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ABSTRACT: This paper attempts to shed light on the origin of
the magnetic behavior specific to trigonal bi- and pyramidal 3d8

mono- and polynuclear nanomagnets. The focus lies on entirely
unraveling the system’s intrinsic microscopic mechanisms and
fundamental quantum mechanical relations governing the under-
lying electron dynamics. To this end, we develop a self-consistent
approach to characterize, in great detail, all electron correlations
and the ensuing fine structure of the energy spectra of a broad class
of 3d8 systems. The mathematical framework is based on the
multiconfigurational self-consistent field method and is devised to
account for prospective quantum mechanical constraints that may
confine the electron orbital dynamics while preserving the
properties of all measurable quantities. We successfully characterize
the experimentally observed magnetic anisotropy properties of a slightly distorted trigonal bipyramidal Ni2+ coordination complex,
demonstrating that such compounds do not exhibit intrinsic huge zero-field splitting and inherent giant magnetic anisotropy. We
reproduce qualitatively and quantitatively the behavior of the low-field magnetic susceptibility, magnetization, low-, and high-field
electron paramagnetic resonance spectroscopy measurements and provide an in-depth analysis of the obtained results.

I. INTRODUCTION
Being quantum in nature and standing as promising candidates
for the assembly of future molecule-based information density
storage devices, mono- and polynuclear molecular magnets have
attracted enormous attention in recent decades.1−7 Gaining
useful knowledge on the quantum dynamics of nonsinglet paired
electrons under the action of a particular crystal field (CF),
however, may be a great challenge to their theoretical
characterization as well as technological applications.
The magnetic properties of transition-metal-based molecular

and single-ion magnets are tightly related to the local
coordination of metal ions. In general, the CF environment
shaped by the bond lengths, type of ligands, coordination
number, and geometric symmetry is the main precursor to a
particular fine structure related to the ground state (FSG)
resulting from the spin−orbit (SO) coupling.3,8−11 There exists,
however, an additional characteristic behind the distinct
magnetic behavior among the metal ions belonging to the
same row of the periodic system of elements, that is, the extent of
valence subshell occupancy influencing quantitatively the effect
of CF and SO coupling on the fine structure (FS) due to Pauli’s
principle. In that respect, the high-spin 3d8 coordination
complexes and their ensuing polynuclear nanomagnets12−17

are of particular interest, since at a given coordination, they tend
to show an unusual magnetic anisotropy (MA). Peculiar cases of
mononuclear Ni2+ nanomagnets that challenge the current
understanding of 3d8-based systems’ magnetic behavior are

those possessing either a trigonal bi- or a pyramidal CF.18−23 It is
essential to point out that in any other CF environment, the
magnetic properties of Ni2+ complexes are reasonably well
understood within the framework of the conventional approach
that considers the unpaired electrons as unconstrained. For
instance, they are magnetically isotropic in the case of octahedral
coordination.19,21,24,25 In a distorted or pseudo-octahedral and
trigonal prismatic CF, the same complexes exhibit a negligible to
a very small SO coupling and hence vanishing FSG.26,27 The
occurrence of moderate zero-field splitting (ZFS) is also
possible as it is demonstrated by the structural dependence in
a series of trigonal prismatic Ni2+ complexes.28 Moreover, a
small to moderate ZFS is observed in the pseudotetrahedral
nickel complex,29 hepta-coordinated,30 and the hexacoordinated
one.31 The occurrence of moderate to large energy gaps in FSG
is highly unexpected yet detectable. A prominent example is
FSG rising in the pentacoordinated environment32,33 and the
tetrahedral one.34 ZFS of such a scale may be unexpected, but it
is not forbidden by conservation laws or indistinguishability
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principles. This, however, is not the case for the high-spin
trigonal bi- and pyramidal Ni2+ complexes as we mentioned
earlier and this is what makes the magnetic properties of such
systems look puzzling in the framework of the conventional
approach.
In general, under the action of strong CF, the calculated

probability of observing a very large to huge ZFS in high-spin
trigonal bi- and pyramidal Ni2+ complexes equals zero since SO
coupling between active and core orbitals is forbidden by virtue
of Pauli’s exclusion principle.25 This is particularly true for the
conventional methods since they consider the orbital phases of
the electrons as independent variables over infinite time. In the
last decade, however, very insightful studies have been reported,
showing that a nontrivial FSG indeed exists thus raising the
question about its origin. A nontrivial FSG is observed in the
low-symmetry trigonal bipyramidal complexes [Ni(Me6tren)-
Cl]ClO4 and [Ni(Me6tren)Br]Br.

35 It was pointed out that the
former complex is characterized by an axial ZFS parameter, with
a magnitude of about 120 cm−1. The existence of very large
energy gaps related to the ground state is, furthermore, reported
in ref 36 for the trigonal pyramidal compound K{Ni(N[CH2C-
(O)NC(CH3)3]3)} exhibiting high anisotropy. Another prom-
inent case of an unusually large MA is observed in the distorted
trigonal bipyramidal complex [Ni(MDABCO)2Cl3]ClO4,

37

with calculations suggesting a huge magnitude of the axial ZFS
parameter of about 535 cm−1. Lately, revisiting the magnetic
properties of the complexes [Ni(Me6tren)X] (X =Cl, Br) within
the mathematical framework of a superposition model under-
lined the need for deeper research that may shed light on the
origin of ZFS.38 Other studies, such as the far infrared
measurements carried out on the species [Ni(Me6tren)Cl]-
ClO4,

