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Nutrients cause consolidation of soil carbon flux to
small proportion of bacterial community
Bram W. Stone 1,2✉, Junhui Li 2, Benjamin J. Koch2,3, Steven J. Blazewicz 4, Paul Dijkstra2,3,

Michaela Hayer2, Kirsten S. Hofmockel 1,5, Xiao-Jun Allen Liu 6, Rebecca L. Mau2,7, Ember M. Morrissey 8,

Jennifer Pett-Ridge 4,9, Egbert Schwartz2,3 & Bruce A. Hungate 2,3

Nutrient amendment diminished bacterial functional diversity, consolidating carbon flow

through fewer bacterial taxa. Here, we show strong differences in the bacterial taxa

responsible for respiration from four ecosystems, indicating the potential for taxon-specific

control over soil carbon cycling. Trends in functional diversity, defined as the richness of

bacteria contributing to carbon flux and their equitability of carbon use, paralleled trends in

taxonomic diversity although functional diversity was lower overall. Among genera common

to all ecosystems, Bradyrhizobium, the Acidobacteria genus RB41, and Streptomyces together

composed 45–57% of carbon flow through bacterial productivity and respiration. Bacteria

that utilized the most carbon amendment (glucose) were also those that utilized the most

native soil carbon, suggesting that the behavior of key soil taxa may influence carbon balance.

Mapping carbon flow through different microbial taxa as demonstrated here is crucial in

developing taxon-sensitive soil carbon models that may reduce the uncertainty in climate

change projections.
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G lobal climate projections depend on estimates of soil
carbon accumulation and decomposition1–3, processes
driven by microorganisms3–6. Given the vast diversity of

soil microorganisms, different microbial taxa may have indivi-
dualistic effects on C fluxes in soil7, yet testing this idea has been
challenging. Soils hold over twice as much organic carbon (C) as
terrestrial vegetation, and soil C turns over much more slowly.
Soil microbial communities contain thousands of different het-
erotrophic microbial taxa that, together, influence soil C content,
but the quantitative contributions of individual microbial taxa to
the processes governing soil C accumulation and loss are not
known. While some soil biogeochemical processes are physiolo-
gically specialized and dominated by a few phylogenetically spe-
cific groups, processes involved in heterotrophic decomposition
are broadly distributed across the bacterial tree of life8. With
many taxa contributing to the same process, the functional
evenness of heterotrophic decomposition might be expected to be
approximately equivalent to the evenness in abundance of het-
erotrophic decomposers, with each taxon contributing to
decomposition in proportion to its abundance. As bacterial
abundances are logarithmically distributed9, we might expect that
the contributions to soil C may be similarly distributed despite
differences in ecosystem or bacterial community composition.

We used a combination of measurements and models to
evaluate the contributions of individual bacterial taxa to hetero-
trophic growth and respiration in four soils along a climate
gradient in northern Arizona. Taxon-specific growth rates were
measured using quantitative stable isotope probing with 18O-
water (qSIP, see “Methods” section)7,10 for soils collected from
desert grassland (GL), Piñon-Juniper scrubland (PJ), Ponderosa
Pine forest (PP), and mixed conifer forest (MC) sites, as described
previously11–13. Mean annual temperature for all respective sites:
8.5, 7, 5.5, and 4 °C and mean annual precipitation: 230, 380, 660,
and 790 mm12. To determine how taxon-specific contributions to
growth and respiration varied with resource availability, mea-
surements were conducted in the laboratory using unamended
soil, soil with supplemental glucose, and soil with glucose plus a
nitrogen source accessible to microbes, [NH4]2SO4 (carbon
+nitrogen). Isotopic signatures of specific 16S sequences were
combined with 16S abundances from quantitative PCR to yield
quantitative estimates of taxon-specific population size and
growth.

