses in hand, it is possible to combine the within-host and the point of transmission

processes to calculate an overall probability that a new variant survives the transmission bottleneck.

Equation 36 gives the probability of bottleneck survival given fmt and the properties of the recipient

host. And given a time of transmission tt, we can calculate the probability distribution of fmt using

our expressions for the CDF of successful mutation times te (Equation 20) and for fmðtÞ (Equa-

tions 13, 15). To calculate the overall probability pnv, we average over the possible values of fmt,

weighted by their probability:

pnv ¼

Z

¥

0

psurvðfmðtt j te ¼ tÞÞpðte ¼ tÞ dt (43)

Within-host simulations (Figures 1,4)
To evaluate the relative probabilities of replication selection and inoculation selection for antigenic

novelty and to check the validity of the analytical results, we simulated 106 transmissions from a

naive host to a previously immune host. The transmitting host was simulated for 10 days, which given

the selected model parameters is sufficient time for almost all infections to be cleared. Time of trans-

mission was randomly drawn from that period, weighted by transmission probability, and an inocu-

lum was drawn from the within-host virus population at that time. Variant counts in the inoculum

were Poisson-distributed with probability equal to the variant frequency within the transmitting host

at the time of transmission. We simulated the recipient host until the clearance of infection and

found the maximum frequency of transmissible variant: that is, the variant frequencies when the

transmission probability was greater than 5� 10
�2 (probabilistic model) or when the virus population

was above the transmission threshold � (threshold model). For Figure 3D, we defined an infection

with an emerged new antigenic variant as an infection with a maximum transmissible new variant fre-

quency of greater than 50%.

Transmission chain model (Figure 5)
To study evolution along transmission chains with mixed host immune statuses, we modeled the

virus phenotype as existing in a 1-dimensional antigenic space. Host susceptibility sx to a given phe-

notype x was sx ¼ minf1;minf x� yij jgg for all phenotypes yi in the host’s immune history.
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Within-host cross immunity cij between two phenotypes yi and yj was equal to

maxf0; 1� yi � yj
�

�

�

�g. When mucosal antibodies were present, protection against infection zx was

equal to the strength of homotypic protection zmax scaled by susceptibility: zx ¼ ð1� sxÞzmax. kx was

calculated from zx by expð�vð1� kxÞÞ ¼ zx. We used zmax ¼ 0:95. Note that this puts us in the regime

in which intermediately immune hosts are the best inoculation selectors (Figure 3H). We set k ¼ 25

so that there would be protection against reinfection in the condition with an immediate recall

response but without mucosal antibodies.

We then simulated a chain of infections as follows. For each inoculated host, we tracked two virus

variants: an initial majority antigenic variant and an initial minority antigenic variant. If there were no

minority antigenic variants in the inoculum, a new focal minority variant (representing the first anti-

genic variant to emerge de novo) was chosen from a Gaussian distribution with mean equal to the

majority variant and a given variance, which determined the width of the mutation kernel (for results

shown in Figure 5, we used a standard deviation of 0.08). We simulated within-host dynamics in the

host according to our within-host stochastic model.

We founded each chain with an individual infected with all virions of phenotype 0, representing

the current old antigenic variant.

We simulated contacts at a fixed, memoryless contact rate � ¼ 1 contacts per day. Given contact,

a transmission attempt occurred with a probability proportional to donor-host viral load, as

described above. If a transmission attempt occurred, we chose a random immune history for our

recipient host according to a pre-specified distribution of host immune histories. We then simulated

an inoculation and, if applicable, subsequent infection, according to the within-host model described

above. If the recipient host developed a transmissible infection, it became a new donor host. If not,

we continued to simulate contacts and possible transmissions for the donor host until recovery. If a

donor host recovered without transmitting successfully, the chain was declared extinct and a new

chain was founded.

We iterated this process until the first phenotypic change event—a generated or transmitted

minority phenotype becoming the new majority phenotype. We simulated 1000 such events for each

model and examined the observed distribution of phenotypic changes compared to the mutation

kernel.

For the results shown in Figure 5, we set the population distribution of immune histories as fol-

lows: 20% �0.8, 20% �0.5, 20% 0.0, and the remaining 40% of hosts naive. This qualitatively models

the directional pressure that is thought to canalize virus evolution (Bedford et al., 2012) once a clus-

ter has begun to circulate.

Analytical mutation kernel shift model (Figure 5)
To assess the causes of the observed behavior in our transmission chain model, we also studied ana-

lytically how replication and inoculation selection determine the distribution of observed fixed anti-

genic changes given the mutation kernel when a host with one immune history inoculates another

host with a different immune history.

We fixed a transmission time t ¼ 2 days, roughly corresponding to peak within-host virus titers.

For each possible new variant phenotype, we calculated pnv according to Equation 43, with parame-

ters given by the old variant antigenic phenotype, new variant phenotype, and host immune histo-

ries. Finally, we multiplied each phenotype’s survival probability by the same Gaussian mutation

kernel used in the chain simulations (with mean 0 and s.d. 0.08), and normalized the result to deter-

mine the predicted distribution of surviving new variants given the mutation kernel and the differen-

tial survival probabilities for different phenotypes.

Population-level model (Figure 6)
To evaluate the probability of variants being selected and proliferating during a local influenza virus

epidemic, we first noted that the per-inoculation rate of new antigenic variant infections for a popu-

lation with ns susceptibility classes (which can range from full susceptibility to full immunity) is:

X

ns

i¼1

sið0ÞpsurvðkmðiÞ;kwðiÞ;v;b; fmtÞ (44)

where kwðiÞ and kmðiÞ are the mucosal antibody neutralization probabilities for the old antigenic
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variant and the new antigenic variant associated with susceptibility class i, and sið0Þ ¼
Sið0Þ
N

is the initial

fraction of individuals in susceptibility class i.

We then considered a well-mixed population with frequency-dependent transmission, where

infected individuals from all susceptibility classes are equally infectious if infected. Using an existing

result from epidemic theory (Magal et al., 2018), we calculated R¥, the average fraction of individu-

als who are infected if an epidemic occurs in such a population. During such an epidemic, each indi-

vidual will on average be inoculated (challenged) R0R¥ times, where R0 is the population-level basic

reproduction number (Miller, 2012). We can then calculate the probability that a new variant trans-

mission chain is started in an arbitrary focal individual:

R0R¥
X

ns

i¼1

sið0ÞpsurvðkmðiÞ;kwðiÞ;v;b; fmtÞ (45)

Sensitivity analysis (Appendix 1—figure 3)
We assessed the sensitivity of our results to parameter choices by re-running our simulation models

with randomly generated parameter sets chosen via Latin Hypercube Sampling from across a range

of biologically plausible values. Appendix 1—figure 3 gives a summary of the results.

We simulated 50,000 infections of experienced hosts (cw ¼ 1) according to each of 10 random

parameter sets. We selected parameter sets using Latin Hypercube sampling to maximize coverage

of the range of interest without needing to study all possible permutations. We did this for the fol-

lowing bottleneck sizes: 1, 3, 10, 50.

We analyzed two cases: one in which the immune response is unrealistically early and one in

which it is realistically timed. In the unrealistically early antibody response model, tM varied between

tM ¼ 0 and tM ¼ 1. In the realistically-timed antibody response model, tM varied between tM ¼ 2 and

tM ¼ 4:5. Other parameter ranges were shared between the two models (Table 2).

Discussion of sensitivity analysis results can be found in Appendix Section A8.

Meta-analysis (Figure 1)
We downloaded processed variant frequencies and subject metadata from the two NGS studies of

immune-competent human subjects naturally infected with A/H3N2 with known vaccination status

(Debbink et al., 2017; McCrone et al., 2018) from the study Github repositories and journal web-

sites. We independently verified that reported antigenic site and antigenic ridge amino acid substitu-

tions were correctly indicated, determined the number of subjects with no NGS-detectable antigenic

amino acid substitutions, and produced figures from the aggregated data.

Table 2. Sensitivity analysis parameter ranges shared between models.

Parameter Minimum value Maximum value

tN 6 9

Cmax 108 109

R0 5 15

r 10 500

�wm 0.33 � 10�6 0.33 � 10�4

dv 2 8

k 3 16

cm 0.5 1

zw 0.70 0.99

zm=zw 0.5 0.9

V50 107 109

v=b 1 50

Morris et al. eLife 2020;9:e62105. DOI: https://doi.org/10.7554/eLife.62105 31 of 77

Research article Evolutionary Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.62105


Computational methods
For within-host model stochastic simulations, we used the Poisson Random Corrections (PRC) tau-

leaping algorithm (Hu and Li, 2009). We used an adaptive step size; we chose step sizes according

to the algorithm of Hu and Li, 2009 to ensure that estimated next-step mean values were non-nega-

tive, with a maximum step size of 0.01 days. Variables were set to zero if events performed during a

timestep would have reduced the variable to a negative value. For the sterilizing immunity simula-

tions in Figure 2, we used a smaller maximum step size of 0.001 days in recipient hosts to better

handle mutation dynamics involving very small numbers of replicating virions.

We obtained numerical solutions of equations, including systems of differential equations and

final size equations, in Python using solvers provided with SciPy (Jones et al., 2001).

Data and materials availability
All code, data, and other materials needed to reproduce the analysis in this paper are provided

online on the project Github repository: https://github.com/dylanhmorris/asynchrony-influenza (Mor-

ris, 2020; copy archived at swh:1:rev:5a9796fa3ab7b8a86aeccd7c9353542f9409e215).

They are also available on OSF: https://doi.org/10.17605/OSF.IO/jdsbp.

Output data generated by stochastic simulations, within-host NGS meta-analysis, and phyloge-

netic analyses are archived on OSF: https://doi.org/10.17605/OSF.IO/jdsbp.
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Appendix 1

A1 Summary
This appendix contains additional information for ‘Asynchrony between virus diversity and antibody

selection limits influenza virus evolution’.

We provide a detailed review of virological and immunological evidence supporting our model of

the interaction between influenza viruses and the (human) host immune system (Section A2). We

give a more detailed mathematical analysis of our within-host model, deriving the approximate and

exact analytical results that are used in the main text, and provide intuition to explain model behav-

ior and limitations (Section A3). We do the same for our model of the point of transmission, and

assess which hosts are most likely to act as inoculation selectors and which mutants are most likely

to be inoculation selected (Section A4).

We next discuss parameter uncertainties and report the results of a sensitivity analysis for our

within-host models (Section A5). We report an additional empirical analysis showing that new var-

iants often emerge polyphyletically: they appear simultaneously on multiple branches of the influ-

enza virus phylogeny. We discuss how this is more easily explained in light of our model than in light

of previous models (Section A6).

We then review these prior studies and models of within-host influenza virus antigenic evolution

and general pathogen immune escape in depth. We argue that they are insufficient to explain

within-host influenza virus antigenic evolution and that inoculation selection accompanied by a realis-

tically-timed antibody response is the most likely competing hypothesis (Section A7). We elaborate

on the conclusions that can be drawn from our study and its implications for influenza virus control

and for future basic research (Section A8). We conclude by providing complete step-by-step mathe-

matical derivations of lemmas and approximations from elsewhere in the text (Section A9).

A2 Immunological underpinnings of the inoculation selection model
In this section, we review relevant immunology to establish the biological realities that we built our

model to capture. We also discuss some unmodeled biological complexities, and why they are

unlikely to change our qualitative conclusions.

A2.1 Strong selection at the point of inoculation

The establishment of successful influenza virus infection requires access to respiratory epithelial cells

covered by a mucosal layer, which acts as a protective barrier for virus entry. Sialic acid residues

present in the mucus act as decoys for virions and the enzymatic activity of the influenza virus neur-

aminidase (NA) protein is essential for penetration of the mucosal layer (Matrosovich et al., 2004).

The mucosal layer does not act only as a mechanical barrier. Secretory IgA (sIgA) mucosal antibodies

specific to influenza virus proteins can apply virus-specific neutralization by immobilizing virions and

slowing down the process of virus infection (Wang et al., 2017). Depending on their specificity, sIgA

can either play a role in reduction of total virus population size or in providing specific competitive

advantage to mutant viruses. Antibodies against the influenza virus NA protein will slow down the

virus passage through the mucosal barrier irrespective of the HA antigenic phenotype of the newly

infecting virus. By contrast, anti-HA antibodies are essential for inoculation selection because they

recognise previously encountered antigenic variants. This provides a competitive advantage to new,

distinct antigenic variants. The new variants with strongest competitive advantage are those with

large antigenic effects; they have the lowest probability to be neutralized by any cross-reactive anti-

HA sIgAs.

A2.2 Weak selection during exponential virus growth

Virions that successfully cross the mucosal barrier can infect epithelial cells in the respiratory tract.

Upon initiation of replication in host cells, newly generated virions can be subjected to replication

selection via virus-specific antibodies. Replication selection can take place only if influenza virus-spe-

cific antibodies are present in mucosa-associated lymphoid tissue (MALT) at the time of virus

replication.
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Influenza virus-specific antibodies in the MALT are secreted by local plasmablast populations,

generated following activation of B naive cells or B memory cells. The exposure history of the host

determines the timing and the immunological trajectory for the generation of influenza virus-specific

antibodies. In individuals without previous exposure to influenza virus, newly generated virions are

recognised by naive B cells which undergo rounds of affinity maturation and somatic hypermutation

to produce highly-specific antibodies to the virus. This process typically occurs in germinal centers,

requires T-cell help, and takes around 7 days for production of highly-specific antibodies

(Wrammert et al., 2008).

In individuals with previous exposure history to influenza viruses, where the newly generated influ-

enza virions are antigenically matched or have some degree of cross-reactivity to previously encoun-

tered variants, the generation of influenza virus-specific antibodies mainly results from B memory

recall response. The activation of pre-existing memory pools enables the immune system to respond

quicker to previously encountered antigens without the need to recruit naive B cell populations. The

generation of antigen-specific antibodies from recalled B memory pools does not typically start until

3–5 days post infection (Coro et al., 2006; Lam and Baumgarth, 2019).