39 confirming the presence of a large, but not huge, energy
gap in FSG and the simulated magnetostructural dependencies
in [Ni(MeDABCO)2Cl3]ClO4 under high pressure40 are
important cases emphasizing on the need of in-depth analysis
on the nature of ZFS and the genuine origin of MA.
The experimentally observed FSG in the above-mentioned

cases definitely points out that unveiling the mechanism
underlying the magnetic behavior of Ni2+-based single-ion
magnets with trigonal bi- and pyramidal local coordinations
cannot be worked out within the conventional parameterization
scheme embedded in the effective single-ion Hamiltonians.41−44

In other words, SO interactions alone cannot lead to large
splitting in FS, and thus, an auxiliary microscopic mechanism
underlying the relevant coupling is worth considering. Such an
assumption suggests that the electron dynamics of themetal ions
of highly filled subshells may be governed by additional rules,
more specifically, quantum mechanical constraints that abide by
the principle of indistinguishability and hence preserve the
exchange symmetry. To the best of our knowledge, a study of the
effect of constraining the electron orbital degrees of freedom
related to FS of coordination complexes and molecular magnets
in general has not been undertaken so far.
The main goal of the present paper is to identify potential

quantum constraints that give rise to a unique FSG in Ni2+
trigonal bi- and pyramidal coordination complexes. The
uniqueness is determined by all constraints that confine the
electron orbital dynamics, preserving all relevant observables
invariant. To this end, we make use of the exact diagonalization
technique developed in ref 45 to characterize 3d2 systems and
later extended to explore the properties of 3d8-based25

mononuclear nanomagnets. This very approach will be used
to explore the unusual magnetic behavior of the compound

[Ni(MDABCO)2Cl3]ClO4,
37 exhibiting slightly distorted trigo-

nal bipyramidal coordination. First, by analogy with the
conventional approach, we perform calculations by considering
the 3d8 Ni ion electrons as being unconstrained to demonstrate
the limitation of this analysis in reproducing the experimentally
observed behavior. We then proceed with a thoroughgoing
presentation of the mathematical approach, demonstrating the
indispensable role of orbital constraints in unraveling the origin
of all observations, emphasizing on all relevant settings and
approximations. The effect on FSG resulting from the reduced
electron degrees of freedom is analyzed in great detail. In
particular, we show that the constrained electron dynamics is
compulsory for the occurrence of large splitting in FSG and a
non-negligible unquenched orbital angular momentum. A
comparison between the theoretical and experimental results
for the low-field susceptibility, magnetization, and EPR
spectroscopy is discussed and displayed. In addition, the present
research aims to provide insights for future investigations
focused on molecular magnets consisting of metal centers with
highly filled valence subshells. Furthermore, it aims to provide
the basis for implying such constraints in alternative methods
like the quantum perturbation ones, such as the second-order
configuration active space perturbation theory (CASPT2) and
N-electron valence state perturbation theory (NEVPT2), see ref
46 and references therein.

The rest of the paper is structured as follows. In Section II, we
present a brief account on the applied method and introduce the
mathematical notation for all observables and physical quantities
used throughout the manuscript. Section III discusses the
limitations of the conventional approach in calculating the
energy spectrum of the studied complex and in reproducing its
experimental magnetic behavior. In Section IV, we introduce the
idea of constrained orbital dynamics and its potential to
interpret the magnetic behavior of 3d8 complexes concentrating
on the one that is under investigation here. This includes a
thoroughgoing analysis of all ensuing approximations and
settings. Section V is devoted to the comparison between the
theoretical and experimental results of the studied complex. In
Section VI, we discuss the effectiveness of the conventional
single-ion spin Hamiltonian in the case of constrained orbital
dynamics. Section VII summarizes the used method and
obtained results.

II. THEORETICAL BACKGROUND
II.I. Generalities.To unravel themechanisms underlying the

magnetic properties of the compound [Ni(MDABCO)2Cl3]-
ClO4 (MDABCO+ = 1-methyl-4-aza-1-azoniobicyclo[2.2.2]-
octanium cation),37 we make use of the method developed in ref
25. The named method considers the coordination complex as
an effective spin-one system composed of Ni ion, eight electrons
effectively localized around the Ni center, and five ligands
regarded as effective point-like charges in the series expansion of
CF potentials. In the resulting effective parameterization
scheme, the effect of electron delocalization is accounted for
by quantifying the charge negativity of a ligand with respect to
the 3d electrons via a unique charge number. Furthermore,
within the used parameterization scheme, one may account for
constraints restricting the orbital dynamics of nonsinglet
unpaired electrons. In general, all constraints are related to the
emergence of phase differences in the electron direct exchange
and field−orbital coupling. Here, we will restrict the study only
to those constraints that do not break the invariance of the
observables. A ball-and-stick representation of the distorted
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trigonal bipyramidal structure of [Ni(MDABCO)2Cl3]+ in the
first coordination sphere is shown in Figure 1.

Let us introduce some basic physical quantities used
throughout the manuscript. By , with

, we denote the expectation value of the total
magnetic moment operator associated with the n-th energy level
with |μn|= μn. The corresponding spin and orbital angular
momentum components are μn,s and μn,l, respectively. As usual, κ
denotes the orbital reduction coefficient, Z is the metal ion
charge number, and Zi is the i-th reactive nonmetal (ligand)
charge number. A phase difference between two electrons
occupying orbitals of types ν and τ is denoted by φν,τ. In
particular, the phase difference occurring in the process of direct
exchange is represented as φν,τ

ex . The energy barrier per single
complex separating the spin-one fully polarized magnetic states
is denoted by Ueff. The electric constant, magnetic constants,
Bohr radius, and electron’s g-factor are denoted as ε, μo, rB, and
ge, respectively. Furthermore, all energy levels are normalized,
with a ground state taken equal to zero. The energy gap between
i-th and j-th energy levels is denoted by Eij. All magnetic
moments are given in units of Bohr magneton μB. The z-axis is
the quantization axis, and in the bracket notation, we use “1̅” to
designate the spin state “−1”.
II.II. Hamiltonian. The Hamiltonian describing the

magnetic properties of 3d8-based compounds (see e.g., Figure
1) reads

(1)

where is the i-th electron position vector, and the
operator corresponding to Coulomb interactions is given by