Results and discussion
Bacterial efficiency and respiration. Taxon-specific productivity
(µg C g soil−1 week−1) was modeled as a function of per-capita
growth rate, taking into account relative abundance, 16S content

per unit soil, as well as 16S copy number and genome size (as as
per Li et al.13) to estimate taxon-specific cell size and carbon
content (see “Methods” section). We estimated taxon-specific
bacterial respiration as a function of taxon-specific growth rate
and taxon-specific carbon use efficiency (CUE), using several
parameterizations of the growth ~ CUE relationship (Supple-
mentary Fig. 1, see “Methods” section). The relationship between
microbial growth and efficiency is complex and difficult to
identify based on existing literature14. Among models with dif-
ferent parameterizations, a unimodal relationship between
growth rate and CUE was selected with the lowest AIC and
further discussed in the methods (Table 1).

We compared this model to one without taxonomy-informed
genome characteristics (16S content and genome size estimates) and
without taxon-specific growth, in which individual bacterial taxa
respired in direct proportion to their 16S abundance per unit soil.
This comparison served to demonstrate the extent that 16S
abundance data of the bacterial community alone can predict soil
carbon flux. Across the four soils and nutrient amendment
treatments, modeled respiration of individual bacterial taxa was
summed over the bacterial assemblage and was compared with
measured total soil respiration. When based on measured per-taxon
growth rates, modeled bacterial respiration was positively related to
total soil respiration (R2= 0.83, p < 0.001; Fig. 1a). In contrast,
when estimated in proportion to a taxon’s abundance alone,
modeled bacterial respiration demonstrated a comparatively poor
correlation (R2= 0.02, p= 0.70; Fig. 1b). Although our methods
track the incorporation of 18O-labeled water into bacterial DNA,
and not carbon explicitly, these results indicate that growth of
individual bacterial taxa measured through 18O assimilation can be
directly associated with the movement of C through the soil. For all
but two soil and treatment combinations, modeled respiration was
lower than measured respiration, likely in part owing to non-
bacterial contributions to measured total respiration (which were
not modeled). When we amended soils with carbon (C) and carbon
with nitrogen (C+N) we found elevated soil respiration, patterns
which were also observed with modeled bacterial respiration
(Fig. 1a). Nutrient amendments also stimulated taxon-specific
bacterial respiration (F2,9= 27.2, p < 0.001) and productivity (F2,9=
6.96, p= 0.01) leading to higher total C use in these treatments
(Fig. 2). Generally, organisms that produced more biomass also
respired more (Supplementary Fig. 2).

Distribution and consolidation of bacterial carbon use. Soils
amended with nutrients had higher productivity and respiration;
however, in these soils, carbon use was less evenly distributed across
the bacterial community, especially in soils provided with carbon

Table 1 Comparison of per-taxon carbon use efficiency functions.

Relation to community CUE CUE (growth) ΔAICco2 ΔAICcue ΔAICcombn

Constrained Unimodal0.5 2.98 5.20 11.17
Linear positive 6.10 0 12.21
Unimodal0.05 0 14.39 14.39
Linear negative 2.85 19.87 25.56
Exponential decline 4.38 20.33 29.08

Unconstrained Exponential decline 17.43 46.25 81.10
Linear negative 21.96 40.89 84.80
Unimodal0.05 19.58 47.72 86.89
Linear positive 23.56 50.77 97.89
Unimodal0.5 23.47 50.99 97.94

Akaike information criterion values expressed as the difference from the model with the lowest error (ΔAIC) returned from regression models under different assumptions of per-taxon carbon use
efficiency (CUE) as a function of per-taxon growth rate denoted by the CUE(growth) column. Per-taxon CUE estimates were calculated either constrained by the minimum and maximum observed
community-level CUE values or bounded only by 0 and 0.85 (unconstrained). For all regression models, both terms were z-transformed. ΔAICco2 indicates the fit of summed per-taxon respiration to
measured respiration. ΔAICcue indicates the fit of summed relative abundance-weighted per-taxon CUE to community-level CUE. ΔAICcombn indicates the sum of 2(ΔAICco2) and ΔAICcue. Subscripts
following unimodal function names indicate whether maximum per-taxon CUE was centered over a growth rate of 0.5 or the global median growth rate of 0.05 observed across all taxa.
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and nitrogen. To compare the extent that taxonomic evenness
equated to functional evenness (i.e., the extent that both shared
similar abundance distributions), we calculated Pielou’s evenness on
the relative abundances of bacterial amplicon sequence variants
(ASVs) as well as relativized growth and respiration estimates.
Bacterial abundances were more evenly distributed than were esti-
mates of bacterial productivity and respiration (Fig. 3a). Similarly,
cumulative C use was strongly associated by treatment, with greater
consolidation of carbon in C+N soils as shown by a lower pro-
portion of the bacterial community responsible for a greater pro-
portion of carbon flux (Fig. 3b).