The B naive and B memory cells generating serological responses to influenza viruses are referred

to as B-2 cells. The activation of these cell types depends on the recognition of virus protein via the

B-cell receptor and sufficient affinity of binding to trigger stimulatory signal. Depending on their

specificity to the recognised virus antigen, the antibodies produced by these cell types have the

potential to apply replication selection to any generated new antigenic variant viruses and to old var-

iant viruses during the course of infection. Antibodies against influenza viruses can also be generated

from the so-called B-1 cells, which do not require specific recognition of virus antigen and are acti-

vated by innate mechanisms (Lam and Baumgarth, 2019).

B-1 cells produce natural IgM antibodies with low affinity which constitute the earliest humoral

response generated in the first 48–72 hr of infection (Lam and Baumgarth, 2019). As the activation

of B-1 cells is independent of the specific recognition of influenza virus virions, the natural IgM anti-

bodies act as a non-specific limiting factor for virus population sizes and cannot apply replication

selection to particular virus antigenic variants.

The peak of influenza virus replication occurs in the first 24–48 hr post infection

(Hadjichrysanthou et al., 2016). Despite the presence of several immunological routes for genera-

tion of influenza virus-specific antibodies, the timing of the serological immune response is always

later than the time of peak of virus titer (at least in typical infections of otherwise healthy individuals),

thus limiting the opportunity for replication selection during the course of infection.

A2.3 Selection during exit of an infected host

The design of the inoculation selection model focuses on selection applied by the mucosal layer

upon the entry of influenza virus in naı̈ve or previously exposed hosts. We do not take into account

the potential bottleneck applied during exit of viruses from the respiratory tract of an infected host.

Selection of newly generated virions at the point of exit of an infected host is technically possible as

the virions released from infected epithelial cells need to cross the mucosal barrier again to reach

the lumen of the respiratory tract. Such selection upon virus exit would have the same directional

effect as inoculation selection; it would provide a competitive advantage for mutant viruses with

large antigenic effects. The potential strength of such selection depends heavily the how many sIgA

antibodies in the transmitting host’s mucosa are free to neutralize the virions passing through; this

quantity is unknown. Incorporating such mucosal selection upon virus exit thus requires better knowl-

edge of the quantities of sIgA antibodies in given volume of mucus and what proportion of the avail-

able sIgA antibodies are engaged with antigen when an infected host transmits. Such data is not

currently available and would require well-designed cellular culture models which take into account

the role of mucosal layer in the process of virus infection and release of newly generated viruses.

A2.4 Nature and timing of previous exposure and effects on inoculation
selection

According to our model, the strongest inoculation selection can take place in infection of previously

exposed individuals and the highest probability of antigenic diversification occurs in populations
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with an intermediate proportion of immune hosts. In deriving this result, we have assumed homoge-

neous and static quantities of sIgA antibodies among previously exposed individuals. This is an over-

simplification. There is substantial variation in level of sIgA antibodies across individuals depending

on the nature of their previous exposures (through vaccination or natural infection). For example,

intranasal inoculation with influenza virus via live attenuated influenza virus vaccines leads to genera-

tion of better mucosal immunity (Hoft et al., 2017) than intramuscular administration of trivalent

inactivated vaccines and thus previously exposed individuals are likely to vary in the degree of inocu-

lation selection applied during homotypic infections depending on the route of administration of

previous vaccinations.

The model also does not account for waning of sIgA antibody titers in the months and years fol-

lowing each exposure. The waning of sIgA titers is likely to be substantial in absence of re-exposure

but the waning process should only decrease the efficiency of inoculation selection and make the

accumulation of population level selection pressure—and thus the appearance of observable new

antigenic variants—rarer.

The dynamics of mucosal immunity with age are also likely to have impact on the selector pheno-

type of previously exposed hosts. In older individuals, multiple previous exposures will eventually

lead to preferential activation of recall responses for antibody production to new variants as a result

of original antigenic sin (Davenport and Hennessy, 1956), immune backboosting (Fonville et al.,

2014), or antigenic seniority (Lessler et al., 2012).

Even if the recall responses result in backboosting and higher levels of sIgA, these antibodies are

unlikely to be well-matched to the new variant or succeeding variants, as continuous re-exposure

favors responses to conserved epitopes (Krammer and Palese, 2019; Krammer, 2019) rather than

receptor-binding site epitopes suspected to be most important for immune escape.

As a result of the limited ability to generate novel immune responses and the phenomenon of

antigenic seniority, an elderly individual who has been exposed multiple times in the past is likely to

exert very weak inoculation selection to newly infecting viruses. By contrast, a young person recently

exposed to influenza virus is more likely to act as a strong selector, due to the availability of mucosal

sIgA antibodies and the more limited impact of original antigenic sin. However, due to the acute

nature of influenza virus infection, very young children are likely to require more than one exposure

before they begin to develop highly-specific antibody responses to influenza virus infection able to

exert inoculation selection (Neuzil et al., 2006).

Most current efforts for characterizing humoral immunity to influenza virus infections are focused

on antibody responses in the serum. However, there is limited understanding of the relationship

between antibodies in the serum measured via HI and the levels of mucosal antibodies able to exert

inoculation selection. Better characterization of the dynamics of mucosal immunity with age and

across individuals is needed to understand the implications of inoculation selection to influenza virus

evolution depending on the host population structure.

A3 Detailed within-host model analysis
Here we analyze the within-host model in depth, and find expressions for within-host variant fre-

quencies over time, the probability distribution for the time of first successful mutation to a new vari-

ant, and an approximate probability of replication selection to a given frequency by a given time.

A3.1 Expression for the within-host new variant frequency

In our minimal model, competition between new variant and old variant viruses obeys a simple repli-

cator equation.

The within-host frequency of new variant virus is fmðtÞ ¼
VmðtÞ

VmðtÞþVwðtÞ
¼ VmðtÞ

VtotðtÞ
. Its rate of change is dfm

dt
.

We observe that dVi

dt
is of the form dVi

dt
¼ Vi½giðtÞ � diðtÞ� for both the new variant and the old variant,

where, neglecting mutation, giðtÞ ¼ ribCðtÞ and diðtÞ is a (possibly time-varying) neutralization or

decay rate. Differentiating fmðtÞ with respect to time demonstrates that the frequency of the new var-

iant over time is governed by the following replicator equation (see Section A9 for an explicit

derivation):

dfm

dt
¼ fmð1� fmÞð½gmðtÞ� gwðtÞ�� ½dmðtÞ� dwðtÞ�Þ (A1)
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If the new variant is neutral in the absence of antibody-mediated selection, rw ¼ rm ¼ r, and there-

fore gmðtÞ ¼ gwðtÞ. It follows that despite changing target cell populations and virion population sizes,

the variants compete in a manner independent of Vtot, provided each diðtÞ is independent of Vtot.

We have competition only through the respective death rates of old variant and new variant virions.

These may be affected by antibody-mediated neutralization of virions.

If the fitness difference dðtÞ ¼ ½gwðtÞ � gmðtÞ� � ½dmðtÞ � dwðtÞ� is a constant d, this differential equa-

tion has a closed-form solution:

fmðtÞ ¼
edt

edt þ f�1

0
� 1

(A2)

where f0 ¼ fmð0Þ

If d ¼ 0, fmðtÞ is constant and equal to f0, as expected. If dðtÞ is piecewise-constant, we can apply

the constant-d solution iteratively to find the new variant frequency.

It is therefore straightforward to apply this expression to the within-host model with binary immu-

nity by evaluating different immunity regimes piece-wise.

We consider the case of a host who is experienced to the old variant (Ew ¼ 1) but naive to the

new variant (Em ¼ 0).

If first appears at a time te � 0 post-infection at an initial frequency fmðteÞ, then if te<tM :

fmðtÞ ¼

0 t<te

fmðteÞ te � t<tM

edðt�tM Þ

edðt�tM Þþ fmðteÞ
�1 � 1

tM � t

8

>

>

>

<

>

>

>

:

(A3)

if te>tM :

fmðtÞ ¼

0 t<te

edðt�teÞ

edðt�teÞþ fmðteÞ
�1� 1

te � t

8

>

<

>

:

(A4)

where d¼ kðcw � cmÞ is the fitness difference between the variants due to the recall adaptive

response.

A3.2 New variant frequency over time given ongoing de novo mutation

Thus far we have neglected mutation the first mutation of interest (i.e. the first that produces a new

variant lineage that evades stochastic extinction). In fact, with symmetric mutation between the two

types of interest, we have:

dVw

dt
¼ Vw½ð1��ÞgwðtÞ� dwðtÞ�þ�gmðtÞVm

dVm

dt
¼ Vm½ð1��ÞgmðtÞ� dmðtÞ�þ�gwðtÞVw

(A5)

The rate of fitness-irrelevant mutation is assumed to be equal for the two types, and to preserve

antigenic type (w or m). The rate of lethal or deleterious mutants is assumed equal for the two types

and is captured in g.

It can be shown (see Section A9) that the equation for dfm
dt

in this case is:

dfm

dt
¼ fmð1� fmÞðam�awÞþ�ðgwðtÞ� 2gwðtÞfmþ gwðtÞf

2

m � gmðtÞf
2

mÞ (A6)

When gwðtÞ ¼ gmðtÞ ¼ gðtÞ:

dfm

dt
¼ fmð1� fmÞðdmðtÞ� dwðtÞÞþ�gðtÞð1� 2fmÞ (A7)

When fm � 0:5, the net effect of symmetric mutation on fm is to increase it at rate »� (note that
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the symmetric mutation term becomes zero at fm ¼ 1=2). In other words, it is roughly equivalent to a

case with no back mutation at all:

dVw

dt
¼ Vw½ð1��ÞgwðtÞ� dwðtÞ�

dVm

dt
¼ Vm½gmðtÞ� dmðtÞ�þ�gwðtÞVw

(A8)

in that case, we have:

dfm

dt
¼ fmð1� fmÞð½gmðtÞ� ð1��ÞgwðtÞ�� ½dmðtÞ� dwðtÞ�Þþ�gwðtÞð1� 2fmþ f 2mÞ (A9)

In either case, we mainly study a situation in which gwðtÞ ¼ gmðtÞ ¼ gðtÞ at all times (though note

that gðtÞ varies in time), dwðtÞ ¼ dmðtÞ ¼ dðtÞ ¼ dv prior to the onset of the adaptive immune response,

and dwðtÞ ¼ dv þ k, dmðtÞ ¼ dv þ cmk after the onset of the adaptive immune response.

If fm is large relative to m, the mutant growth term VmgðtÞ is large relative to the de novo mutation

term �gðtÞVw. We can see this from the fact that Vm ¼ fmVtot � fmVw, with equality if and only if fm ¼ 0.

It follows that if fm>�>0, then:

gðtÞVm>gðtÞfmVw>gðtÞ�Vw

But if the first mutation to produce a new variant is sufficiently late and there is little or no posi-

tive selection, we do not necessarily have fm � �, so ongoing mutation cannot be ignored in the

dynamics of fm. In that case, we can consider either the �gðtÞð1� 2fmþ f 2mÞ term in Equation A9 or

the �gðtÞð1� 2fmÞ term in Equation A7. Denote the new variant frequency at the time of first muta-

tion te by f0 ¼ fmðteÞ. We can approximate gðtÞ»g0 ¼ gð0Þ ¼R0dv early in infection, since for small t,

CðtÞ»Cmax and therefore gðtÞ ¼ rbCðtÞ»g0.

With this approximation for gðtÞ, the one-way mutation case has an analytical solution for d 6¼ 0:

fmðtÞ»
AexpðdtÞþ�g0

AexpðdtÞþ�g0 � d

A¼
f0

1� f0
ð�g0 � dÞ�

�g0
f0

(A10)

And when d¼ 0:

fmðtÞ»
1

1�f0
þ�g0t� 1

1

1�f0
þ�g0t

(A11)

A3.3 When ongoing mutation matters

fm must be small for ongoing mutation to matter; it ceases to matter when fm � �gðtÞ, and �gðtÞ is

small by assumption. It follows that in the absence of a fitness difference between the types:

dfm

dt
»�g0 (A12)

and therefore:

fmðtÞ» f0 þ�g0t (A13)

We can also see this by inspecting the other two expressions for fmðtÞ and seeing that they are

quasi-linear for small m and small t. This further confirms that it is not crucial to decide whether sym-

metric or one-way mutation is more realistic, as they will be functionally the same from the point of

view of practical mutant frequencies in the absence of positive selection.

These approximations break down once CðtÞ � Cmax and therefore gwðtÞ � g0; fewer wild-type

replications are occurring, and rate of ongoing mutation therefore falls. So a reasonable approxima-

tion for the maximum value of fmðtÞ in the absence of positive selection is given by fmðtpeakÞ. For a
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mutation rate of 0:33� 10
�5, typical values of fmðtpeakÞ without selection range from 1� 10

�5 to

2� 10
�4, depending on R0 and tpeak.

We use the expression in Equation A10 to plot the analytical predicted mutant frequencies

shown in Figure 1 and to calculate the transmission frequencies for the analytical model of observed

phenotypes in Figure 1.

A3.4 Consequences of ongoing de novo mutation

Ongoing mutation enhances possibilities for both replication and inoculation selection. It truncates

the left tail of the distribution of fmðtMÞ and the distribution of fmt (the new variant frequency at the

time of transmission). Whenever tM is sufficiently late that we have reached Vw � 1

� before tM , fmðtMÞ

should be on the order of the inverse mutation rate, or larger.

The consequence is that probabilities of replication selection and inoculation selection should

both be somewhat higher than those estimated based on the time to the first non-extinct de novo

mutant lineage, as in Figure 1. This further strengthens the case for the importance of an adaptive

response at 48 hr or later in explaining the absence of replication selection.

A3.5 Replication selection is helped when individual infected cells are more
productive

For a fixed R0, replication selection becomes more likely if the virions produced per infected cell r

becomes large—that is, if every infected cell produces more individual virions.

For a given dv, and f, a virus can achieve a large R0 either by having a high cell productivity r or

by having a high cell infection rate b.

The expected number of virus replications per lost target cell is given by
_�V
þ

_C� ¼ rbC�V

‘bC�V
¼ r

‘. The infec-

tion peaks and begins to decline when dV
dt

¼ 0, which occurs when gðtÞ ¼ dðtÞ, or Cmax

C
¼ R0, provided

dðtÞ is fixed. It follows that Cpeak ¼
Cmax

R0

. So the virus peaks once Cmax 1� 1

R0

� �

target cells have been

consumed (assuming negligible target cell replenishment during the timecourse of infection), and

r
‘Cmax 1� 1

R0

� �

viral replication events have occurred (this is a slight overestimate due to target cell

depletion).