The CF operator associated with the interactions between 3d
electrons and the effective ligands with position vectors d is
expressed by

where k runs over the number of all ligands. The operator

(2)

represents the spin−orbit interactions of relativistic origin and

takes into account the interaction of all 3d electrons with the
externally applied magnetic field , with unit vector

and magnitude B. Here, lî and sî are the i-th
electron’s orbital and spin operators, respectively. The series
expansion of Coulomb and CF potentials is discussed in ref 45.
Note that the effect of all orbital and spin magnetic dipole−
dipole interactions into FSG is found to be negligible and hence
are omitted from eq 1. Moreover, all kinetic terms, electron−
nuclei, and nuclei−nuclei ones are not given in eq 1, since on
average their contribution is a constant that drops after the
normalization.

III. CONSTRAINT FREE THEORY
Describing the magnetic properties of the complex [Ni-
(MDABCO)2Cl3]+

37 only within the conventional analytic
techniques and approximations11,25,38,47 turns out to be
unfeasible as we have shown here. The energy spectrum of the
compound obtained within these approaches is depicted in
Figure 2 with the corresponding numerical representation given
in the Supporting Material (Section S.5). The first energy gap
shown in Figure 2b results from the distorted geometry and
represents CF splitting between the configurations
dxz
2 dyz

2 dxy
2 dx2−y2

1 dz2
1 and dxz

2 dyz
2 dxy

1 dx2−y2
2 dz2

1 . Note that the orbital
splitting diagram obtained only from CF calculations does not
give the correct ground-state configuration. Here, it is displayed

Figure 1. Ball-and-stick representation from the first coordination
sphere of the complex [Ni(MDABCO)2Cl3]+. The structural
parameters are provided by ref 37 and further given in spherical
coordinates in Table 1 according to the depicted enumeration and
reference frame. The z-axis is aligned along the principal one of an ideal
trigonal coordination used as a benchmark.

Figure 2. (a) Energy spectrum of the complex [Ni(MDABCO)2Cl3]+
in the absence of phase constraints. The calculations are performedwith
structural and intrinsic parameters given in Table 1. (b) First energy gap
resulting from the action of CF, invariant with respect to the variations
of κ. The inset depicts the orbital splitting and occupation obtained
from the consideration of CF only. (c) Zeeman splitting for arbitrary
orientation with respect to the complex’s reference frame magnetic
field. The superscript “f” indicates that, in this case, the quantization axis
aligns along the field’s direction.
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for the sake of comparison to its counterparts obtained with the
aid of other methods. Notice that the computed ground state
configuration is the result of the dominant Coulomb
interactions. In particular, the configurations dxz

1 dyz
2 dxy

2 dx2−y2
2 dz2

1

and dxz
2 dyz

1 dxy
2 dx2−y2

2 dz2
1 have a higher Coulomb correlation energy

and therefore reside approximately 1.11 eV higher in the energy
spectrum than the ground state one dxz

2 dyz
2 dxy

2 dx2−y2
1 dz2

1 .
The absence of ZFS and hence the isotropic behavior evident

from the Zeeman splitting depicted in Figure 2c is a
consequence of the vanishing SO coupling between the obtained
ground state |ϕ10,1,m⟩ and first excited one |ϕ9,1,m⟩, for all m.
Details about the used state functions are given in the
Supporting Material (Section S.1). SO interactions cannot
generate a coupling in the case when the electrons are free from
any constraints since the Pauli principle forbids the coupling
between active and core orbitals. It is worth noting that in this
case, the axial and rhombic ZFS parameters41−44 vanish. Thus,
in the framework of the studied system, SO interactions between
nonconstrained electrons exclude FS and thus cannot generate
MA. Accordingly, the experimental findings of the magnetic
properties of the complex [Ni(MDABCO)2Cl3]+ reported in ref
37 cannot be derived within the conventional approach.
In the quest for the origin of FSG and MA in the considered

complex, we impose constraints on the 3d electron degrees of
freedom and investigate their effect on the energy level
sequence.

IV. OCCURRENCE OF CONSTRAINTS
IV.I. General Considerations. Relying only on the

conventional approach that restricts the parameterization
scheme to the action of CF and SO interactions can neither
reduce the ground-state degeneracy nor invoke an additional
coupling between the ground state and first excited states of the
spectrum depicted in Figure 2b. We would like to point out that
dipole−dipole magnetic interactions have a negligible contri-
bution to FS and cannot be the origin of MA in the system under
consideration. Therefore, we may rather assume that the
ground-state magnetic properties can be strongly affected by
the Coulomb interactions between nonsinglet paired electrons
and the confinement of some degrees of freedom of these
electrons. Such an assumption would necessarily require
imposing additional constraints restricting the electron orbital
motion while conserving all observables. The named constraints
must obey the following prerequisites: (i) preserve the
orthonormality of the initial basis states (see, e.g., the
Supporting Material, Section S.1) ensuring energy invariance
under the exchange symmetry and (ii) ensure the conservation
of the square of total orbital angular momentum component of
the unpaired electrons with respect to the quantization axis.
IV.II. Direct Exchange under a Phase Difference. The

necessity of imposing constraints restricting the orbital
dynamics of nonsinglet paired electrons involved in the direct
exchange in complexes with highly filled valence subshells is
tightly related to CF symmetry. Although the considered
complex exhibits structural distortions, the dz orbital always
remains an active one. This limits the number of exchange
integrals that will depend on the phase difference between the
electrons occupying active orbitals to two. In terms of our
notations (see the Supporting Material, Section S.2.1), the two
exchange terms read