Microbial community structure and function are thought to be
linked15,16, but most efforts to relate them rely on aggregate
community function measurements correlated against summaries
of composition, diversity, or interactions (e.g., Creamer et al.17).
Interpretation of relative abundances across communities is a
common exercise in contemporary studies of microbial ecology.
Averaged across all ecosystems, 36 bacterial genera contributed to
>50% of sequenced 16S amplicons. Of genera common to all soils,
only six were necessary to obtain >50% contributions to C cycling
in control and C amended soils while only three were necessary to
obtain >50% C cycling in C+N amended soils. Bradyrhizobium
(Alphaproteobacteria, Family: Xanthobacteraceae), RB41 (Acid-
obacteria, Family: Pyrinomonadaceae—Subgroup 4), and Strep-
tomyces (Actinobacteria, Family: Streptomycetaceae) were
common to all soils and treatments and in the C+N treated
soils, these lineages accounted for the majority of C flux (Fig. 4a;
Supplemental Table 1). These taxa also represent globally
ubiquitous and abundant lineages as determined across the Earth
Microbiome Project database18.

Relative C use in the bacterial community was more
consolidated within fewer lineages than the overall distribution
of relative abundances might suggest. Averaged across all
ecosystems and treatments, 75.7% of bacterial genera used less
C than their relative abundance would otherwise predict. We
assessed the relationship between relative C use and relative
abundance in response to nutrient amendments using linear
mixed modeling, accounting for random intercepts (and to limit
pseudo-replication) across ecosystems and bacterial genera, and
including an offset term to assess significant departure from the
1:1 line. In parallel with changing profiles of diversity, the
relationship between taxon-specific bacterial C use and abun-
dance was affected by treatment (F2, 489.11= 4.926, p= 0.008).
Specifically, we estimated that the slope of the relationship
between relative C use and relative abundance was slightly but
significantly higher than the 1:1 line in C+N amended soils, but
not in control and C amended soils (p= 0.02) (Fig. 4b, c). Besides
relative abundance, other potential influences on taxon-specific C
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Fig. 2 Absolute and relative carbon (C) use of bacterial families, per gram
of dry soil per week (wk). Values averaged across replicates for each
ecosystem (MC mixed conifer forest, PP ponderosa pine forest, PJ piñon
pine-juniper scrubland, GL desert grassland) by treatment (rows: Ctrl = no
amendment, C = glucose only, C+N = glucose and [NH4]2SO4)
combination (n = 3 experimental replicates). Bar color represents bacterial
family (15 shown, accounting for ≥75% of C use, remaining families
designated as “Other”). a Total C use (C-CO2 respired and MBC produced)
from each bacterial family. b C use for each bacterial family, relativized by
total C use.
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Fig. 1 Fit of modeled respiration scaled from taxon-specific isotopic
enrichment against community soil respiration, by mass of carbon (C)
per g dry soil per week (wk). a Bacterial respiration is estimated as the
sum of modeled taxon-specific respiration and plotted against measured
soil respiration. b Bacterial respiration is estimated from the community-
level enrichment of all 16S copies present in a sample (per g dry soil). Points
show mean respiration values ± standard error (SE) across replicates (n = 3
experimental replicates) for each ecosystem (symbol MC mixed conifer
forest, PP ponderosa pine forest, PJ piñon pine-juniper scrubland, GL desert
grassland) and treatment (color control = no amendment, C = glucose, C
+N = glucose and [NH4]2SO4).
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use estimates were per-capita growth rate and taxon-specific cell
mass. Analysis of residual values from the linear mixed model
found a significant positive relationship between per-capita
growth rate and residual variation in C use (F1, 583= 14.3,
p < 0.001), whereas individual cell size (µg C) was not a significant
driver, suggesting that the bacterial taxa that used more soil C in
C+N soils did so because they grew and divided faster, not
because they had larger cells, and that taxa that used less soil C in
C+N soils grew more slowly than in other treatments. In
addition, relative abundances likely reflect a mixture of both
historical activity and activity as a result of the experimental
conditions. A similar mixed model was therefore run using initial
relative abundance, reflecting the historical activity of microbial
taxa, as a predictor of C use during the incubation. Initial relative
abundances were a significant model term (F1, 375= 83.3, p <
0.001), suggesting that the historical activities of microorganisms
can meaningfully influence the trajectories of microbial
communities.