Fixing dv and R0, as r ! ¥, b ! 0 and the number of viral replication events before peak viral

load goes to ¥. Since each generated mutant survives stochastic extinction roughly proportional to

1=R0, these earlier mutants also are lost stochastically less frequently. In other words, a mutant that

survives stochastic extinction is generated with certainty well before the infection peaks and can

spend arbitrarily long under selection. Conversely, as r ! 0, b ! ¥, the number of replication events

that occur before the infection peaks goes to 0, and replication selection becomes impossible.

A virus of a given R0 that takes a shotgun approach of producing many not-especially-infectious

virions is more likely to result in the proliferation of a mutant of interest under replication selection

than one that produces a small number of highly infectious virions.

In other words, the relatively large infected cell productivity of influenza viruses—perhaps as large

as hundreds or thousands of viable virions per cell (Frensing et al., 2016)—makes potential replica-

tion selection more efficient. This in turn makes the absence of observed replication selection harder

to explain unless another mechanism can be invoked, such as inoculation selection with replication

selection only occurring 2–3 days post-infection.

A3.6 Replication selection in the presence of sterilizing immunity

One special case bears mentioning, because it corresponds to multiple existing models (Luo et al.,

2012; Volkov et al., 2010; Kennedy and Read, 2017) and may be relevant for other systems. If

there is an immediate recall response (tM ¼ 0), a founding population of size b, and k is large enough

such that Rwðt ¼ 0Þ<1 (the virus population is initially declining, in expectation), then the infection

will go extinct after generating q new virions for some finite q.

Each virion has a probability m of being an escape mutant with Rmð0Þ>1 and each mutant inde-

pendently survives stochastic extinction with probability psse ¼ ð1� 1=Rmð0ÞÞ (per the theory of
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supercritical branching processes). The conditional probability of replication selection given q is

therefore:

preplðqÞ ¼ 1�ð1��psseÞ
q (A14)

if �psse is small, this is approximately equal to:

preplðqÞ»1� e�q�psse »q�psse (A15)

The approximations use the Poisson approximation to the binomial and the approximation

ex »1þ x when jxj � 1.

The unconditional probability of replication selection prepl is the expectation in q of

preplðqÞ : Eq prepl
� �

. But since prepl is approximately linear in q, the linearity of expectation implies:

prepl »Eqðq�psseÞ ¼ �q�psse

where �q is the expected value of q.

Given Rwð0Þ<1, branching process theory predicts that the virus will produce on average �q ¼

b
1�Rwð0Þ � b new copies before the infection is cleared (expected total length of b independent sub-

critical branching processes, each with expected length 1

1�Rwð0Þ, minus the initial virions present

[Ball et al., 2016]). This can be simplified to �q ¼ bRwð0Þ
1�Rwð0Þ.

So we have

prepl »�q�psse ¼
Rwð0Þ

1�Rwð0Þ
b�psse (A16)

Note that Iwasa et al., 2004 have previously derived this approximate result for the probability

that a subcritical replicator mutates to a supercritical one prior to going extinct in the context of ana-

lyzing tumor cell mutations. They use a more rigorous generating function approach.

A4 Point of transmission analysis
A4.1 Distinction between selection and drift at the point of transmission

In our model, mucosal antibodies acting at the point of transmission provide a mechanism for popu-

lation level selection pressure: some protection of experienced hosts against infection with old vari-

ant virus, and worse protection against infection with new variant virus. In particular, it provides a

mechanism that produces selection pressure for new antigenic variants while predicting that reinfec-

tions with old variant viruses—without observable new variant viruses—should still be observed.

Prior models (see Section A7) predict that in fully immune hosts, any observable reinfections will

have new antigenic variant viruses at consensus.

Antibodies at the point of transmission appear to play a key role in population-level influenza

virus evolution: they produce the selection pressure that allows new variants to spread more reliably

and thus rapidly from host to host than old variants. But they may play a second role as well: pro-

moting of new variants in frequency from the low frequencies at which they are typically generated

to high frequencies at which they can be observed and reliably transmitted onward. This inoculation

selection takes on the role of previously held by replication selection in explaining why inoculations

of experienced hosts might produce new variant infections at a higher rate (per inoculation) than

inoculations of naive hosts.

A4.2 The inoculation selection paradigm

As noted in the main text, new variants can reach high within-host frequencies through founder

effects. These events are both possible and rare due to influenza’s tight transmission bottleneck

(McCrone et al., 2018; Xue and Bloom, 2019).

Whether this process is purely neutral or stochastically selective depends on whether the recipient

host is naive, and if not how well they neutralize old variant versus new variant virions.
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As mentioned in the Methods, in a fully naive host with large v and small transmitting host new

variant frequency, the sampling process approximates a low-probability binomial or a low-frequency

Poisson:

pdrift »1� e�fmtb (A17)

When fmt � 1, this is approximately equal to bfmt

As noted in the main text Materials and methods, mucosal antibody neutralization can reduce the

new variant’s survival probability relative to this neutral case (inoculation pruning) or increase it (inoc-

ulation promotion), depending upon parameters.

There can be inoculation pruning even when the new variant is more fit than the old variant (i.e.

neutralized with lower probability). But sufficient subsequent bottlenecking after sIgA neutralization

can create an inoculation promotion effect.

Whether inoculation selection produces pruning or promotion depends on the ratio of v=b, and

on the mutant’s probability of avoiding neutralization 1� km (main text Figures 4F,5, Appendix 1—

figure 1, and Section A4.5 below).

A4.3 Expression for and properties of the new variant survival probability

As shown in the Materials and methods, the probability that a new variant survives the cell infection

bottleneck of size b is well approximated for small fmt by:

psurvðkm;kw;v;b; fmtÞ»pinocðkm;v; fmtÞ � pcibðkw;v;bÞ (A18)

pinoc is the probability that at least one mutant survives the sIgA bottleneck:

pinocðkm;v; fmtÞ ¼ 1� e�vfmtð1�kmÞ (A19)

Note that when fmt � 1;pinoc »vfmtð1�kmÞ

pcibðkw; v; bÞ is the probability that a mutant that survives the sIgA bottleneck is not lost at the final

bottleneck (as given in Equation 35 above):

pcibðkw;v;bÞ ¼ ð1� e��wÞ
b

�w
þ e��w

X

b�1

j¼0

�wj

j!
ð1�

b

jþ 1
Þ

where �w¼ vð1� fmtÞð1�kwÞ. If b¼ 1, this expression reduces to the first term.

4.3.1 Properties of these probabilities
These probabilities have several intuitive and useful properties:

. pcib<1 if kw<1 and fmt<1, and pcib ¼ 1 if kw ¼ 1 or fmt ¼ 1. That is, surviving the cell infection
bottleneck is certain only if there is no competition. See Section A9.6 for derivation.

. The correction term in pcib, e
��w

Pb�1

j¼0

�wj

j!
ð1� b

jþ1
Þ, is always negative. Each term except the last

in the summation is negative, since b>jþ 1 for j<b� 1. The last term is zero (the last term is
included for notational reasons, so that the formula is correct with b ¼ 1). This implies that the
first term is always � pcib, with equality if and only f b ¼ 1.

. If km ¼ skw, then pinoc is decreasing in kw for 0<s � 1. This is as expected: the more likely
the new variant is to be neutralized, the smaller pinoc becomes. It suffices to show that
dpinoc
dkw

<0 for 0<s � 1. We find:

dpinoc

dkw
¼�e�vfmtð1�skwÞðvfmtsÞ (A20)

Since fmt; v>0, this is negative whenever s>0, and 0 if s is 0.
It is sometimes useful to write this as:

Morris et al. eLife 2020;9:e62105. DOI: https://doi.org/10.7554/eLife.62105 45 of 77

Research article Evolutionary Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.62105


dpinoc

dkw
¼ vfmtsðpinoc� 1Þ (A21)

. pcib is decreasing in �w (see Section A9.7 for derivation). This is intuitive: the less competition in
the form of (expected numbers of) un-neutralized old variant virions, the more likely a surviving
mutant is to pass through the cell infection bottleneck.

. pcib is increasing in kw and fmt and decreasing in v. Since v, 1� kw, and 1� fmt are all � 0, it is
clear that �w is decreasing in kw and fmt and increasing in v. It follows that pcib is increasing in kw
and fmt and decreasing in v. In all cases, this reflects the parameters’ effect on the mean
amount of competition for the new variant from old variant virions for the cell infection
bottleneck.

. pinoc is increasing in fmt, since a larger fmt implies an vfmtð1� kmÞ term that is larger in absolute

value, so e�vfmtð1�kmÞ becomes smaller and pinoc ¼ 1� e�vfmtð1�kmÞ becomes larger.

A4.4 Mutant survival probability increases as transmitted mutant frequency
increases

For given values of the other parameters, larger fmt implies larger psurv. Since both pinoc and pcib are

increasing in fmt and are both always positive, it follows that psurv ¼ pinocpcib is also increasing in fmt.

This makes intuitive sense: all else equal, higher frequency mutants always have a better chance of

surviving at the point of transmission, regardless of the effects of the sIgA bottleneck.

A4.5 The relative importance of selection and drift at the point of
inoculation

Consider psurv/ pdrift. This ratio quantifies the degree to which sIgA neutralization at the point of

transmission facilitates (or hinders) mutant survival of the final bottleneck relative to a purely neutral

founder effect.

For realistically small b and fmt, we can use the approximations pdrift » bfmt and pinoc » vfmtð1� kmÞ

Then we have

psurv=pdrift ¼
pinocpcib

pdrift
»
v

b
ð1�kmÞpcibðkw;v;bÞ (A22)

Several intuitive results follow:

. If we hold kw constant, increasing km makes inoculation selection less effective relative to drift,
because the inoculated new variant is at greater risk of neutralization.

. Conversely, if we hold km constant, increasing kw makes inoculation selection more effective
relative to drift (this follows from the fact that pcib is increasing in kw, see Section A4.3.1
above).

. Since pcib is increasing in fmt (Section A4.3.1), psurv=pdrift is increasing in fmt. That is, inoculation
selection is more efficient relative to drift when promoting higher frequency mutants, all else
equal.

. psurv=pdrift is decreasing in b (see Section A9.9 for a derivation). In other words, when the cell
infection bottleneck is wider, inoculation selection is less important relative to drift. The large
bottleneck gives the mutant a reasonably good chance of surviving even in the absence of any
neutralization of competing old variant virions.

For a bottleneck of size b ¼ 1, we can also see that inoculation selection becomes more efficient

relative to drift as v increases, since:

psurv=pdrift » v
b
ð1�kmÞpcib

¼ vð1�kmÞ
1� expð�vð1� fmtÞð1�kwÞÞ

vð1� fmtÞð1�kwÞ

¼
1

1� fmt

1�km

1�kw
½1� expð�vð1� fmtÞð1�kwÞÞ�

This is increasing in v.
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A4.6 Strongly immune hosts with small bottlenecks provide intuition for
Figure 4

In a host strongly immune to the old variant (large kw), we have �vð1� fmtÞð1� kwÞ � 1. Applying

the linear approximation to the exponential to equation A4.5:

psurv=pdrift »
1

1� fmt

1�km

1�kw
ðvð1� fmtÞð1�kwÞÞ

¼ ð1�kmÞv

This provides intuition for the effects seen in main text Figure 4, in which inoculation selection

improves survival relative to drift by a factor of v
b
for a full escape mutant, and by a factor scaled

down by 1�km for a partial escape mutant.

Moreover, if we let fmt ¼ fd for the drift case and fmt ¼ fr for the selective case, the approximate

ratio becomes

psurv=pdrift »
fr

fd
ð1�kmÞv

Our replicator equation implies that this ratio fr
fd
will increase in expectation when more replication

selection occurs prior to transmission (larger dt ), explaining the increasing ratio of the selective vari-

ant survival relative to drift observed in Figure 4 when replication selection is permitted prior to

transmission.

Note that we did not integrate over the emergence times to obtain this ratio; instead, we derived

principles that take the initial frequency as a given.

A4.7 Effect of sIgA cross immunity s on probability of inoculation selection

We also wish to know which hosts best promote antigenic novelty when inoculated, given a level of

cross-immunity s, or a degree of escape 1� s. We will show that whereas replication selection sug-

gests that intermediately immune hosts should be key selectors for antigenic novelty

(Grenfell et al., 2004), in an inoculation selection regime, new variants may most often reach

observable frequencies in fully immune hosts. We do this by analyzing an expression for psurv, the

probability that a mutant survives transmission to found an infection in a new host, and showing how

it changes with old variant neutralization probability kw and sIgA cross immunity s ¼ km=kw. We find

that transmission survival probability can be maximized in strongly immune or fully naive hosts,

depending on parameters.

We optimize psurvðkwÞ given some value of s by differentiating.

dpsurv

dkw
¼
dpcib

dkw
pinocþ pcib

dpinoc

dkw

¼
dpcib

dkw
pinocþ pcibðvfmtsÞðpinoc� 1Þ

(A23)

Consider the endpoint at kw ¼ 1. pcib ¼ 1, pinoc » fmtvð1�kmÞ ¼ fmtvð1�sÞ, and

�w¼ vð1� fmtÞð1�kwÞ ¼ 0.

So dpcib
dkw

¼ dpcib
d�w

d�w
dkw

¼ dpcib
d�w

ð�vÞð1� fmtÞ can be evaluated (using the expressions for dpcib
d�w

derived in sec-

tion A9.7 below), and it evaluates to 0 except if b ¼ 1 (when it is equal to 1

2
vð1� fmtÞ).

Case 1: b>1. For b>1, it follows from the above that

dpsurv

dkw
¼ 0� pcib

dpinoc

dkw
(A24)

Since dpinoc
dkw

� 0, dpsurv
dkw

<0 unless dpinoc
dkw

¼ 0, which occurs in cases of interest when s¼ 0 (complete

escape mutant).