(3)

where ν8 = xz, yz, ν9 = xy, x2 − y2, and δ(·) is the Dirac delta
function. The values of ai and the explicit representation of the
functions f i(φν di,z

2, Z) are given in the Supporting Material (eqs
S.4 and S.5), respectively. Accordingly, we end up with two pairs
of 3d-orbital configurations with active electrons obeying the
same constraint. For ν ≠ μ = xy, x2 − y2, and α ≠ τ = xz, yz, these
are the configurations

(4)

with the corresponding states |ϕ9,1,m⟩, |ϕ10,1,m⟩, and |ϕ4,1,m⟩,
|ϕ7,1,m⟩, respectively. In other words, the direct exchange
involving the active orbitals dx2−y2

1 dz2
1 and dxy

1 dz2
1 will take place

forφxy,z2
ex =φx2−y2,z2

ex . Similarly, for the remaining two pairs of active
orbitals, dxz

1 dz2
1 and dyz

1 dz2
1 , we have φxz,z2

ex = φyz,z2
ex . On the other

hand, since the configurations eq 4 are separated by an energy
gap of approximately EΔ = 1.11 eV (see Figure 2a), the following
inequality always holds φν d8,z

2
ex ≠ φνd9,z

2
ex . The values of these phases

ensuring the invariance of the energy eigenvalues in the absence
of SO interactions are of physical significance, where, for i = 1, 2,
we have φνdi,z

2
ex ∈ [−π, π].

IV.III. Phase Constraints to the Origin of FSG. According
to the conventional study of coordination complexes, the
electron orbital dynamics is calculated by considering the
electron phases as independent variables over an infinite time.
For complexes of highly filled subshells, such as the 3d8 ones, it
means that an electron occupying an active orbital cannot couple
to a core orbital neither under the influence of SO interactions
nor under an externally applied magnetic field without violating
the Pauli principle. As a result, the pairs of states |ϕ9,1,m⟩, |ϕ10,1,m⟩
and |ϕ4,1,m⟩, |ϕ7,1,m⟩ can neither be intracoupled under the action
of CF nor by SO and Zeeman interactions obtaining

, ⟩ = 0 and ⟨dxz, dxz|dyz, dyz⟩ = 0, respectively.
The pertinent coupling, however, cannot be induced even by

considering only a phase constraint occurring over the time of
direct exchange between the electrons occupying active orbitals
(see Section IV.II). The occurrence of such a coupling requires
imposing two additional constraints that allow the electrons
within each configuration given in eq 4 to be distinct by an
orbital phase factor. This will ensure that these electrons cannot
occupy the same state allowing for the occurrence of coupling
between active and core orbitals without violating the exclusion
principle.

In particular, for complexes of trigonal bipyramidal
coordination, the dominant phase constraints are and
φxz,yz that give rise to an overlap between the singlet states

(5a)

and

(5b)

without violating the orthonormality of the basis states given in
the Supporting Material (Section S.1) and ensuring the energy
invariance under the exchange symmetry. Here, the prime
symbol indicates that there is a phase factor that couples the
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named orbitals. For more details, the reader may consult Section
S.3 in the Supporting Material.
As a consequence of eq 5, we end upwith additional SO terms,

see, e.g., the SupportingMaterial (eq S.6). Furthermore, we have
an additional coupling of the electrons orbital angular
momentum to the externally applied magnetic field (see the
Supporting Material, eq S.7). These terms describe the
interaction of unquenched orbital angular momenta (see the
Supporting Material, Section S.2.5) with the externally applied
magnetic field. Note that eq 5 does not hold for singlet excited
states consisting completely of core orbitals. Therefore, unlike
3d2 systems, the coupling phases (eq 5) make the origin of FSG
and associated orbital unquenching in 3d8 trigonal bipyramidal
complexes unique. In this respect, it is essential to point out that
the probability to observe intercoupling between the groups
|ϕ9,1,m⟩, |ϕ10,1,m⟩ and |ϕ4,1,m⟩, |ϕ7,1,m⟩ equals zero.
IV.IV. Microscopic States. The occurrence of coupling

phases described in Sections IV.II and IV.III stands as a
fundamental feature of 3d8 complexes in the considered
symmetry. However, since we consider the system as isolated,
the phases in eq 5 will not change in time, unless we expose the
system to an external influence. This suggests that in the
presence of only SO interactions, the phase differences
and φxz,yz will take values corresponding to a small or negligible
orbital overlap. Thus, SO interactions cannot give rise to phase
differences with values approaching the zero boundary. This
may be achieved by applying a dc external magnetic field or
equivalently an electromagnetic one.
Within all considered approximations, the present method

predicts the existence of two energetically equally favorable
microscopic states, namely, c1 and c2, related to the two pairs of
configurations given in eq 4, respectively. For the considered
complex, we obtain the unique set of values corresponding to c1
and c2 (see Table 1). We would like to point out that the phase
values φν d9,z

2
ex = 0.852656π and φν d8,z

2
ex = 0.27448137π are related to

the conservation of the ground state energy in the absence of SO
interactions. For clarity, the corresponding energy minima are
depicted in Figure 3. The remaining ones, φνd9,z

2
ex = 0.764588252π

and φν d8,z
2

ex = 0.39155562π, ensure that the energy gap EΔ remains
invariant. Note that, since all other exchange integrals do not
depend on these phases, the eigen energies are conserved. The
phase differences and φxz,yz defining the overlap
integrals eqs 5a and 5b, respectively, can take values within the
given range only in the presence of an externally applied

magnetic field or any other source that can generate an
additional phase factor.