Bacterial carbon use and abundance in response to resource
stoichiometry. In general, the relative contributions of individual
bacteria to carbon use strongly resembled patterns of relative
abundance, where the most abundant genera also utilized
the largest proportion of C in the community (Fig. 4). However,
while relative abundance was generally predictive of relative C
use, it was difficult to predict any individual organism’s con-
tribution to C flux based on relative abundance alone, with dif-
ferences between abundance and C use estimated to be an order
of magnitude or more (Fig. 4b). One notable example was the
genus Sphingomonas (Alphaproteobacteria) which had high 16S
abundance but contributed minimally to soil C flux (Fig. 4a).
Sphingomonas could be distinguished from the top C using
genera by a smaller cell mass estimate (31st percentile), a function

of genome length, which was lower than Bradyrhizobium (73rd
percentile), Streptomyces (88th percentile), RB41 (81st percentile)
or the Burkholderia-Caballeronia-Paraburkholderia group (95th
percentile), even though its growth rate was comparable.

In glucose-amended soils, the use of native soil C was closely
correlated with the use of glucose across the bacterial community
(r= 0.96, p < 0.001). In C and C+N treated soils, we performed
13C-glucose amendments in parallel to 18O-water conditions and
used per-taxon 13C enrichment to estimate the amount of native
(12C) and glucose carbon utilized across the bacterial community.
Our results indicate that the organisms that utilized the most
glucose were also those that utilized the most native soil carbon.
Thus, organisms with the capacity to grow quickly in response to
easily accessible carbon substrates are important to the cycling
and turnover of existing soil C. To determine the extent that the
C:N stoichiometry of labile resources may change microbial C
use preferences, we used Levene’s test on the variance in the
relationship between 13C use and 12C use, where higher variance
in response to nitrogen is indicative of shifts in the type of carbon
preferred across bacterial genera. In C+N treated soils, there was
significantly more variation around the trend line (F22, 770= 3.53,
p < 0.001, Levene’s test; Fig. 4c), indicating that labile nitrogen
addition may disrupt the balance between native soil carbon use
and use of a labile carbon substrate.

Despite some differences between 16S abundance and soil C
use, across soils, differences in composition of the community
significantly predicted the C use profiles (rM= 0.68, p < 0.001,
Mantel correlation). The four ecosystems differed in the amount
of carbon used by different taxa (R2= 0.69, p < 0.001, PERMA-
NOVA), patterns that mirrored differences in relative abundance
(R2= 0.69, p < 0.001; Fig. 5). Similarly, bacterial communities
changed in response to nutrient amendments, observed both with
changes in relative abundance (R2= 0.14, p= 0.03) and C use
(R2= 0.13, p= 0.05), though these differences were smaller than
ecosystem-level separation of community composition and C use.

The strong ecosystem-specific clustering of community
composition and C use (Fig. 5) is seemingly at odds with the
strong treatment-specific patterns of cumulative C use (Fig. 3b),
which suggests that there was a similar response to nutrient
addition across all ecosystems regardless of which bacteria were
responsible. However, relative abundance and C use were strongly
linked (Fig. 4), and we observed that the most important
contributors to bacterial C use were consistently represented by
the same, abundant lineages across all ecosystems and treatments
(Supplemental Table 1). Taken together, these results demon-
strate that changing patterns in carbon use were driven by the
consistent and abundant portion of the bacterial community
which responded to the C+N amendment. Conversely, the
importance of any individual lineage that occurred with low
abundance towards soil C flux was difficult to determine. Rare
taxa are thought to serve as a reservoir or seed bank of microbial
function and diversity19. Although rare lineages drove ecosystem-
specific patterns in community composition and C use due to the
sensitivity of multivariate dissimilarity measures to their high
diversity, differences in the composition of rare lineages were
negligible, contributing minimally to soil C flux. These non-
dominant organisms may be best described as part of the
“interchangeable” biosphere, where apart from a few consistent
taxa that dominate C flux, the identities of most rare taxa are
negligible towards their contributions to C flux.