In other words, if immune escape is incomplete for b>1, there is always some less strongly

immune host (though possibly very slightly less, see Appendix 1—figure 1) that improves new vari-

ant survival relative to a host who neutralizes old variant virions with 100% certainty. Note, however,

that hosts with kw ¼ 1 are very unlikely to exist in nature. Our study is motivated precisely by the fact
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that even an experienced host encountering homotypic reinfection neutralizes virions with probabil-

ity kw<1, and therefore can be productively reinfected (Clements et al., 1986; McCrone et al.,

2018). It follows that in practice the most strongly immune hosts (with kw large but less than 1) could

still be the best selectors.

Case 2: b ¼ 1. When the bottleneck is 1 and �w ¼ 0, dpcib
dkw

¼ 1

2
vð1� fmtÞ. So in this case, the deriva-

tive at kw ¼ 1 may be positive or negative, depending on whether:

dpcib

dkw
pinocþ pcibðvfmtsÞðpinoc � 1Þ>0 (A25)

substituting dpcib
dkw

¼ 1

2
vð1� fmtÞ and pcib ¼ 1, we have:

1

2
ð1� fmtÞpinoc þ fmtspinoc>fmts

1

2fmt

ð1� fmtÞpinoc þspinoc>s

1

2fmt

ð1� fmtÞpinoc>sð1� pinocÞ

1� fmt

2fmt

pinoc

1� pinoc
>s

When pinoc is small, we have approximately pinoc » fmtvð1�sÞ and 1� pinoc »1, so:

1� fmt

2
vð1�sÞ>c

v
1� fmt

2
>

s

1�s
(A26)

In other words, with extremely small cell infection bottlenecks like those observed for influenza

viruses, fully immune hosts are the best selectors provided that the number of virions v encountering

IgA antibodies is sufficiently large given the degree of escape achieved. Less immune escape (larger

sIgA cross immunity s) necessitates a larger v to make fully immune hosts the best selectors. Since

fmt � 1, a rule of thumb is that v> 2s
1�s

.

The intuition is that larger v means more competition for the cell infection bottleneck among viri-

ons that reach IgA, and thus a greater opportunity for the mutant’s selective advantage to be real-

ized, but that this only works provided that this advantage is large enough so that the mutant is not

itself at too large a risk of being neutralized.

A5 Parameter uncertainties and sensitivity analysis
Here we discuss parameter uncertainties in our models and how they affect our conclusions. We also

conduct a simulation-based sensitivity analysis of the central within-host model.

A5.1 Strength of selection

A crucial parameter in our model is d: the magnitude of the fitness advantage of the new variant

over the old variant during viral replication in an infected individual. One possible objection to our

analysis here is that the antibody-mediated virion neutralization rate k is low enough or the antigenic

similarity between the variants is great enough to make the fitness difference d ¼ kðcw � cmÞ small. In

that case, replication selection to consensus will be rare even if tM is very small, and the adaptive

response is mounted immediately (main text Figure 1C,D). Despite uncertainty about both k and

cw � cm, k is likely to be high, perhaps extremely so. And given sufficiently high k and a homotypically

reinfected host (cw ¼ 1), even moderate immune escape (0 � cm<1) produces a substantial fitness

difference. Moreover, assuming small k early in infection grants our basic hypothesis: antibodies

Morris et al. eLife 2020;9:e62105. DOI: https://doi.org/10.7554/eLife.62105 48 of 77

Research article Evolutionary Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.62105


mediated selection is weak early in infection, neutralization during viral replication is not the mecha-

nism of protection against reinfection, and there is asynchrony between antigenic diversity and

meaningful antigenic selection.

A5.1.1 Antibody-mediated virion neutralization rate (k) may be very high
Parameter estimates for antibody-mediated virion neutralization in the presence of substantial well-

matched antibody correspond to values of k that are extremely high. For instance, by fitting a sin-

gle-variant within-host model to data, Cao and McCaw, 2017 estimate antibody neutralization rates

between 0.4 and 0.8 per virion-day per pg/mL of antibody, and antibody concentrations of over 100

pg/mL by day 6 in an infection of a naive host. This corresponds to a k of 40 to 80 in our more phe-

nomenological model.

For tM ¼ 0 (constant immunity) if k is sufficiently large that the old variant virus has an initial

Rð0Þ<1 (which occurs if k>dvðR0 � 1ÞÞ, then all visible reinfections will be mutant infections. At

R0<10 with dv ¼ 4, this corresponds to a k of 40, the lower end of the Cao and McCaw estimates.

A k of this magnitude has several implications that support our hypotheses of asynchrony

between diversity and selection. Such a k would suffice to drive Rð0Þ below 1. A sufficiently early

activation of a recall antibody response would then imply that all observable infections of experi-

enced hosts would be mutant infections (Figure 2). In intermediately immune hosts, there could be

a substantial fitness advantage d ¼ ðcw � cmÞk for new variant viruses over old variant viruses (where

cm; cw are the cross immunities to the host memory variant for the old variant and the new variant,

respectively).

With large k and tM ¼ 0, intermediately immune hosts who cannot block transmission could easily

have Rð0Þ» 1 for the old variant; this would make them excellent at generating and selecting for

mutant before an infection is cleared.

A final reason why a high k supports the hypotheses of this paper is that antigenic evolution is

extremely rapid if a sufficiently strong recall antibody responses becomes active after viral replica-

tion begins but before the infection peaks. New antigenic variants should be generated with

near certainty by virus exponential growth well before the infection’s peak—roughly when the num-

ber replications that have occurred is at or above the order of magnitude of the inverse mutation

rate (Figure 8). Suppose a strong (RðteÞ<1) recall response is mounted at that point te. The mutant

then has target cell resources on which to grow (since CðteÞ � Cpeak) and experiences negligible rep-

lication competition from the old variant (since the old variant population is not growing but in fact

is shrinking). If not lost stochastically, it should therefore emerge to detectable and transmissible lev-

els. We do not observe this. This suggests that if k is large, not only must the antibody response not

be immediate (tM>0), but it must also be late enough enough to make this effect unlikely: it must

happen either just before or after the peak of infection. Evidence suggests that this is indeed the

case. Infections peak by 36–48 hours post-infection, and antibody responses only begin 48–72 hours

post infection.

A5.1.2 Small values of k are a sub-hypothesis of the general model of
asynchrony between diversity and selection
Small k early in infection does produce weak replication selection, but it means that neutralization

during viral replication cannot explain protection against reinfection. In such a scenario, it is still nec-

essary to invoke mucosal sIgA antibodies or another mechanism of protection at the point of trans-

mission, and so inoculation selection again comes into play.

Indeed, it is unlikely that k is truly zero before the adaptive response is mounted. Occasionally, a

virion may encounter residual IgA antibodies, for instance (see Section A2). But the effective value of

k is likely to be small—too small to curtail the growing infection or produce substantial replication

selection. We set it to 0 before tM for simplicity of model analysis, but our simple binary model

approximates the likely scenario in which k is small but non-zero before tM and then increasingly

large afterwards (see A5.1.1).
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A5.2 Relationship between k and k

As noted in the Discussion, the relationship between the mucosal antibody neutralization rate k and

the antibody neutralization rate during replication k is unknown, though we have every reason to

expect it to be positive.

k values are particularly difficult to calculate. In our model, we have generally assumed that all

virions of type i inoculated into an experienced host are independently neutralized with probability

ki, and therefore zi ¼ e�vð1�kiÞ for an inoculum consisting only of type i. But this assumption of inde-

pendence may be violated in practice.

One reason statistical independence may be violated is that antibody numbers are finite, and an

antibody that binds to one virion cannot bind to another. Consider a focal virion. Given that another

virion has been neutralized, there are fewer antibodies remaining to neutralize our focal virion. This

is particularly important for mixed inocula. Old variant virions, which have higher affinity for the inoc-

ulated host’s sIgA antibodies, may indirectly protect the new variant by competing with it for anti-

body-binding. A new variant virion may have a higher individual chance of being neutralized by

those same antibodies if it is part of a monomorphic inoculum composed of other, identical new var-

iants. Such an interaction would strengthen inoculation selection relative to the independent neutral-

ization we have modeled here.

A5.3 Bottleneck sizes

Inoculation selection may improve mutant bottleneck survival relative to neutral drift (see Figure 4F,

Appendix 1—figure 1, and Section A4). For this to be true, a non-antigenic bottlenecking must fol-

low IgA antibody neutralization, with a ratio v=b � 1

Evidence suggests that a non-antigenic bottleneck does occur after the sIgA bottleneck because

bottlenecks measured in vaccinated and non-vaccinated hosts are of comparable size (indistinguish-

able from one), suggesting that founding virion population sizes are cut down to small numbers

even in the absence of IgA antibodies, though this would also be consistent with the case of v ¼ 1

(i.e. IgA antibodies must neutralize on average a single virion to prevent infection, and this virion, if

not neutralized or otherwise lost, uniquely founds the infection).

An experimental evolution study of avian influenza virus adaptation in ferrets found that transmis-

sion bottlenecks in naive hosts became tighter that as the virus adapted (Moncla et al., 2016). A re-

analysis of that data found that bottlenecks were tight throughout (Lumby et al., 2018). The fact

that bottlenecks do not appear to loosen (and may tighten) with adaptation for better transmission

and replication is further evidence, albeit circumstantial, that when an influenza virus is well-adapted

to its host and replicates rapidly, the first virion or first few virions to infect a cell will be the ancestor

of the vast majority of progeny viruses.

A5.4 Double-peaked infections

One modeling study of influenza viruses proposes that infections should have a second peak after

initial innate responses are overcome and some target cells are once again susceptible to infection

(Pawelek et al., 2012). A relaxation of non-antigenic limiting factors later in infection can and should

provide additional opportunities for replication selection, as occurs in immune-comprised human

patients.

That said, the empirical data suggesting double-peaked kinetics comes from experimental inocu-

lation of naive horses with a large quantity of influenza virus: 106 50% egg infectious dose

(Quinlivan et al., 2007). The novel antibody response curbed the second peak of infection, which

was much lower than the first.

In human kinetics data (Hadjichrysanthou et al., 2016) and animal transmission experiments in

which one animal infects another (Le Sage et al., 2020; Canini et al., 2020) it is common to see

clearly single-peaked infections.

Furthermore, for realistic (incomplete) degrees of antibody-binding escape, we expect both old

and new antigenic variant population sizes to decline even due to antigenic limiting factors, though

of course we expect the new variant to decline more slowly.
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The upshot is that virus clearance should be rapid following the mounting of the adaptive

response in the experienced hosts where we expect selection to take place, and thus in immune-

competent hosts we should expect a limited window for antibody-mediated selection on transmissi-

ble virus populations.

A5.5 Threshold versus probabilistic transmission

In the simulation results shown in the main text (Figures 1,2,4,6) we use a probabilistic model of

transmission: the donor host’s probability of inoculating the recipient at a given point during the

infection is proportional to donor viral load in virions, VtotðtÞ.

Since influenza virus population sizes grow and shrink rapidly around the within-host peak, how-

ever, this model should be qualitatively similar to a threshold model in which transmission occurs

with certainty if the total viral load is above a certain threshold � and does not occur if it is below

that threshold. To confirm this, we here show corresponding transmission chain simulation results

based on a threshold model, with the threshold as in Table 1.
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Appendix 1—figure 1. Probability that a new variant is present after the cell infection (final) bottle-

neck as a function of cross immunity and degree of competition for the final bottleneck. Probability

shown as a function of probability of no old variant infection (zw), degree of cross immunity between

mutant and new variant s ¼ km=kw, mucus bottleneck size v, and final bottleneck size b. Gray dotted

line indicates probability that a new variant survives the transmission bottleneck in a host who is

naive both to the old variant and to the new variant (i.e. drift). fmt ¼ 9� 10
�5, a typical value for a

naive transmitting host in stochastic simulations.
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Appendix 1—figure 2. Distribution of mutant effects given replication and inoculation selection,

with a transmission threshold model. Threshold version of Figure 4. Distribution of antigenic

changes along 1000 simulated transmission chains (A–D) and from an analytical model (E–H). In (A,E)

all naive hosts, in other panels a mix of naive hosts and experienced hosts. Antigenic phenotypes are

numbers in a 1-dimensional antigenic space and govern both sIgA cross immunity, s, and replication

cross immunity, c: A distance of � 1 corresponds to no cross immunity between phenotypes and a

distance of 0 to complete cross immunity. Gray line gives the shape of Gaussian within-host

mutation kernel. Histograms show frequency distribution of observed antigenic change events and

indicate whether the change took place in a naive (gray) or experienced (green) host. In (B–D)

distribution of host immune histories is 20% of individuals previously exposed to phenotype �0.8,

20% to phenotype �0.5, 20% to phenotype 0 and the remaining 40% of hosts naive. In (E), naive

hosts inoculate naive hosts. In (F–H) hosts with history �0.8 inoculate hosts with history �0.8. Initial

variant has phenotype 0 in all sub-panels. Model parameters as in Table 1, except k ¼ 25. Spikes in

densities occur at 0.2 as this is the point of full escape in a host previously exposed to phenotype

�0.8.
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Appendix 1—figure 3. Sensitivity analysis varying model parameters across biologically-reasonable

parameter ranges. (A, B) Probability of a detectable infection per inoculation of an experienced

host. (C, D) Probability of a detectable new variant infections per inoculation of an experienced host.

(E, F) Fraction of detectable infections of experienced hosts that are new variant infections. Points

colored according to whether new variant infections were more frequently caused by de novo

generated (purple) or inoculated (green) new variant viruses. Each point represents a random

parameter set; 10 random parameter sets generated for each bottleneck value shown, and 50,000

inoculations of an experienced host simulated for each parameter set. Two regimes of simulated

parameter set shown: (A, C, E) an immediate recall response regime, in which tM varied from 0 to 1,

and (B, D, F) a realistically-timed response regime, in which tM varied from 2 to 4.5. All other

parameters varied across the same ranges in both regimes (see Table 2 for ranges). Parameters

Latin Hypercube sampled from within ranges for each regime and bottleneck size.

A5.6 Sensitivity analysis

As described in the Materials and methods, we further assessed sensitivity of the within-host model

to variation in key parameters by studying random parameter sets chosen from biologically plausible

parameter ranges.