The two microscopic states, c1 and c2, conform to FSG
shown in the Supporting Material (Figures S.1b and S.2b). The
values of B and κ shown in the latter figures are selected for the
explanatory purpose and sake of comparison and are not related
to the experimental data discussed in the forthcoming sections.
Each of the obtained states is distinct by FS and the extent of
orbital unquenching. As shown in Figures S.3b and S.4b in the
Supporting Material, for the same value of κ, c1 is characterized
by the largest energy gaps. In this case, a huge splitting shows up.
Nevertheless, the obtained FSG is not a signature of huge ZFS
since it is triggered and governed by the externally applied
magnetic field. Although the phases in eqs 5a and 5b vanish at

Table 1. Intrinsic and Structural Parameters from the First Coordination Sphere of the Complex [Ni(MDABCO)2Cl3]+ with the
Ball-and-Stick Representation Shown in Figure 1a

cases constituents N1 N2 Cl1 Cl2 Cl3 Ni

φ [deg] 0 0 0 117.03 236.76
ϑ [deg] 0 176.59 88.58 91.41 90.26
ϱ [Å] 2.191 2.196 2.310 2.318 2.315
Z 1.75 1.75 1.23 1.23 1.23 10

c1
φνd9,z2

ex = 0.852656π φνd8,z2
ex = 0.39155562π; ν9 = xy, x2 − y2; ν8 = xz, yz

c2
φνd9, z

2
ex = 0.764588252π φνd8,z

2
ex = 0.27448137π; ν9 = xy, x2 − y2; ν8 = xz, yz

aWe have the radial distance ϱ, azimuthal angle φ, and the polar one ϑ for each reactive nonmetal surrounding the nickel ion. The effective charge
numbers of all ions obtained from the comparison with the experimental data from ref 37 are given in the 5-th row. The 7-th and 9-th rows present
the values of the phase differences resulting within the processes of direct exchange between the electrons occupying active orbitals. The allowed
range of the phases and φxz,yz is specified in the 6-th and 8-th row, respectively.

Figure 3. (a) Dependence of the first three energy levels on the phase
difference occurring in the process of direct exchange between electrons
occupying the active orbitals in eq 4 and in the absence of SO and
Zeeman interactions. All energy levels are normalized to the ground
state one E1. The abbreviation “ST” stands for singlet−triplet
transitions and marks the domain of singlet ground states. The orange
circles correspond to a superposition of triplet states and zero net
magnetic moment. (b) Depicts only the dependence of the ground state
energy prior to normalization. Once SO and Zeeman interactions are
taken into account, we observe the occurrence of coupling phases φxz,yz
and φxy,x2−y2 (see eq 5) giving rise to FSG at the given minima. In both
subfigures, φmin1 = 0.27448137π and φmin2 = 0.852656π, see Table 1.
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very large magnetic fields, the cases depicted in Figures S.3b and
S.4b in the Supporting Material elucidate the extent of FSG in
the studied system.
The state c1 corresponds to a higher extent of orbital

unquenching. For example, at B = 2 T, , κ =
1, and = 0.0833333π, we obtain the ground-state
magnetic moment μ1 = (0, 0, 1) with orbital and spin
components, respectively, μ1,l = (0, 0, −0.999871) and μ1,s =
(0, 0, 1.99989). Under the same orientation and magnitude of
the magnetic field, the value of orbital reduction factor and φxz,yz
= 0.166666π, in the state c2, we get μ1 = (0.0439067, 0,
0.18699), μ1,l = (0, 0, −0.0577732), and μ1,s = (0.0439067, 0,
0.244763). For more details, see, e.g., the Supporting Material
(Figure S.5) showing the ground-state magnetic moment
dependence on κ at the boundary values of phase differences

.

V. MAGNETIC PROPERTIES
V.I. Theoretical Relations and Parameters. The

experimental measurements of the magnetic properties of
[Ni(MDABCO)2Cl3]+ based on powder and single crystal
samples are reported in ref 37. Here, we study the low-field
magnetic susceptibility, magnetization, and EPR spectra shown
in Figures 5 and 6, respectively. An analysis within the
framework of the theoretical approach developed above taking
into account the experimental data reveals unequivocally that c2
is the only possible state. In c1, the low-field EPR and
susceptibility measurements cannot be reproduced. The
successful fitting to the experimental data yields the charge
number values given in the 5-th row in Table 1. Furthermore, it
gives theminimal value κ = 0.16 related to the dz orbital and κ = 1
for the remaining ones.
The energy spectrum of the studied complex with three main

FSG cases is depicted in Figure 4a. Note that the shown spin-one
states are included for the purpose of clarity and do not conform
to the total magnetic moments (see, e.g., the Supporting
Material, Section S.6).
The first case shown in Figure 4b describes the obtained CF

splitting and a very small ZFS, with φxz,yz = 0.248π. Represented
as an effective spin-one state functions, the first three eigenstates
read

The second case depicted in Figure 4c corresponds to the
saturation of themagnetization, with φxz,yz

(s) = 0.185π and Bs ≈ 4.2
T. Here, for B = Bz ≥ 4.2 T, the value of the coupling phase
remains constant, indicating the maximal rate of orbital
unquenching. When the field has transverse components, φxz,yz
is no longer constrained and can decrease further approaching
zero. In the interval φxz,yz ∈ (0,0.185π], we derive the exact
analytical expression (see the Supporting Material, Section S.4),

where θ = ( ), with 0 ≤ θ ≤ π, is the field’s radial angle and Bm
is the minimal value of B ⊥ z in the limit φxz,yz → 0. FSG at θ =
0.49315581π and B = 30 T is shown in Figure 4d.
V.II. Susceptibility and Magnetization. A comparison

between the theoretical and experimental data for the low-field

magnetic susceptibility as a function of the temperature is shown
in Figure 5, where the ratio between molar mass and density

equals unity. In the given temperature range and magnetic field
value, the average of the corresponding coupling phase is
estimated to be φxz,yz = 0.2475π, within the interval 0.2465π <
φxz,yz < 0.2485π. This result suggests that SO interactions alone
generate a phase difference of approximately φxz,yz ≈ 0.2485π or
slightly larger. With the aid of EPR data, on the other hand, we
adjust this value to 0.248π. The value of ZFS is very small with
the first and second excited energy levels almost overlapping.