Generally, dominant lineages became more dominant—in
terms of abundance as well as C use—in nutrient amended
soils compared to native soil conditions, especially in the
Actinobacteria. Consolidation of C use increased in C+N soils
for most major phyla, where a proportionally smaller number of
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Fig. 3 Change in bacterial taxonomic and functional evenness across soil
nutrient amendments. Color indicates soil treatment (Control = no
amendment, C = glucose, C + N = glucose and [NH4]2SO4). a Pielou’s
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relativized carbon (C) use. Closed circles represent evenness of biomass
production, open circles represent evenness respiration. b Cumulative
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taxa was associated with a greater share of overall abundance and
C flux in C and C+N treatments (Fig. 6). Several taxa within the
Actinobacteria, mostly Streptomyces (Actinomycetaceae), Arthro-
bacter (Micrococcaceae), and Kribbella (Nocardioidaceae) spp.,
produced proportionally more 16S rRNA gene copies than other
Actinobacteria during the seven-day incubation in C and C+N
soils (Supplementary Fig. 3). These taxa were also dominant
producers of biomass and CO2 even after correcting for 16S
rRNA gene copy number, cell mass, and growth rate (Supple-
mentary Figs. 4–6). Across nearly all major bacterial phyla, the
addition of labile nutrients tended to promote respiration of some
lineages relative to others, increasing dominance, and demon-
strating that the release of soil carbon as CO2 can be concentrated
in a few taxa (Figs. 3 and 6 and Supplementary Figs. 3, 4–6).
These findings complement previous synthesis efforts, which have
found key taxa are likely responsible for variability in carbon
cycling20. Generally, microbial communities are more resilient to
pulses, such as our C and C+N amendments, than longer
disturbances (also known as press disturbances)21. It is possible
that nutrient addition over longer periods would elicit a different
response from abundant and rare bacteria as well as changes in
overall soil productivity and respiration.

In conclusion, we identify the contributions of individual
bacterial taxa to soil carbon flux through bacterial production and
respiration in their native soil habitats, providing insight into the
community dynamics that are missing in microbial carbon
models22,23. Our model identified the growth of a few highly
abundant bacterial lineages in response to labile nutrient
additions, whose pre-existing high abundance in the community
allowed them to assimilate ~50% of carbon consumed by or

available to bacteria. The well-known pattern of logarithmic
bacterial frequency and abundance distributions, thus parallels
the high importance of a relatively small subset of bacterial
biodiversity in the carbon cycling of any given soil. Given that this
pattern is universal in microbial communities9, we expect that
such inequality in carbon use is as well. 4 of the 20 most prolific
contributors to soil respiration come from poorly understood
bacterial groups, one from the Acidobacteria, a phylum often
generalized as oligotrophic24. However, the abundance of
individual bacterial taxa, alone, was not a sufficient predictor of
soil C flux. Thus, the ability to measure in situ growth rates
provided by techniques like qSIP has considerable potential to
resolve the ecological roles of bacterial lineages that are difficult to
culture, or whose functions would otherwise require extensive
physiological assays. With regard to soil respiration modeling, we
propose that because the majority of bacterial carbon flux could
be accounted for by 3–6 common genera from ecosystems with
different temperature and precipitation regimes, and that these
genera were globally abundant and ubiquitous18, it is worthwhile
to determine both the global ubiquity and consistency in carbon
process rates, as well as their determining traits, of such highly
abundant bacteria in response to climate change. Doing so may
reveal a core group of the soil microbial community that act as
dominant carbon processors.