We analyzed two cases: one in which the immune response is unrealistically early (0 � tM � 1,

Appendix 1—figure 4), and one in which it is realistically-timed (2 � tM � 4:5) Appendix 1—figure

5, see also Appendix 1—figure 3 and other model parameters in Table 2.

We found that with early immunity, regardless of particular parameter values, new variants are

frequently seen when experienced hosts are detectably reinfected, and the overall probability of

new variant infections is unrealistically high. These observable new variants are most often generated

de novo and replication-selected (Appendix 1—figure 4, see also Appendix 1—figure 3).

When immunity is realistically-timed, the pattern of much rarer replication selection is robust to

variation in parameters. New variant infections compose a realistically small fraction of all detectable

reinfections (Appendix 1—figure 5, Appendix 1—figure 3). Moreover, inoculation selection is

Morris et al. eLife 2020;9:e62105. DOI: https://doi.org/10.7554/eLife.62105 53 of 77

Research article Evolutionary Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.62105


sometimes more common than replication selection as a source of new antigenic variants (Appen-

dix 1—figure 5, see also Appendix 1—figure 3).
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Appendix 1—figure 4. Sensitivity analysis: parameter values versus rate of new variant infections

per 100 detectable infections of an experienced host, given an unrealistically early recall response.

Parameters randomly varied across the ranges given in Table 2, with tM varied between 0 and 1.

Each point represents a parameter set; the rate of new variant infections per hundred 100

detectable infections is estimated from 50,000 simulated inoculations of an experienced host. A new

variant infection is defined as one in which the new variant reached a transmissible frequency of at

least 1% at any point in the infection. Points are colored according to whether new variant infections

were more frequently caused by de novo generated (purple) or inoculated (green) new variant

viruses.
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Appendix 1—figure 5. Sensitivity analysis: parameter values versus rate of new variant infections

per 100 detectable infections of an experienced host given a realistic (48 hours or more post-infec-

tion) recall response. Parameters randomly varied across the ranges given in Table 2, with tM varied

between 2 and 4.5. Each point represents a parameter set; the rate of new variant infections per

hundred 100 detectable infections is estimated from 50,000 simulated inoculations of an

experienced host. A new variant infection is defined as one in which the new variant reached a

transmissible frequency of at least 1% at any point in the infection. Points are colored according to

whether new variant infections were more frequently caused by de novo generated (purple) or

inoculated (green) new variant viruses.

A6 Polyphyletic antigenicity altering substitutions
A6.1 Background

Amino acid substitutions associated with antigenic “cluster transitions” have reached fixation in par-

allel—and near-synchronously in time—in genetically distinct co-circulating lineages. This has

occurred both in A/H1N1 and in A/H3N2 seasonal influenza viruses.

Existing ’mutation-limited’ or ’diversity-limited’ model explanations of why observable influenza

virus antigenic novelty is rare despite continuous genetic evolution are less convincing in light of this

synchronous polyphyly (see Section A7). In particular, a number of models hypothesize that large

effect antigenicity-altering substitutions can only emerge in specific genetic contexts (Koelle et al.,

2006; Gog, 2008; Koelle and Rasmussen, 2015; Kucharski and Gog, 2012), and that this con-

straint limits the rate of population-level antigenic change.
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Synchronous, polyphyletic cluster transitions cast doubt on these claims. If major antigenic

changes appeared infrequently due to the rarity of ’jackpot’ scenarios of a large-effect mutant in a

favorable genetic background (Koelle and Rasmussen, 2015), it would be surprising to see two or

three distinct and synchronous jackpots after years of none. So while genetic background may play

an important role in determining which lineages are fittest, synchronous polyphyly suggests that it is

unlikely to set the clock of antigenic evolution. Rather, it suggests that accumulating population

immunity may be crucial in setting the clock, and that there may even be a rising generation rate of

observable antigenic novelty as a cluster ages, rather than a fixed rate (see main text Section "Popu-

lation immunity sets the clock of antigenic evolution").

To show that large effect antigenic changes occur near-synchronously in multiple backgrounds,

we assessed evolutionary relationships and built phylogenetic trees for known recent polyphyletic

antigenicity-altering substitutions that have emerged in A/H1N1 and A/H3N2. Our analysis rules out

reassortment as an explanation for the apparent polyphyly, thus verifying that the branches repre-

sent distinct, independent, but simultaneous de novo lineages.

A6.2 Phylogenetic methods

We analyzed polyphyletic antigenic changes using hemagglutinin (HA) gene nucleotide sequences

deposited in the GISAID EpiFlu database.

We downloaded all seasonal A/H1N1 HA sequences from the period 1999–2008, to center on the

antigenic cluster transition from the New Caledonia/1999-like phenotype to the Solomon Islands/

2006-like phenotype, excluding pandemic A/H1N1 viruses. We downloaded A/H3N2 virus HA

sequences for two periods: 2008 to 2011, to center on cluster transition from Brisbane/07 to the

Perth/2009-like and Victoria/2009-like phenotypic split, and 2012 to 2014, to capture the co-circula-

tion of Clade 3C.2a and 3C.3a (Appendix 1—table 1). We discarded all sequences with an incom-

plete HA1 domain or with more than 1% ambiguous nucleotides.

Appendix 1—table 1. Dataset composition.

A/H1N1 1999–2008 A/H3N2 2008–2011 A/H3N2 2012–2014

Pre-filter Final dataset Pre-filter Final dataset Pre-filter Final dataset

4882 3514 7050 5738 11970 10107

We aligned sequences using MAFFT v7.397 (Katoh et al., 2002) and reconstructed phylogenetic

trees using RAxML 8.2.12 under the GTRGAMMA model (Stamatakis, 2014). We performed global

optimization of branch length and topology on the RAxML reconstructed tree using Garli 2.01 with

model parameters matching the RAxML reconstruction (500,000 generations) (Bazinet et al., 2014).

It was computationally intractable to run Garli on the full phylogeny of A/H3N2 2012–2014

(n ¼ 10107). We visualized phylogenetic trees using Figtree (http://tree.bio.ed.ac.uk/software/figtree)

and ggtree (Yu et al., 2017)

We mapped amino acid substitutions onto branches using custom Python scripts. All numbering

complies with H1/H3 numbering scheme (Burke and Smith, 2014).

A6.3 A/H1N1

The HA K140E antigenicity-altering substitution first occurred in 2000 and was detected sporadically

prior to its independent fixation in 2006–2007 in three phylogenetically distinct, geographically seg-

regated lineages of A/H1N1 that diverged in 2004 (Appendix 1—figure 6; Bedford et al., 2015).

The K140E substitution resulted in a cluster transition from the New Caledonia/1999-like antigenic

phenotype to the Solomon Islands/2006-like phenotype, with lineage A emerging as the dominant

lineage globally before the 2009 H1N1 pandemic (Bedford et al., 2015). Position 140 is located in

the Ca2 antigenic site of the HA1 domain immediately adjacent to the receptor binding site, where

amino acid composition mediates receptor binding function (Koel et al., 2013).

The three lineages have distinct HA1 mutational trajectories away from their most recent common

ancestor, as defined by the set of amino acid substitutions that accumulate along the predominant
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trunk lineages both prior to and following the fixation of the K140E substitution (Appendix 1—table

2, Appendix 1—figure 6). All three lineages acquired amino acid substitutions at previously charac-

terized antigenic sites, as well as substitutions with suggested functional consequences, including

glycosylation gain and loss (Caton et al., 1982). The three lineages share the Y94H substitution prior

to K140E fixation, with limited overlap of other substitutions: lineage A and B share changes at resi-

due 188, whereas A189T occurs in lineage B and A prior to and post K140E emergence respectively.

Appendix 1—table 2. Substitutions that characterize the co-circulating K140E-defined lineages.

Lineage
Geographic composition in first
year of co-circulation

Trunk substitutions from MRCA
to K140E fixation

Trunk substitutions post-
K140E fixation

1 South Asia Y94H, R188K, E273K D35N, K145R*, A189T, G185V,
N183S, G185S

2 East Asia Y94H, S36N, A189T, R188M,
T193K*

N244S, K82R*, I47K, E68G

3 South-East Asia Y94H, K73R, V128A*, A128T* P270S
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Appendix 1—figure 6. Phylogeny of A/H1N1 seasonal viruses for the period 1999 to 2008. Branch

tip color indicates the amino acid identity at position 140. Co-circulating lineages defined by the

K140E fixation are highlighted. Scale bar indicates the number of nucleotide substitutions per site.

Tree rooted to A/New Caledonia/20/1999.

A6.4 A/H3N2 2008-2011

In the period 2008-2011, the K158N substitution was only detected once in 2009 before fixing in

combination with N189K in the same year in two distinct co-circulating A/H3N2 lineages. N189K was
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not detected before fixing as a K158N/N189K double substitution. The combination of the substitu-

tions resulted in an antigenic phenotype switch from Wisconsin/2005-like to the Perth/2009-like and

Victoria/2009-like phenotypes respectively. Residues 158 and 189 are both located in antigenic site

B adjacent to the receptor binding site, with substitutions at both residues characterized as cluster-

transition substitutions in multiple historic A/H3N2 cluster transitions (Koel et al., 2013). The HA-

defined evolutionary trajectories of viruses from the Perth/2009-like lineage and Victoria/2009-like

lineages from their most recent common ancestor are characterized by distinct sets of substitutions

(Appendix 1—table 3, Appendix 1—figure 7). Both lineages acquired substitutions at previously

characterized antigenic sites (Koel et al., 2013), but only share the T212A substitution.

Appendix 1—table 3. Substitutions that characterize the co-circulating genetic / antigenic clades

defined by K158N and N189K.

Lineage
Trunk substitutions from MRCA
to K158N/N189K fixation Trunk substitutions post- K158N/N189K fixation

1 (Victoria /
2009-like)

T212A, S45N, T48A, K92R, Q57H, A198S, V223I, N312S, N278K,
Q33R, N145S, G5E, E62V, D53N, E280A, I230V, Y94H, I192T,
S199A

2 (Perth /
2009-like)

E62K N144K, R261Q, I260M, P162S, E50K, V213A, N133D, T212A,
R142G
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Appendix 1—figure 7. Phylogeny of A/H3N2 seasonal viruses for the period 2008 to 2011. Branch

tip color indicates the amino acid identity at position 158 and 189. Co-circulating lineages defined

by the K158N/N189K fixation are highlighted. Scale bar indicates the number of nucleotide

substitutions per site. Tree rooted to A/Brisbane/10/2007.

A6.5 A/H3N2 2012–2014

In 2014 two independent substitutions at position 159, F159S and F159Y, fixed in distinct A/H3N2

lineages co-circulating globally (Appendix 1—figure 8). The S159Y substitution was detected
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sporadically in 2012/2013 before fixing in 2014 to define the A/H3N2 clade 3C.2a, which circulated

as the dominant clade globally for the next three years. The F159S substitution was not detected in

2012–2013 before reaching fixation in 2014 to define clade 3C.3a, which continued to circulate glob-

ally at low frequencies.

Residue 159 is located in antigenic site B. The S159Y substitution in combination with Y155H and

K189R substitutions previously resulted in the transition of the A/H3N2 Bangkok/79-like antigenic

phenotype to Sichuan/87-like phenotype (Koel et al., 2013).

The two lineages have independent mutational trajectories for their HA gene away from their

most recent common ancestor, excluding both acquiring the N225D substitution prior to F159X-fixa-

tion, with acquired changes at the major antigenic epitopes (Appendix 1—table 4, Appendix 1—

figure 8; Koel et al., 2013).

Appendix 1—table 4. Substitutions that characterize the co-circulating genetic / antigenic clades

defined by F159Y and F159S.

Lineage
Trunk substitutions from MRCA to F159X
fixation

Trunk substitutions post- F159X
fixation

F159Y (lineage 1, Clade
3C.2a)

L3I, N225D, Q311H, N144S, K160T R142K, R261L

F159S (lineage 2, Clade
3C.3a)

R142G, T128A, A138S, N225D
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Appendix 1—figure 8. Phylogeny of A/H3N2 seasonal viruses for the period 2012 to 2014. Branch

tip color indicates the amino acid identity at position 159. Co-circulating lineages defined by the

F159X fixation are highlighted. Scale bar indicates the number of nucleotide substitutions per site.

Tree is rooted to A/Perth/16/2009.

A7 Prior theoretical studies
In this section, we discuss how our work fits into the substantial existing theoretical literature on

influenza virus evolutionary dynamics.
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A number of theoretical studies over the last 20 years have addressed the tempo and structure of

seasonal influenza virus antigenic evolution, but only two have addressed within-host influenza virus

antigenic evolution (Luo et al., 2012; Volkov et al., 2010). Most have focused on population level

dynamics (Ferguson et al., 2003; Koelle et al., 2006; Recker et al., 2007; Gog, 2008;

Koelle et al., 2009; Strelkowa and Lässig, 2012; Bedford et al., 2012; Wikramaratna et al., 2013;

Zinder et al., 2013; Koelle and Rasmussen, 2015).

Our model suggests revisions to the theoretical understanding of within-host and point-of-trans-

mission evolutionary dynamics. The revised paradigm has implications for the population-level mod-

els—most notably, it suggests that the rate of population-level antigenic diversification may not be

constant over time.

A7.1 Prior within-host studies

The two within-host studies both make two key assumptions: (1) immune selection pressure is strong

from the moment of inoculation in experienced hosts and (2) influenza virus transmission bottlenecks

are wide (1 � 105 virions [Luo et al., 2012]; the three most frequent within-host variants deterministi-

cally transmitted onward in Volkov et al., 2010). As discussed in Section A2, antibody-mediated

selection pressure is in fact likely to vary substantially over the course of infection. Recent empirical

studies have found that transmission bottlenecks are in fact very tight (on the order of a single virion

[McCrone et al., 2018; Xue and Bloom, 2019]).

Both within-host studies find that new antigenic variants are routinely generated de novo during

an infection and undergo substantial positive selection during that same infection. NGS studies of

natural human infections suggest that this is in fact uncommon (Debbink et al., 2017;

McCrone et al., 2018; Xue and Bloom, 2020).