Figure 4. (a) Zero-field energy spectrum of the complex [Ni-
(MDABCO)2Cl3]+. The calculations are carried out taking into
account the phase constraints, with the relevant structural and intrinsic
parameters given in Table 1 and Section V.I. The corresponding
numerical representation is given in the Supporting Material (Section
S.5). (b) Depicts CF splitting and the small ZFS (first bold line)
obtained for φxz,yz = 0.248π. (c) Displays the case with B = Bz = 4.2 T
and φxz,yz = 0.185π obtained at the saturation of the magnetization. (d)
Depicts FSG at B = 30 T and φxz,yz → 0, with themagnetic field oriented
very closely to the (x, y) plane of the studied complex. For clarity, only
the highest probability spin-one triplets are depicted. The complete
representations of the corresponding eigenstates are given at the end of
Section V.III.

Figure 5. Temperature dependence of low-field magnetic susceptibility
χm of the studied complex. The magnetization as a function of an
externally applied magnetic field is depicted in the inset, where the five
pointed star symbols represent the experimental data from ref 37. The
solid and dashed lines present the theoretical results obtained using the
parameter values given in Table 1 and discussed in Section V.II.
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Accordingly, at B = 0.1 T, we have two very closely lying excited
states. The associated energy gaps are E21 ≈ 0.032 meV and E31
≈ 0.059 meV. These results shed light on the appearance of the
small plateau in the range 5 <T < 17K in theTχm curve in Figure
5. The population rates of the corresponding excited energy
levels increase rapidly in the temperature range 0 < T ≤ 5 K, and
at T → 17 K, both are equally occupied. In particular, at T = 17
K, we have p1 ≈ 33.5%, p2 ≈ 32.8%, and p3 ≈ 32.2%, where for i =
1, 2, 3, pi are the corresponding population rates. However, we
have three additional excited energy levels (see Figure 4b) that
above T = 17 K slowly get populated giving rise to a small
magnetization moment. The population of these levels then
gradually increases reaching its maximum pi ≈ 14.3% at T = 250
K, where i = 4, 5, 6, thus giving rise to a broad demagnetization
step in the range 17 <T ≤ 250 K that is more clearly visible in the
case Tχm depicted by red circles in the Supporting Material
(Figure S.6).
The magnetization depicted in the inset of Figure 5 confirms

the analysis of the susceptibility data. Further results are shown
in the SupportingMaterial, Figure S.7. Statistically speaking, at 2
K and for small magnetic fields, the three components of the
complex’s magnetic moment contribute with almost equal
probability weights. The increase in the magnetic field’s
magnitude, however, favors only the z component. For example,
at B = 0.1 T and T = 2 K, the x, y, and z components of the
calculated magnetization read 0.0905293, 0.0829337, and
0.0938138 Bohr magnetons, where φxz,yz = 0.2475π. Note that
for the evaluation of each component, the magnetic field was
aligned along the respective axis. On the other hand, at B = 4.6 T
and the same temperature value, for the respective components,
we get 0.215797, 0.186354, and 1.61527, where φxz,yz = 0.185π.
These results indicate that the observed axial MA is governed by
the coupling phase values. Accordingly, for B < 1 T, we observe a
prompt increase of magnetization. As the magnetic field
increases by magnitude, the orbital coupling surges, leading to
a higher extent of orbital unquenching and hence a smaller total
magnetic moment calculated per single nickel center. Sub-
sequently, the magnetization reaches saturation values below the
expected 2 μB.
At weak magnetic fields, the first excited state lies very close to

the ground state. Therefore, the population promptly increases
with the temperature and at 5 K, we observe an almost linear
dependence of the magnetization as a function of B. As a result,
at the given temperature, the saturation level is reached by
approaching the value B = 7 T, see the Supporting Material
(Figure S.7).
V.III. EPR Spectra. In addition to the study of the low-field

susceptibility and the magnetization, we analyze the field
dependence of the experimental EPR intensity peaks reported in
ref 37 depicted in Figure 6. A striking feature of the low-field
powder spectrum is the prompt increase of the absorption
frequency as the magnitude of B increases. The energy
difference between intensity peaks at 0.5 and 2 T is about 0.6
meV (150 GHz), which is highly above the energy value that can
be generated only by the Zeeman interactions in the presence of
strong SO coupling and hence large ZFS. Such a strong field
dependence of low-field EPR peaks indicates that ZFS is only
seemingly huge and that there is an addition to the linear field
dependence feature provided by spin Zeeman interactions. As
discussed in Section IV.III and demonstrated in Section V.II, the
occurrence of the coupling phase φxz,yz reflects such an effect. It
generates an orbital angular momentum that alters the linear
dependence of FS on the externally applied magnetic field.