Methods
Sample collection and incubation. Three replicates of soil samples were collected
from the top 10 cm in of plant-free patches in four ecosystems along the C. Hart
Merriam elevation gradient in Northern Arizona25 beginning at high desert
grassland (1760 m), and followed at higher elevations by piñon-pine juniper
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Fig. 4 Comparison of relative abundance and relativized carbon (C) use of soil bacterial genera. Points show relative contributions from individual
bacterial genera. Values are averages across soil replicates from four ecosystems (mixed conifer forest, ponderosa pine forest, piñon pine-juniper
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woodland (2020 m), ponderosa pine forest (2344 m), and mixed conifer forest
(2620 m). Soils were air-dried for 24 h at room temperature, homogenized, and
passed through a 2 mm sieve before being stored at 4 °C for another 24 h. Soil
incubations were performed on soils with mass of 20 g of dry soil for measurements
of CO2 and microbial biomass carbon (MBC), while 2 g of dry soil aliquots were
incubated separately (but under equivalent conditions) for quantitative stable
isotope probing (qSIP). We applied three treatments to these soils through the
addition of water (up to 70% water-holding capacity): water alone (control), with
glucose (C treatment; 1000 µg C g−1 dry soil), or with glucose and nitrogen (C+N
treatment; [NH4]2SO4 at 100 µg N g−1 dry soil). All samples for qSIP were incu-
bated with 18O-enriched water (97 atom%) and matching controls necessary to
calculate the change in 18O enrichment across the microbial community. We
applied water at natural abundance (i.e., no 18O-enriched water) to the larger soil
samples prepared for measurement of carbon flux. All soils were incubated in the
dark for one week. Following incubation, soils were frozen at −80 °C for 1 week
prior to DNA extraction.

Soil, CO2, and microbial biomass measurements. We analyzed headspace gas of
soils for CO2 concentration and δ13CO2 three times during the week-long incu-
bation using a LI-Cor 6262 (LI-Cor Biosciences Inc. Lincoln, NE, USA) and a
Picarro G2201 (Picarro Inc., Sunnyvale, CA, USA), respectively. Prior to incubation
we analyzed soil MBC using the chloroform-fumigation extraction method on 10 g
of soil. One sub-sample was immediately extracted with 25 ml of a 0.05 M K2SO4

solution, while a second sub-sample was first fumigated with chloroform (for
5 days), after which it was similarly extracted. Following K2SO4 addition, we agi-
tated soils for 1 h, filtered the extract through a Whatman #3 filter paper, and dried
the filtered solution (60 °C, 4 days). Salts with extracted C were ground and ana-
lyzed for total C using an elemental analyzer coupled to a mass spectrometer. MBC
was calculated as the difference between the fumigated and immediately extracted
samples’ soil C using an extraction efficiency of 0.45 (as per Liu et al.26).

Quantitative stable isotope probing. We performed DNA extraction and 16S
amplicon sequencing on 18O-incubated qSIP soils11–13. The procedures targeted
the V4 region of the 16S gene as specified by the Earth Microbiome Project (EMP,
http://www.earthmicrobiome.org) standard protocols27,28. We used PowerSoil
DNA extraction kits following manufacture instructions to isolate DNA from soil