The most crucial assumption in prior work on influenza virus immune escape within-hosts

(Luo et al., 2012; Volkov et al., 2010) or within-host pathogen immune escape generally

(Kennedy and Read, 2017) is that immunity protects against observable reinfection by neutralizing

pathogens during the timecourse of replication. This is immunologically unrealistic for a virus that

replicates as rapidly as influenza virus; it ’outruns’ the memory B-cell response.

What is more, our models show that it protection via neutralization produces binary outcomes:

either no reinfection, or detectable reinfection with exclusively mutant viruses. This binary outcome

was previously considered a feature, not a bug, because the frequency of homotypic reinfection was

not yet known.

A model of immune and therapeutic escape for a generic pathogen (Kennedy and Read, 2017)

studied ideas related to replication selection to argue that prophylactic anti-pathogen interventions

(such as pre-exposure vaccination) could be less vulnerable to pathogen evolutionary escape than

therapeutic interventions (such as post-symptomatic courses of antivirals). Therapeutic interventions

occur after a number of pathogen replication events and therefore select upon on a larger, more

diverse array of potential pathogen variants. Prophylactic interventions may limit the number of rep-

lications before clearance and thereby limit opportunities for diversification. Like the influenza-spe-

cific models discussed, this general model does not address the question of how evolution can be

rare in symptomatic or otherwise observable infections, where substantial antigenic diversity can be

generated.

Similarly, the antimicrobial resistance literature makes a distinction between ’acquired’ and ’trans-

mitted’ (or ’primary’) drug resistance (Bonhoeffer et al., 1997), but this should not be confused with

replication and inoculation selection. Transmitted resistance refers to the acquisition of a resistant

infection from a host infected with resistant microbes, without regard for whether those microbes

were a minority or majority variant in the transmitting host. Inoculation selection, in contrast, refers

to natural selection acting on inoculated diversity that favors transmitted drug resistance variants or

transmitted new antigenic variants. One variant present in a mixed infection has a higher probability

of surviving the transmission bottleneck or becoming the majority variant in the new host than its fre-

quency in the transmitting host alone would imply, simply because the recipient host is more suscep-

tible to that variant than to any competing inoculated variants.
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A7.2 Limits to immune escape through non-variant-specific limiting factors

Two studies (Luo et al., 2012; Hartfield and Alizon, 2014) have previously noted that the evolution-

ary emergence of escape mutants or otherwise fitter pathogens can be made more difficult due to

ongoing competition from the old variant for a shared resource, whether susceptible cells within a

host, as in Luo et al., 2012 and in our model, or susceptible hosts within a population, as in

Hartfield and Alizon, 2014.

In our paradigm, non-variant-specific limiting factors such as target cell depletion play three roles.

(1) Denying new variants the opportunity to rise in frequency once an antibody response has been

mounted and fitness differences have become substantial. (2) Explaining why immune-compromised

hosts, in whom these non-antigenic limiting factors are weaker, can select for antigenic mutants at

the scale of a single infection. (3) Clearing infections of naive hosts well before an adaptive immune

response can select an escape variant. Point (3) has been posited previously by [60], but to our

knowledge (1) and (2) are novel.

Hartfield and Alizon, 2014 focus on the probability that a fit mutant variant the emerges at the

host population scale goes stochastically extinct before causing a large epidemic, and show that

competition for hosts with the old variant raises this extinction probability. While this may be rele-

vant to influenza viruses at the population level (see Section A8.6 below), an analogous within-host

argument is unlikely to be a sufficient explanation for the rarity of influenza virus antigenic mutants

within human hosts. New variants are likely to be generated when an influenza virus infection is still

well within its exponential growth phase, competition for susceptible cells is relatively unimportant,

and probability of stochastic extinction for all incipient lineages is therefore low (due also to influen-

za’s high R0). The absence of selection, rather than a high rate of stochastic loss of mutants during

within-host replication, is the most important component of our explanation for the rarity of observ-

able influenza virus antigenic evolution within individual human hosts.

Note that Hartfield and Alizon, 2015 also have a model of within-host immune escape for a gen-

eral pathogen, but that model is designed to estimate the contribution of an active adaptive immune

response to increasing or reducing the probability that a small escape mutant population goes sto-

chastically extinct.

For influenza viruses, the de novo mutation that creates a stable new variant lineage of interest

typically precedes time of adaptive immune proliferation, so a distinct model is required.

A7.3 Fitness costs for antigenic mutants

Previous population-level studies have argued that non-antigenic fitness costs associated with anti-

genic substitutions (Gog, 2008; Kucharski and Gog, 2012) or deleterious mutational load on the

influenza virus genome (Koelle and Rasmussen, 2015) are necessary to explain the pace of influenza

virus antigenic evolution in the human population. These models introduce population-level anti-

genic novelty at rates 5–10 times higher than predicted by inoculation selection, and at equal rates

early and late during the circulation of a particular antigenic variant.

There are empirical reasons to doubt that influenza viruses are in fact antigenic diversity-limited

due to fitness costs. We find multiple instances of polyphyletic cluster transitions: a cluster- transition

amino acid substitution arises and proliferates on two or more branches of the virus phylogeny at

this same time (see Section A6). This is inconsistent with the hypothesis that antigenic variants are

either intrinsically unfit (deleterious substitutions) or incidentally unfit (poor background) prior to the

moment that they proliferate at the population level (Gog, 2008; Kucharski and Gog, 2012;

Koelle and Rasmussen, 2015), since the cluster-transition mutant can reach surveillance-detectable

levels even before substantial population immunity has accumulated (suggesting that strong anti-

genic selection is not required to overcome intrinsic deleteriousness), and it can fully emerge when

the time is ripe against multiple independent genetic backgrounds, suggesting background may not

suffice to constrain diversification earlier in a cluster’s circulation.

In the absence of meaningful replication selection, the population level rate of antigenic diversifi-

cation is the average rate at which new variants survive all transmission bottlenecks to found or co-

found infections. In an inoculation selection regime, that rate is unlikely to surpass 2 in 104 inocula-

tions (Figure 4A). We obtain that estimate assuming no within-host replication cost for antigenic

mutants, weak cross immunity between mutant and old variant viruses, and many experienced hosts
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who reliably neutralize old variant virions at the point of transmission. Actual rates of new variant sur-

vival are almost certainly lower. First, we have assumed that a new antigenic variant can be produced

by a single amino acid substitution (accessible via a single nucleotide substitution), however a recent

detailed study of the antigenic evolution of A/H3N2 viruses shows that some new variants require

more than one substitution (Koel et al., 2013). Second, some (possibly many) previously infected

hosts will not possess well-matched antibodies due to original antigenic sin (Davenport and Hen-

nessy, 1956), antigenic seniority (Lessler et al., 2012), immune backboosting (Fonville et al.,

2014), or other sources individual-specific variation in antibody production (Lee et al., 2019). These

factors individually, and particularly in combination, which have not been modeled in this study

mean that the above 2 in 104 transmission estimate is likely to be unrealistically high. By comparison,

existing population level models that invoke fitness costs introduce population-level antigenic diver-

sity at much higher rates. One study (Koelle and Rasmussen, 2015) introduces new antigenic var-

iants at a rate of 7.5 per 104 transmissions; another (Kucharski and Gog, 2012) introduces new

population-level mutations at a continuous rate of 6.8 � 10�4 mutations per infected individual per

day, which should produce new variant infections by 2 days post infection in at least 1 of every 103

infected hosts:

1� expð�6:8� 10
�4 � 2Þ»0:0013

Prior to the accumulation of population immunity, infections dominated by new variants should

be rare, and new variants should be nearly neutral relative to the old variant at the population level.

This may be sufficient to explain the absence of diversification early in the circulation of a cluster

without invoking non-antigenic fitness costs. That said, additional constraints on the virus, particu-

larly those that reduce the within-host fitness of new antigenic variants, should further slow virus anti-

genic diversification by reducing variant frequencies in donor hosts and thereby reducing the

probability that the variants survive transmission bottlenecks. Furthermore, in the absence of sub-

stantial population immunity, adaptive substitutions may be lost at the population level due to com-

petition from lineages with non-antigenic adaptive substitutions. Our work is thus consistent with a

role for clonal interference in population level influenza virus antigenic evolution (Strelkowa and Läs-

sig, 2012).

A7.4 Further discussion of alternative explanations for rare within-host new
antigenic variants

In this section, we expand on the discussion of alternative hypotheses from the main text (see Alter-

native explanations for rare new antigenic variants).

A7.4.1 Protection through neutralization during early viral replication, that is,
an immediate recall response
Adaptive immune pressure could be strong enough that Rwð0Þ<1. In that case, an old variant infec-

tion dies out if it does not produce a mutant virion, and it only has, on average, b
1�Rwð0Þ � b replication

events in order to do so before the infection is cleared (average replication events in b independent

subcritical branching processes with branching parameter Rwð0Þ, see Section A3.6), so antigenic

mutants can be rare in homotypically challenged hosts, depending upon b and the mutation rate m

(Luo et al., 2012).

As we note in the main text, this makes two predictions that do not match empirical reality: binary

outcomes to homotypic challenge—no infection or infection with an antigenic mutant—and frequent

evolution of antigenic mutants in infections of intermediately immune hosts.

Recent empirical work (Debbink et al., 2017; McCrone et al., 2018; Javaid et al., 2020) and

human challenge studies (Clements et al., 1986; Memoli et al., 2020) both suggest that detectable

reinfection of experienced hosts frequently occurs without observable immune escape. This contra-

dicts the binary outcome.

A model of influenza virus evolution Volkov et al., 2010 found that even a small number of inter-

mediately immune hosts along a transmission chain should reliably promote the evolution of new

antigenic variants. The model predicted this because it features an immediate recall response, which

implies efficient replication selection in intermediately immune hosts. In that model, intermediately
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immune hosts can be productively infected with the old variant (Rwð0Þ>1), so they reliably generate

antigenic mutants. Those mutants then immediately undergo positive selection and are often trans-

mitted onward. We see the same phenomenon in our own transmission chain model when there is

an immediate recall response (see main text Figure 4).

Intermediate-to-strong immunity to old variant viruses is likely to be common in the human popu-

lation even at the beginning of a new antigenic cluster’s circulation (Fonville et al., 2014), and yet

new variants are rarely observed until a new variant has circulated for multiple years (Smith et al.,

2004). This suggests that intermediately immune hosts do not generate and select for new antigenic

variants as readily as the model in Volkov et al., 2010 implies.

Our proposed model of immune selection can explain why intermediately immune hosts may not

reliably select for new antigenic variants. A realistically-timed recall response makes replication selec-

tion unlikely. Rates of inoculation selection are limited in all hosts due to low transmitting host

mutant frequencies fmt. Intermediately immune hosts who possesses sIgA that are not well-matched

to the old variant may additionally have a relatively low value of kw and therefore be little better

than a naive host in promoting new variant survival at the point of transmission.

Heterogeneous neutralization rates during early viral replication
One possibility is that adaptive immune pressure could be present from the start of replication, but

vary substantially among individuals, even those with the same immune history. This heterogeneity

could explain why some individuals (k small, Rwð0Þ>1) are productively reinfected with old variant

viruses while others (k large, Rwð0Þ<1) are protected. In this way one could have protection via neu-

tralization during the timecourse of infection but still have frequent observable reinfection without

immune escape.

While individual variation in immunity does exist (Lee et al., 2019), there are two reasons why

this hypothesis is implausible. First, it is unrealistic given our current understanding of the adaptive

immune response to influenza viruses, as discussed in Section A2, since it requires a substantial anti-

body response before 48 hours post-infection. Second, such heterogeneous protection would be

need to be extremely bimodal to completely miss the regime of k values in which replication selec-

tion is efficient.

Even if this unlikely hypothesis of bimodal early adaptive responses were true, there would remain

a role for sampling effects at the point of transmission. If individuals either possess sterilizing-

strength immunity that acts early in the timecourse of viral replication or possess sufficiently weak

immunity that replication selection is unlikely, antigenic evolution would be dominated by cases in

which mutants are inoculated into strongly immune hosts, as in simpler models with Rwð0Þ<1. Inocu-

lated mutants remain crucial in this scenario.

A7.4.2 Deleterious antigenic mutants
Antigenic mutants could be replication-competent, but weakly deleterious within-host in the

absence of immune selection and/or compensatory substitutions. Two studies (Gog, 2008;

Kucharski and Gog, 2012) have invoked this hypothesis to explain population-level antigenic

dynamics. If neutralization is sufficiently strong during virus replication, however, replication selection

can still promote mutants during infections of experienced hosts, even in the absence of compensa-

tory mutations. Within-host replication costs act to decrease the value of the fitness difference d.

Recall that:

dðtÞ ¼ ½gmðtÞ� gwðtÞ�� ½dmðtÞ� dwðtÞ� (A27)

Typically gmðtÞ ¼ gwðtÞ and so d¼ kðcw� cmÞ. Here, gm<gw. For instance, we could have rm ¼ qrw,

q<1 and therefore gm ¼ qgw. In that case:

d¼ kðcw� cmÞ� gðtÞð1� qÞ (A28)

We estimate g to be order 20 early in infection and declining subsequently. k may well be order

10. So it is very plausible that a weakly deleterious mutant (q¼ 0:95, for instance) could still undergo

substantial replication selection early in infection if it offered enough immune escape (c¼ 0:70) and

antibodies were present (tM small).
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The effect could be particularly extreme in intermediately immune hosts if immunity drops superli-

nearly with antigenic distance. If the old variant is neutralized at a rate kcw ¼ 4 but the mutant is

barely neutralized at all cm » 0, it could easily overcome even substantial within-host deleteriousness.

In the absence of replication selection, even weak within-host deleteriousness should lead

mutants to be rapidly purged (purifying selection should be efficient for phenotypes subject to repli-

cation selection) (Sigal et al., 2018), reducing fmt. Within-host deleteriousness would therefore

reduce the rate at which new variants survive bottlenecks, since psurv and pdrift both decrease as fmt

decreases (see Section A4.4).

A final possibility is that antigenic mutants could be extremely deleterious in the absence of com-

pensatory mutations: q small enough that d<0 even when t>tM (i.e. the old variant is more fit within-

host than the new variant even in the presence of a well-matched adaptive immune response). This

scenario is unlikely given the strength of recall responses, but it would make inoculation selection

and founder effects even more important for population-level antigenic diversification.