We would like to point out that hereafter, we use the selection
rules |Δm| = 1, 2 after refs 42, 48. The frequency-field
dependence of the powder peaks depicted in Figure 6a is well
described for magnetic field directions forming angles ranging
between and from the z-axis. The highest probability for

resonance is reached at or and . All

transitions correspond to Δm = ±1 and within the range 0.5 T ≤
B ≤ 2.5 T, and we observe a decrease in the phase difference,
0.2415π ≥ φxz,yz ≥ 0.2295π. As an example, at 0.5 T, we get the
energy gaps E21 ≈ 0.06 meV and E31 ≈ 0.22 meV, with
eigenstates’ probability coefficients presented in percentage |Ψ1⟩
→ {89.2%|1⟩, 6.92%|1̅⟩, 3.88%|0⟩}, |Ψ2⟩ → {8.63%|1⟩, 87.4%
|1̅⟩, 3.97%|0⟩}, and |Ψ3⟩ → {2.56%|1⟩, 4.63%|1̅⟩, 92.8%|0⟩}.
Since at 4.2 K, the ground state and first excited one are almost
equally populated, we have two energetically very close
excitations associated with the two spin states of the incident
microwave photons, thus giving rise to the observed peak at
around 0.21 meV. By increasing the magnetic field magnitude,
φxz,yz drops to approximately 0.2295π, yielding a larger second
ground-state energy gap. In particular, at B = 2.25 T, we have E31
≈ 0.86 meV. The probability coefficient in the corresponding
eigenstates remains almost unchanged.

Within our approach, the low-field single crystal peaks (see
Figure 6a) correspond to the cases when the magnetic field

Figure 6. Frequency vs external magnetic field plot of EPR peaks for
powder and single crystal samples with experimental data (squares)
from ref 37. The theoretical results are presented by solid lines. The
calculations are carried out with the parameter values given in Table 1.
(a) Depicts the low-field EPR peaks with single crystal measurements
carried out at approximately from the axis associated with the highest
intensity peak based on the powder data. (b) High-field EPR results,
with the magnetic field oriented within the (xy) plane of the studied
compound. The dashed line corresponds to the field domain 0 ≤ B ≤
6.37539 T, with 0.248π ≥ φxz,yz ≳ 0.
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direction forms angles within the interval with respect to
z-axis. The same peaks are visible in the simulations of powder
data and hence correspond to Δm = ±1 transitions. However,
for larger values of B, their intensity is approximately two times
smaller. For comparison with the powder peak at B = 0.5 T and
φxz,yz = 0.2415π, when the field is aligned along the z-axis, we
obtain an energy transition of the same value, i.e., approximately
0.21 meV, but with eigenstates |Ψ1⟩ → 99%|1⟩, |Ψ2⟩ → 99%|1̅⟩,
and |Ψ3⟩ ≡ |0⟩. For B ≤ 0.15 T, we get φxz,yz = 0.248π.
Interestingly, since for B ≤ 0.1 T, the gap between the first and
the second excited energy levels is very small, and the
corresponding EPR peaks may be misinterpreted as a transition
with Δm = ± 2. For the studied complex, the latter is forbidden
when B is aligned along the easy axis and hence very unlikely to
be observed. Nevertheless, when the magnetic field is strong
enough and oriented at a small angle relative to the (x, y) plane
of the studied complex, the energy eigenstates are represented as
a proper mixture of all three spin-one states, thus increasing the
probability to detect the effectively designated Δm = ±2
transitions.
The frequency-field dependence of high-field EPR transition

shown in Figure 6b is reproduced for magnetic field unit vector
components nα = ±0.70695 and nz = ±0.0215 and phase
difference φxz,yz → 0 for B ≥ 6.37539 T, where α = x, y. In the
range 0 ≤ nα ≤ 0.999769, we observe a negligible variation in the
results. The energy gap associated with the spin-one state |0⟩ is
very large (see Figure 4d), and hence, the peaks correspond only
to the first ground-state magnetic excitation. For example, at B =
30 T, we have E21 ≈ 0.24 meV and E31 ≈ 15.6 meV, with energy
eigenstates |Ψ1⟩ → {64%|1⟩, 33%|1̅⟩, 3%|0⟩}, |Ψ2⟩ → {35%|1⟩,
64%|1̅⟩, 1%|0⟩}, and |Ψ3⟩ → {2%|1⟩, 2%|1̅⟩, 96%|0⟩}. We would
like to point out that high-field EPR transitions are very sensitive
to variations in themagnetic field direction with respect to z-axis,
thus rendering the extraction of the data a tedious task. For
example, if at B = 30 T, we change |nz| from 0.0215 up to 0.1,
equal to an angle difference of about , then the corresponding
peak completely vanishes.

VI. OUTLOOK TO THE EFFECTIVE SINGLE-ION SPIN
HAMILTONIANS

An essential consequence of the theoretical analysis introduced
in Section IV is that the corresponding parameterization scheme
of a generalized perturbation approach for studying complexes
of highly filled valence subshells must necessarily account for the
occurrence of coupling phases beforehand. However, gaining
knowledge of the explicit expressions of all relevant parameters
as a function of such phases requires a rigorous mathematical
derivation that lies beyond the scope of the present research.
Such a theoretical framework merits a separate study to be
presented elsewhere and we believe it would be of great benefit
to a broader scientific community.
A representative case is the origin of FSG in the studied

complex showing the dependence on the phase difference φxz,yz
of the eigenvalues of the most considered effective single-ion
spin Hamiltonians, namely

(6)

where for α = x, y, z, s ̂ = (sα̂) represents the effective spin-one
operator,D and E denote the axial and rhombic FSG parameters,
respectively, and is a traceless symmetric tensor with real
elements. Note that in this case, the parameters in eq 6 are no

longer related to the conventional ZFS, except when φxz,yz ≥
0.248π, see the Supporting Material, Section S.4. We would like
to stress, furthermore, that the corresponding effective g-factor
will also depend on the coupling phase. For more details about
the conventional relations between the parameters in eq 6, the
reader may consult refs 41, 42, 44.