(MoBio laboratories, Carlsbad, CA, USA). We quantified extracted DNA using the
Qubit dsDNA High-Sensitivity assay kit and a Qubit 2.0 Fluorometer (Invitrogen,
Eugene, OR, USA). To quantify the degree of 18O isotope incorporation into
bacterial DNA, we performed density fractionation and sequenced 15–18 fractions
separately following methods modified from the canonical publication7. We added
1 µg of DNA to 2.6 mL of saturated CsCl solution in combination with a gradient
buffer (200 mM Tris, 200 mM KCL, 2 mM EDTA) in a 3.3 mL OptiSeal ultra-
centrifuge tube (Beckman Coulter, Fullerton, CA, USA). The solution was cen-
trifuged to produce a gradient of increasingly labeled (heavier) DNA in an Optima
Max bench top ultracentrifuge (Beckman Coulter, Brea, CA, USA) with a Beckman
TLN-100 rotor (127,000 × g for 72 h) at 18 °C. We separated each sample from the
continuous gradient into approximately 20 fractions (150 µL) using a modified
fraction recovery system (Beckman Coulter). We then measured the density of each
separate fraction with a Reichart AR200 digital refractometer (Reichert Analytical
Instruments, Depew, NY, USA) and retained fractions with densities between 1.640
and 1.735 g cm−3. We cleaned and purified DNA in these fractions using iso-
propanol precipitation, quantified DNA using the Quant-IT PicoGreen dsDNA
assay (Invitrogen) and a BioTek Synergy HT plate reader (BioTek Instruments Inc.,
Winooski, VT, USA), and quantified bacterial 16S gene copies using qPCR (pri-
mers: Supplementary Table 1) in triplicate. We used 8 µL reactions consisting of
0.2 mM of each primer, 0.01 U µL−1 Phusion HotStart II Polymerase (Thermo
Fisher Scientific, Waltham, MA), 1× Phusion HF buffer (Thermo Fisher Scientific),
3.0 mM MgCl2, 6% glycerol, and 200 µL of dNTPs. We amplified DNA using a Bio-
Rad CFX384 Touch real-time PCR detection system (Bio-Rad, Hercules, CA, USA)
with the following cycling conditions: 95 °C at 1 min and 44 cycles of 95 °C (30 s),
64.5 °C (30 s), and 72 °C (1 min).

We sequenced the 16S V4 region (primers: EMP standard 515F—806R;
Supplementary Table 1) on an Illumina MiSeq (Illumina, Inc., San Diego, CA,
USA). Sequences were amplified using the same reaction mix as qPCR
amplification but cycling at 95 °C for 2 min followed by 15 cycles of 95 °C (30 s),
55 °C (30 s), and 60 °C (4 min). In addition to post-incubation soils, we extracted,
amplified, and sequenced DNA of the bacterial community at the start of the
incubation.

Sequence processing and qSIP analysis. The raw sequence data of forward and
reverse reads (FASTQ) were processed within the QIIME 2 environment (release
2018.6)29,30, denoising sequences with the available DADA2 pipeline31. We clus-
tered the remaining sequences into amplicon sequence variants or ASVs (at 100%
sequence identity) against the SILVA 132 database32 using an open-reference Naïve
Bayes feature classifier33. We removed global singletons and doubleton ASVs, non-
bacterial lineages, and samples with less than 4000 sequence reads. Removal of
global singletons and doubletons resulted in the removal of 2241 unique ASVs
from the feature table yielding 115,647 out of 117,888 (a retention of 98% of all
ASVs) as well as the loss of 4018 sequences leaving 37,765,678 (a retention >99% of
all sequences). We combined taxonomic information and ASV sequence counts
with per-fraction qPCR and density measurements using the phyloseq package
(version 1.24.2), in R (version 3.5.1)34. Because high-throughput sequencing pro-
duces relativized measures of abundance, we converted ASV sequencing abun-
dances in each fraction to the number of 16S rRNA gene copies per g dry soil based
on the known amount of dry soil added and the amount of DNA in each soil
sample. All data and analytical code have been made publicly accessible35.

To perform qSIP analysis and calculate per-capita growth rates of each ASV, we
used our in-house qsip package (https://github.com/bramstone/qsip) based on
previously published research7,10. Because rare and infrequent taxa are more likely
to be lost in samples with poor sequencing depth with their absences affecting
DNA density changes, we invoked a presence or absence-based filtering criteria on
ASVs prior to calculation of per-capita growth rates. Within each ecosystem, we
kept only ASVs that appeared in two of the three replicates of a treatment (18O, C,
and C+N) and at that appeared in at least five of the fractions within each of those
two replicates. ASVs filtered out of one treatment were allowed to appear in
another if they met the frequency threshold.