A8 Further implications
A8.1 The importance of inoculated diversity

Kennedy and Read, 2017 and Luo et al., 2012 study immune escape with Rwð0Þ<1 but consider

only diversity generated after inoculation. Our study complicates their results: we find that when

Rwð0Þ<1 the dominant mode of antigenic evolution will be selection on inoculated diversity, not

selection on generated diversity (Figure 2). The pace of evolution will depend on how likely an

escape mutant is to be transmitted to an experienced host. If bottlenecks in experienced hosts are

wide, evolution may be rapid. If these bottlenecks are tight or escape mutants are deleterious within

untreated naive hosts (so fmt is low), then Rwð0Þ<1 at the start of infection can result in slow evolu-

tion, since both replication and inoculation selection will be rare.

In the absence of mucosal neutralization with small fmt, b � 1

fmt
, and small m, the threshold for

where inoculation selection becomes more common than replication selection with Rwð0Þ<1 is

approximately

fmtbpsse>�
bRwð0Þ

1�Rwð0Þ
psse

or simply:

fmt>�
Rwð0Þ

1�Rwð0Þ
(A29)

the left-hand side comes from Equation A17, which gives an probability that a mutant with Rmð0Þ>1

is inoculated. The right-hand side comes from Equation 28, which gives the probability that an

escape mutant is generated in a declining but replicating virus population before that population

goes extinct. psse, which occurs on both sizes and cancels, is the probability that a mutant survives

stochastic extinction. We have also ignored the fact the right-hand side should have a term repre-

senting the probability that inoculation selection does not occur, but as we are considering cases

when both inoculation selection and replication selection are rare, that term is approximately one.

On average, fmt>� due the asymmetry between forward and back-mutation rates when the

mutant is rare. It follows that fmt>�
Rwð0Þ

1�Rwð0Þ should hold when (A) the mutant not is too deleterious in

the absence of positive selection (since this reduces fmt) or (B) Rwð0Þ is not close to 1 (since then

many copies are made on average before the virus goes extinct). Alternatively, if b is sufficiently

large—on the order of 1

fmt
—selection on inoculated diversity will be the dominant mode of evolution

simply because most inocula will include mutants.

Selection on inoculated diversity may be important in many host-pathogen systems, not just in

influenza virus antigenic evolution. Some anti-microbial resistance in bacteria, for instance, is

acquired through the uptake of preexisting plasmids, rather than through de novo mutation

(Perron et al., 2015). Whether drug resistance emerges in an individual treated host will depend on

whether any of the bacteria inoculated bear the needed plasmid.
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A8.2 Consequences for modeling influenza virus dynamics

Population size, population level antigenic diversification (’mutation’) rate, and degree of population

structure all substantially impact the proliferation of new influenza virus antigenic variants at the pop-

ulation level. It has been hard for population-level models to distinguish plausible hypotheses

regarding evolutionary constraints on the virus, because achieving simultaneous realism across in all

these effects while retaining model tractability has proven extremely difficult.

For epidemiological models of influenza virus evolution overall population size matters: epidemics

in larger populations involve more total inoculations, and therefore more opportunities for new vari-

ant survival at the point of transmission to occur. Large host populations with high transmission

rates, strong population connectivities, and recurrent epidemics should promote antigenic evolution.

This helps explain why influenza virus antigenic evolution appears to occur disproportionately in east

and southeast Asia (Russell et al., 2008).

It also reveals an important consideration for interpreting results from individual-based simulation

models of global influenza virus evolution. Due to computational constraints, many such models

must use host population sizes that are orders of magnitude smaller than the true global human

population (e.g. N ¼ 40 million [Koelle and Rasmussen, 2015], N ¼ 90 million [Bedford et al.,

2012]). Such models will have smaller numbers of inoculations than real-world influenza virus dynam-

ics. They therefore run the risk of overestimating rates of strain extinction or, to avoid this, of overes-

timating per-infection virus diversification rates.

A8.3 Egg and mouse passage experiments

The observation that immune escape can be reliably be selected for in egg (Davis et al., 2018) and

mouse (Hensley et al., 2009) passage experiments and yet appears rare in reinfected experienced

humans is unsurprising in light of our view that influenza virus evolution is limited more by the failure

of antibody-mediated selection pressure and antigenic diversity to coincide than by the absence of

either.

The egg experiments (Davis et al., 2018) amount to strong replication selection: the viruses were

passaged in the presence of sera with highly-specific neutralizing antibodies, with these sera present

at all times, including during the exponential growth phase within each egg.

The mouse passage experiments (Hensley et al., 2009) showed that serial passage in immune

mice led to the appearance and fixation of antigenic escape mutants, but serial passage in naive

mice did not. Several details of the experiment suggest that both replication selection and inocula-

tion selection should have been more possible than in typical infected experienced humans.

First, the mice were intranasally inoculated with 50 �l of homogenized lung isolate from the previ-

ous mouse in the passage chain at two days post-infection. This is likely a substantially more concen-

trated dose of virions than is inhaled through aerosol or even contact transmission (an inter-host

bottleneck much wider than occurs in humans, to use the terminology of main text Figure 4A). This

could produce a very large value of v, the number of virions encountering IgA, and potentially a

large value of b, the final (cell infection) bottleneck as well—in the presence of sufficiently many viri-

ons, early cell infections might be sufficiently simultaneous as to produce have observably diverse

within-host populations. All of this should tend to facilitate new variant survival and promotion to

observable levels, but also to improve chances, relative to humans, that at least some old variant viri-

ons could survive alongside the new variant.

Second, inoculations were also carried out until a successful inoculation could be achieved. This

further improves the chances of observing an escape mutant selected at the point of transmission.

Finally, vaccinated mice in the passage chain were inoculated 10–21 days post-vaccination, meaning

antibody levels could be higher than the memory baseline. This would be expected to strengthen

inoculation selection and perhaps permit replication selection.

One detail in supplementary table 1 of the mouse passage study (Hensley et al., 2009) is particu-

larly relevant. In the passaging of virus stock #3, two mutants were observed for the first time in the

second vaccinated mouse in the chain, but neither at fixation. Both remained present for 5 further

passages in experienced mice without either being lost or fixing. This suggests a much wider final

bottleneck than occurs in naturally-infected humans (McCrone et al., 2018). It also suggests that

replication selection is unlikely to have been at all strong if present at all: over repeated exponential
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growth phases of two days with wide bottlenecks, even very small fitness differences can be easily

amplified, so the more fit escape mutants should have fixed if they were subject to replication selec-

tion. It also suggests, as expected, that inoculation selection is weak if final bottlenecks are wide and

neither antigenic variant is reliably neutralized. In that case, a long intermittent period of coexistence

is possible.

An example calculation illustrates this: if v ¼ 1000, b ¼ 10, fmt ¼ 0:5, km=kw>0:9, and kw<0:8 the

mutant has an inoculation-selective advantage, but the expected mutant frequency at after the next

transmission event approximately 0.58 or less. Letting �w ¼ EðxwÞ and �m ¼ EðxmÞ:

�w>vð1� fmtÞð1�kwÞ ¼ ð1000Þð0:5Þð0:20Þ ¼ 100

�m>vðfmtÞð1�kmÞ ¼ ð1000Þð0:5Þð0:28Þ ¼ 140
(A30)

And since �w; �m� b, the hypergeometric sampling is approximately binomial, and therefore the

expected frequency of mutant is just �m
�mþ�w

»0:58

While it is difficult to compare fitness differences during replication to fitness differences in muco-

sal neutralization, a very small fitness difference of d ¼ 0:5 should raise the fitter type from frequency

0.5 to frequency 0.73 over the course of two days.

A8.4 Magnitude of antigenic change and population level patterns

When antigenic effect size of mutations approaches zero, the effects of stochastic loss and mistimed

selection pressure dominate, and inoculation and replication selection become sufficiently weak that

true drift dominates as a force for introducing new antigenic variants. In such a regime, we expect

influenza viruses to evolve gradually, fail to cause large epidemics, and possibly diversify, not unlike

influenza B viruses (Bedford et al., 2015). In particular, slow spread enables a kind of immunological

niche partitioning: if population immune histories are not spatially uniform because epidemiological

spread is slow relative to antigenic diversification, multiple variants that are each locally favored in

distinct areas could co-circulate and form separate lineages, as has happened with B/Victoria and B/

Yamagata.

When antigenic jump size approaches the maximum size possible, such that all population immu-

nity disappears each time there is an antigenic cluster transition (Smith et al., 2004), we expect influ-

enza viruses to follow a strongly clock-like pattern with high-amplitude oscillations in case numbers.

They would cause massive punctuated epidemics during jump years and then in the next year either

select for a new variant or go extinct. There would be huge booms followed by one or more years of

bust. In between, at intermediate degrees of escape, a punctuated but somewhat less clocklike pat-

tern—such as the pattern observed in nature for A/H3N2 viruses (Smith et al., 2004)—becomes

possible.

A8.5 Preview substitutions and mutation limitation

’Preview’ substitutions and polyphyletic cluster transitions also imply that the influenza virus is not

typically mutation-limited at the population level—a substantial-effect escape mutant is usually

accessible in sequence-space—but that the virus may nonetheless be highly constrained in its evolu-

tionary trajectory. The virus repeatedly finds the same substitution as a solution to its antigenic evo-

lutionary problem. This could occur either because only one escape mutant is available or because

one of the available escape mutants provides substantially more immune escape (on average) than

the others.

A8.6 Selection on bottlenecked diversity at higher scales

Without an explanation for why within-host dynamics do not more frequently promote antigenic

mutants, it is difficult to explain the slow pace and noisy trajectory of influenza virus evolution. But

such a within-host explanation, though likely necessary, may not be sufficient. It is conceivable that

in a sufficiently large and well-connected global host population, population-level antigenic selection

favoring mutants with higher Re would lead even small-effect antigenic mutants rapidly to emerge

and fix.
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One important mechanism by which evolution might be also slowed at higher scales is analogous

to the within-host dynamic of founder effects and inoculation selection: mutant lineages may be fre-

quently lost (though perhaps selectively favored) at the bottleneck that occurs between distinct influ-

enza virus epidemics.

Prior modeling work has found that population-level host competition between pathogen variants

reduces the probability that a fit mutant variant causes a large epidemic in the population in which it

first emerges (Hartfield and Alizon, 2014). This is likely to be relevant in influenza virus epidemics,

since the virus is thought to provoke short-term strain-transcending (i.e. variant-transcending) immu-

nity (Ferguson et al., 2003).

We propose a previously unexplored consequence of this argument: successful establishment of

a mutant lineage at the population level requires that the mutant lineage be exported to a new host

subpopulation where susceptible hosts are common. This is rare but potentially selective sampling

event.

When a new variant lineage emerges at the population level, it is likely to be surrounded by many

propagating old variant lineages due to the generator-selector dynamic discussed in the main text

(see main text Figure 4B,C). Moreover, most mutant lineage generation events will occur as an epi-

demic is peaking, since that is when the most inoculations occur. The consequence is that most gen-

erated population-level mutant lineages will encounter severe competition for susceptible hosts

(especially if we consider realistic, spatial host contact networks rather than well-mixed epidemic

models). So a generated mutant lineage is unlikely to account for many cases—or even necessarily

more than one case—in the epidemic in which it emerges.

Many local influenza virus epidemics are likely to be evolutionary dead ends with no cases

exported that establish chains of transmission in other locations. Because only a minority of the

human population is likely to travel to or from the site of any particular epidemic, the majority of

virus diversity generated within each epidemic is likely to be lost in between-epidemic bottlenecks.

Conditional on being exported, new variant lineages could have competitive advantages over old

variant lineages because they spread should spread more rapidly and go stochastically extinct less

easily due to their higher Re. It follows that there is analogous dynamic to inoculation selection at

the population level: mutant lineages are rarely exported from one sub-population (host, epidemic)

to another, but conditional on being exported, they have an advantage in any potential competition

with exported old variant lineages.

The rate of proliferation of mutants at the population level, then, may be limited by the rarity of

early generation of mutant lineages during an epidemic (analogous to the rarity of very early within-

host de novo generation of mutants) and by the rarity of successful mutant lineage exportation when

generation is not early (analogous to the rarity of mutant virions surviving the transmission bottle-

neck between hosts).

We aim to explore this argument with a formal mathematical model in future work.

A9 Mathematical derivations in full
A9.1 Full derivation of the within-host replicator equation

The derivation in this section establishes Equation 12:

dfm

dt
¼ fmð1� fmÞð½gmðtÞ� gwðtÞ�� ½dmðtÞ� dwðtÞ�Þ

Derivation
We note that:

fmðtÞ :¼
VmðtÞ

VtotðtÞ

where VtotðtÞ ¼ VwðtÞþVmðtÞ. Let _Vi denote
dVi

dt
. Note that _Vi ¼ ViaiðtÞ where aiðtÞ ¼ giðtÞ� diðtÞ, and

that VwðtÞ
VtotðtÞ

¼ 1� fmðtÞ. By the quotient rule:
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dfm

dt
¼
Vtot

_Vm�Vmð _Vmþ _VwÞ

V2
tot

¼
VtotðamVmÞ�VmðamVmþawVwÞ

V2
tot

Dividing through by V2

tot yields:

amfm� fmðamf þawð1� fmÞÞ

¼ amfm�amf
2

m �awfmð1� fmÞ

¼ amfmð1� fmÞ�awfmð1� fmÞ

¼ fmð1� fmÞðaw �amÞ

¼ fmð1� fmÞð½gmðtÞ� gwðtÞ�� ½dmðtÞ� dwðtÞ�Þ

A9.2 Replicator equation with symmetric mutation

With symmetric mutation at a rate m, the replicator equation remains calculable.