After Section V, we have D = D(φxz,yz) and E = E(φxz,yz). To
find themaximal value of the axial parameter, we have to take the
lower limit of the phase φxz,yz corresponding to the high-field
EPR line shown in Figure 6b and in particular to FSG depicted in
Figure 4d. Thus, in the limit φxz,yz → 0, we obtain D ≈ −121
cm−1 and E ≈ 0.38 cm−1. In the absence of phase constraints,
these parameters vanish, see the discussion in Section III.

VII. RESULTS AND DISCUSSION
In the quest to elucidate the microscopic mechanisms that
govern the magnetic behavior specific to the class of 3d8 mono-
and polynuclear nanomagnets, we devise a method to
diagonalize the corresponding generic Hamiltonian and
compute the relevant fine structure of the total energy spectra.
The obtained theoretical results are compared to their
experimental counterparts for the spin-one single-ion magnet
[Ni(MDABCO)2Cl3]ClO4. The diagonalization procedure (see
Section II.I) is based on the multiconfigurational self-consistent
field method. In addition to the conventional mathematical
framework that considers the electron orbital phases as
independent variables over an infinite time, the present method
necessarily accounts for quantum mechanical constraints that
confine the 3d electron orbital motion under the conservation of
all associated to the initial basis states observables.

The named constraints follow naturally from the thorough
analysis of the electron correlations in 3d8 trigonal bi- and
pyramidal coordination complexes. The results of this analysis
unequivocally point out to a vanishing FSG in the case when the
electron orbital dynamics is not constrained. This is a
consequence of the Pauli principle that disallows a coupling
between the active and core orbitals from the 3d configurations
given in eq 4. Yet, FSG shows up due to the occurrence of orbital
phase differences (see Section IV.III) that increase the
probability for active to core orbital coupling via SO and
Zeeman interactions without violating the exclusion principle.

Principally, by studying the magnetic behavior of the spin-one
mononuclear nanomagnet [Ni(MDABCO)2Cl3]ClO4, we
found no evidence of huge ZFS or giant MA originating from
SO interactions alone. Yet, we obtain SO-driven nontrivial FSG
with a large overall splitting only in the case when the electron
orbital dynamics obey constraints depending upon the
interaction of the system with its surrounding medium. The
electrons are found to be delocalized, with ligands showing
larger negativity (ZN = 1.75) along the nitrogen bonds and
reduced Ni effective positive charge, see Table 1. In particular,
we obtain very good agreement with the experimental
observations (see Section V) pointing to the appearance of a
very small ZFS depicted in Figure 4b and modest intrinsic MA
energy at the zero- and low-field limits and in the absence of
interactions with external sources. The corresponding magnet-
ization reversal barrier showing the rate of the inherent magnetic
anisotropy is depicted in Figure 7. The obtained energy barrier’s
height of about 27 K and relaxation time τ ≈ 17 μs are in good
agreement with the ranges (25−28 K) and (16−17 μs),
respectively, obtained from the ac susceptibility measurements
reported in ref 37.
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When the system is exposed to an external influence, however,
as a result of the phase constraints (see Section IV), the energy
gaps in FSG and MA change rapidly. We obtain a strong
dependence of the relevant FSG on the externally applied
magnetic field related to a significant splitting and orbital
unquenching that rises with the occurrence of the phase
constraint eq 5b. In contrast to the calculated upper bound of
axial parameter D ≈ 535 cm−1 reported in ref 37, we get large,
but not huge splitting (120 cm−1), that is underpinned by the
occurrence of coupling phase φxz,yz. For comparison, almost
identical values (D ≤ −120 cm−1 and E ≈ 1.6 cm−1) are reported
by ref 35 in studying the magnetic behavior of the species
[Ni(Me6tren)Cl]ClO4, exhibiting similar distortion. These
results are further confirmed by the far infrared measurements,39

with the corresponding transition centered approximately at 111
cm−1. Nevertheless, the origin of such nontrivial ZFS was not
elucidated and neither the genuine contribution of SO
interactions nor the effect of phase constraints were studied so
far. As a result, different suggestions for the emergence of huge
ZFS (200 ≤ |D| ≤ 600 cm−1) elusively gain ground. Therefore,
we would like to emphasize that according to the present study
in the absence of phase constraints, the axial and rhombic
parameters vanish, see the discussion in Section III. Moreover,
the corresponding coupling phase depends strongly on the
application of external influence, in particular on the action of an
applied external magnetic field (see Section V) leading to energy
gaps in FSG larger than those resulting from the Zeeman
interactions alone, making the overall splitting in FSG seemingly
huge from the perspective of the conventional approach. The
same dependence renders the intrinsic axial MA seemingly giant
and the unquenched orbital angular momentum as a non-
vanishing feature of the system.

In conclusion, the occurrence of phase differences as
described in Section IV appears as a fundamental quantum
feature of 3d8 nanomagnets with local trigonal bi- and pyramidal
coordination. In general, the probability for observing con-
strained electron dynamics in coordination complexes with
highly filled 3d subshells differ from zero and their occurrence
does not depend on the extent of electron delocalization.
Therefore, once included in the parameterization scheme of
alternative quantum mechanical methods, the introduced
relations and approximations may play an essential role in
future theoretical investigations. As an example, the occurrence
of coupling phases can be further taken into account in the
quantum perturbation methods like CASPT2 and NVEPT2
ones, justifying the applicability of effective single-ion spin
Hamiltonians, see the brief discussion in Section VI.
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