Derivation

Given symmetric mutation, _Vi ¼ ViaiðtÞ þ �gjðtÞVj where aiðtÞ ¼ ð1� �ÞgiðtÞ � diðtÞ

Substituting in to the previous derivation yields:

dfm

dt
¼
VtotðamVmþ�gwðtÞVwÞ�VmðamVmþ�gwðtÞVwþawVwþ�gmðtÞVmÞ

V2
tot

¼ amfmþ�gwðtÞð1� fmÞ� fmðamfmþ�gwðtÞð1� fmÞþawð1� fmÞþ�gmðtÞfmÞ

¼ amfmþ�gwðtÞð1� fmÞ�amf
2

m��gwðtÞfmð1� fmÞ�awfmð1� fmÞ��gmðtÞf
2

m

¼ amfmð1� fmÞ�awfmð1� fmÞþ� gwðtÞð1� fmÞ� gwðtÞfmð1� fmÞ� gmðtÞf
2

m

� �

¼ fmð1� fmÞðam�awÞþ�ðgwðtÞ� 2gwðtÞfmþ gwðtÞf
2

m� gmðtÞf
2

mÞ

Note that if gwðtÞ ¼ gmðtÞ ¼ gðtÞ, this simplifies to:

dfm

dt
¼ fmð1� fmÞ½dmðtÞ� dwðtÞ�þ�gðtÞð1� 2fmÞ

A9.3 Replicator equation with one-way mutation
Derivation
To find the case with one-way mutation, we simply let all �gmðtÞVm terms from the symmetric muta-

tion replicator equation be zero. This yields:

dfm

dt
¼ fmð1� fmÞðam�awÞþ�gwðtÞð1� 2fmþ f 2mÞ (A31)

A9.4 Derivation of t�ðx; tÞ

This establishes the expression for the time t� by which a mutant must emerge to reach at least fre-

quency x by time t given in Equation 25 of the Materials and methods.

t�ðx; tÞ ¼
t��ðx; tÞ t��ðx; tÞ<tandt

�
�ðx; tÞ � tM

t�þðx; tÞ t�þðx; tÞ<tandt
�
�ðx; tÞ>tM

t otherwise

8

<

:

where:

t��ðx; tÞ ¼
ln 1�x

x
expðdðt� tMÞÞþ 1

� �

� lnb

g0 � dv
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t�þðx; tÞ»
lnð1�x

x
Þ� lnðbÞþ dt� cwktM

g0� dv � cwkþ d

Derivation
The frequency of the mutant at time t depends on the quantity

 ðtÞ ¼ expðdðt�maxftM ; tegÞÞ

Neglecting ongoing forward mutation, the mutant must emerge at some frequency fe in order to

reach frequency x by time t:

 ðtÞ

 ðtÞþ f�1
e � 1

� x

Solving for f�1

e yields:

f�1

e �  ðtÞ
1� x

x

� �

þ 1 (A32)

f�1

e is determined by the number of old variant virions at time te. Early in infection, the old variant

population grows near-exponentially at a rate G0 ¼ g0 � dv. There are two cases: either time of new

variant emergence (first mutation to produce a new variant lineage that evades stochastic extinction)

occurs before the antibody response is present (te � tM ) or it emerges once the antibody response is

already present (te>tM ).

A9.4.1 Case 1: te � tM

It follows that if te � tM , f
�1

e » b expððg0 � dvÞteÞ ¼ b expðG0teÞ.

beG0 te �  ðtÞ
1� x

x

� �

þ 1

Taking the natural log of both sides and subtracting off lnb from both sides:

G0te � ln  ðtÞ
1� x

x

� �

þ 1

� �

� lnb

te �
ln  ðtÞ 1�x

x
þ 1

� �

� lnb

G0

This establishes a value for t� when te<tM . In that case,  ðtÞ ¼ expðdðt� tMÞÞ, and:

t��ðx; tÞ ¼
ln 1�x

x
expðdðt� tMÞÞþ 1

� �

� lnb

g0 � dv
(A33)

9.4.2 Case 2: t>te>tM
If t>te>tM , we must change our estimate of f�1

e , because the old variant population grows more

slowly in the presence of an antibody response. The approximate growth rate is G1 ¼ G0 � cwk. For

te>tM :

f�1

e ¼ bexp G0tM½ �exp G1ðte� tMÞ½ � ¼ bexp cwktM þG1te½ � (A34)

The expression from Equation A32 no longer yields a closed form solution; it is now a transcen-

dental equation, because  ðtÞ now contains te terms:  ðtÞ ¼ expðdðt� teÞÞ.

To deal with this, we make the approximation:

fmðtÞ ¼
 ðtÞ

 ðtÞþ f�1
e
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This approximation is excellent unless the initial frequency fe is large, and it always yields an

underestimate of fmðtÞ, . This is desirable; we would like to be pessimistic about the probability of

replication selection given early tM and early te>tM to avoid biasing ourselves in favor of our hypothe-

sis (namely, that replication selection is unrealistically common if tM is early).

Letting fmðtÞ ¼ x, the desired frequency at t, we wish to solve:

x�
 ðtÞ

 ðtÞþ f�1
e

We find:

f�1

e xþ ðtÞx� ðtÞ

f�1

e �  ðtÞ
1� x

x

bexp cwktM þG1teð Þ � exp dðt� teÞð Þ
1� x

x

lnðbÞþ cwktM þG1te � dt� dte þ lnð
1� x

x
Þ

teðG1þ dÞ � lnð
1� x

x
Þ� lnðbÞþ dt� cwktM

te �
lnð1�x

x
Þ� lnðbÞþ dt� cwktM

G1 þ d

So when te>tM :

t�þðx; tÞ»
lnð1�x

x
Þ� lnðbÞþ dt� cwktM

g0� dv � cwkþ d
(A35)

Note that since we used an underestimate of fmðtÞ, this approximate t� is a lower bound for the

true t�; it may be that the new variant can actually emerge later and still successfully be replication-

selected to the desired frequency x.

Finally, it may be that t�þðx; tÞ>t and t��ðx; tÞ>t. This indicates that the mutant will be at at least fre-

quency x if it emerges at t itself. In that case, we therefore have t�ðx; tÞ ¼ t.

Combining:

t�ðx; tÞ ¼

t��ðx; tÞ t��ðx; tÞ<t and t��ðx; tÞ � tM

t�þðx; tÞ t�þðx; tÞ<t and t��ðx; tÞ>tM

t otherwise

8

>

<

>

:

(A36)

A9.5 Derivation of the closed form for pcib
The derivation in this section establishes Equation 35:

pcibðkw; fmt;wbÞ ¼ Eðpcibðxw;1;bÞÞ ¼ ð1� e��wÞ
b

�w
þ e��w

X

b�1

j¼0

�wj

j!
ð1�

b

jþ 1
Þ

where �w¼ vð1� fmtÞð1�kwÞ is the mean number of old variant virions present after IgA

neutralization.

Derivation

pcibðxw;1;bÞ ¼
b

xwþ 1
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Eðpcibðxw;1;bÞÞ ¼ b
X

¥

k¼0

�wk

k!
e��w 1

kþ 1

¼
b

�w

X

¥

k¼0

�wkþ1

ðkþ 1Þ!
e��w

¼
b

�w

X

¥

j¼1

�wj

j!
e��w

We know that:

e�lþ
X

¥

j¼1

lj

j!
e�l ¼ 1

since the Poisson is a proper probability distribution and therefore:

X

¥

j¼1

lj

j!
e�l ¼ 1� e�l

So substituting in:

b

�w

X

¥

j¼1

�wj

j!
e��w ¼

b

�w
ð1� e��wÞ

This is exact when b¼ 1, but in other cases pcibðxw;1;bÞ is more properly given by maxf b
xwþ1

;1g,

since whenever we have xwþ 1<b, a new variant survives with certainty. So for each such xw<b� 1 we

need to add on correction term equal to 1� b
xwþ1

, weighted by the probability of that xw takes on

that value: e��w �wxw

xw!
.

Summing from xw ¼ 0 to xw ¼ b� 1 and factoring out e��w gives us the complete correction term:

e��w
X

b�1

j¼0

�wj

j!
ð1�

b

jþ 1
Þ

Adding that to the expression derived above completes the derivation.

A9.6 pcib ¼ 1 only if there is no competition

pcib<1 if kw<1 and fmt<1, and pcib ¼ 1 if kw ¼ 1 or fmt ¼ 1.

Derivation
This is most easily seen by rewriting pcib as an infinite sum:

pcibðkw;v;bÞ ¼ e��w½
X

b�1

j¼0

�wj

j!
1þ

X

¥

j¼b

�wj

j!

b

jþ 1
� (A37)

If �w¼ vð1� fmtÞð1�kwÞ ¼ 0, we have pcib ¼ 1, as expected. Since v>0, this occurs either when there

are no old variant virions (fmt ¼ 1) or when the old variant is neutralized with probability 1 (kw ¼ 1).

Otherwise, �w>0 and we therefore have:

pcib ¼ e��w
X

b�1

j¼0

�wj

j!
1þ

X

¥

j¼b

�wj

j!

b

jþ 1

" #

<e��w
X

b�1

j¼0

�wj

j!
1þ

X

¥

j¼b

�wj

j!
1

" #

¼ 1 (A38)

The last step uses the fact that the Poisson distribution is a proper probability distribution, and

therefore sums to 1.

A9.7 pcib is decreasing in �w

pcib is decreasing in �w: the more competing old variant virions, the less likely the new variant is to

pass through the cell infection bottleneck.
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Derivation
For b ¼ 1,

dpcib

d�w
¼
e��w �w� e�wþ 1ð Þ

�w2

This is negative for �w>0, as ex>xþ 1 for x>0.

That pcib is decreasing in �w for b>1 can be seen by writing:

pcib ¼ e��wSð�wÞ

Sð�wÞ :¼
X

b�1

j¼0

�wj

j!
þ
X

¥

j¼b

�wj

j!

b

jþ 1

(A39)

This can be rewritten in two useful ways:

Sð�wÞ ¼ 1þ
X

b�1

j¼1

�wj

j!
þ
X

¥

j¼b

�wj

j!

b

jþ 1
(A40)

Sð�wÞ ¼
X

b�2

j¼0

�wj

j!
þ

X

¥

j¼b�1

�wj

j!

b

jþ 1
(A41)

This uses the fact that b
jþ1

¼ 1 when j¼ b� 1.

We begin by showing that S0ð�wÞ<Sð�wÞ when �w>0. We differentiate Equation A40 with respect to

�w:

S0ð�wÞ ¼ 0þ
X

b�1

j¼1

�wj�1

ðj� 1Þ!
þ
X

¥

j¼b

�wj�1

ðj� 1Þ!

b

jþ 1

¼
X

b�2

j¼0

�wj

j!
þ

X

¥

j¼b�1

�wj

j!

b

jþ 2

(A42)

When �w>0, the first b� 1 terms in S0ð�wÞ are equal to the corresponding terms in Equation A41

for Sð�wÞ. Each subsequent term is smaller in S0ð�wÞ than in Sð�wÞ, since b
jþ2

< b
jþ1

for b; j>0. So we have

established that S0ð�wÞ<Sð�wÞ for b>1.

Now we find dpcib
d�w

:

dpcib

d�w
¼�e��wSð�wÞþ e��wS0ð�wÞ ¼ e��w½S0ð�wÞ� Sð�wÞ�<0 (A43)

since e��w>0 and S0ð�wÞ� Sð�wÞ<0.

It follows that pcib is decreasing in �w.

A9.8 pcib is increasing in b
Derivation
This follows from the infinite sum expression for pcib (Equation A37). We will show that pcibðbþ

1Þ>pcibðbÞ for integers b � 1 by showing that pcibðbþ 1Þ � pcibðbÞ>0

pcibðkw;v;bÞ ¼ e��w½
X

b�1

j¼0

�wj

j!
1þ

X

¥

j¼b

�wj

j!

b

jþ 1
�

pcibðkw;v;bþ 1Þ ¼ e��w½
X

b

j¼0

�wj

j!
1þ

X

¥

j¼bþ1

�wj

j!

bþ 1

jþ 1
�

¼ e��w½
X

b�1

j¼0

�wj

j!
1þ

X

¥

j¼b

�wj

j!

bþ 1

jþ 1
�

(A44)

This uses the fact that bþ1

jþ1
¼ 1 when j¼ b.
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For any 0 � kw � 1, any v � 1, and b � 1, consider pcibðbþ 1Þ � pcibðbÞ:

pcibðbþ 1Þ� pcibðbÞ ¼ e��w½
X

¥

j¼b

�wj

j!

ðbþ 1Þ� b

jþ 1
�

¼ e��w½
X

¥

j¼b

�wj

j!

1

jþ 1
�

>0

(A45)

since this is a sum of positive terms, multiplied by a positive number.

A9.9 psurv=pdrift is decreasing in b
Derivation

We follow an approach similar to A9.8, showing that psurvðbþ1Þ
pdriftðbþ1Þ �

psurvðbÞ
pdriftðbÞ

<0 for integer b � 1.

psurvðbÞ
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»
v

b
ð1�kmÞpcib

¼
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Similarly:
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pdriftðbþ 1Þ
»

v

bþ 1
ð1�kmÞe

��w
X

b

j¼0

�wj

j!
1þ

X

¥

j¼bþ1

�wj

j!

bþ 1

jþ 1

" #

¼
v

bþ 1
ð1�kmÞe

��w
X

b�1

j¼0

�wj

j!
1þ

X

¥

j¼b

�wj

j!

bþ 1

jþ 1

" #

¼ vð1�kmÞe
��w

X

b�1

j¼0

�wj

j!

1

bþ 1
þ
X

¥

j¼b
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We have again used the fact that bþ1

jþ1
¼ 1 when j¼ b.

Taking the difference of the approximate ratios:

psurvðbþ 1Þ

pdriftðbþ 1Þ
�
psurvðbÞ

pdriftðbÞ
»vð1�kmÞe

��w
X

b�1

j¼0

�wj

j!

1

bþ 1
�
1

b

� �

<0

That the expression is negative follows from the fact that all terms in the sum are negative, since
1

bþ1
< 1

b
for b� 1 while �wj

j!
is always positive. The terms multiplying the sum are all positive.

It follows that psurv=pdrift is decreasing in b.

A9.10 In the absence of selection, the probability of surviving the bottleneck
is approximately linear for large v and small fmt

Derivation
If kw ¼ km ¼ 0, we have:

pinoc ¼ ð1� e�vfmtÞ

�w¼ vð1� fmtÞ»v

e��w
»0
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pcib »
b

v

psurv » ð1� e�vfmtÞð
b

v
Þ

And since �vfmt is small, we can use the linear approximation to the exponential:

psurv »vfmt

b

v
¼ bfmt
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