For all remaining ASVs (1081 representing less than 1% of all ASVs but 58% of
all sequence reads), we calculated per-capita gross growth (i.e., cell division) rates
observed in each replicate using an exponential growth model10. We applied these
per-capita rates to the number of 16S rRNA gene copies to estimate the production
of new 16S rRNA gene copies of each ASV per g dry soil per week using the
following equation:

dN i

dt
¼ N i;t � N i;te

�g i t ; ð1Þ

Where Ni,t is the number of 16S rRNA gene copies of taxon i at time t (here after
7 days) and gi represents the per-capita growth rate (calculated as a daily rate). See
Supplementary Fig. 3 for results on the production of 16S gene copies.

Calculation of 16S rRNA gene copy numbers and cell mass. In parallel to
taxonomic assignment, we compared quality-filtered 16S sequences against a
database of 12,415 complete prokaryote genomes obtained from GenBank. From
these genomes, we extracted data on 16S rRNA gene copy number, total genome
size, and 16S gene sequence. We used BLAST to find matches against this database
to the ASVs generated from QIIME 2 to make per-taxon assignments of 16S rRNA
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gene copy number and total genome size13. For ASVs that did not find an exact
match, we assigned 16S rRNA gene copy number values and genome sizes based on
the median values observed in the most specific possible taxonomic rank. We
estimated the mass of individual cells for each population using published allo-
metric scaling relationships between genome length and cellular mass from West
and Brown:36

log10ðMiÞ ¼
log10 Gi

� �� 9:4

0:24
; ð2Þ

where Mi indicates cellular mass (g) and Gi indicates genome length (bp) for taxon
i. We obtained this relationship by digitizing Fig. 436 using DataThief III and re-
fitting the trend line in log–log space. We estimated that 20% of the cellular mass
was carbon37. To validate this approach, cellular mass estimates and initial 16S
copy number measurements were used to estimate population-level biomass C
values which were summed and compared to initial community-level MBC. We
found that these values overestimated initial MBC by an order of magnitude. As
such, cellular carbon mass was divided by 10 in our final calculations. We applied
cellular mass and 16S copy number estimates to the production of 16S copies to
estimate the production of biomass carbon for each taxon during the incubation
period (t):

Pi ¼
dN i=dt

Ci
�Mi � 0:2; ð3Þ

where Pi indicates production of biomass carbon (µg C g dry soil−1 week−1) and Ci

indicates 16S copy number per cell for taxon i. The 0.2 coefficient represents an
estimate that 20% of cellular mass is composed of carbon.

Efficiency and respiration modeling. We estimated rates of respiration using
qSIP-informed growth rates and community-level carbon use efficiency (CUE).
CUE estimates were based on the incorporation of 18O-water into DNA as a
measure of gross biomass production38,39 and measured CO2 in headspace gas
from soil incubations. We calculated the production of 18O-labeled biomass carbon
(18P) at the community-level for each sample by summing the products of per-
taxon 18O enrichment (excess atom fraction, EAF) and relative abundance:

18P ¼ ∑
n

i¼1
ð 18EAFi � yiÞ � DNA0 � f MBC0 � DNA0

� �
; ð4Þ

where 18P indicates the gross production of 18O-labeled microbial biomass carbon

per gram of dry soil per week, 18EAFi indicates the enrichment of DNA of taxon i
and yi indicates its relative abundance, DNA0 indicates the concentration of DNA
per gram of dry soil prior to incubation, and MBC0 indicates the microbial biomass
carbon per gram of dry soil prior to incubation. Here, the MBC0 ~ DNA0 function
indicates the linear relationship between MBC and DNA concentration. We used
the output from Eq. 4 to calculate community CUE for each sample:

CUE ¼
18P

ð18P þ RÞ ; ð5Þ

where R indicates the total CO2 respired per gram dry soil per week.
We used the community CUE values from each sample (Eq. 5) to constrain/as

upper and lower limits our estimates of per-taxon CUE. For a group of three
replicates from a given ecosystem and treatment, we used the minimum and
maximum observed community-level CUE values as the acceptable range of per-
taxon CUE values. These constraints were used to control the shape of the function
of per-taxon CUE and growth rate, though functions were modeled both with and
without constraints (i.e., per-taxon CUE values were bounded only by 0 and 0.7).
The range of community-level CUE values for each treatment were 0.18–0.53 for
control soils, 0.04–0.13 for carbon amended soils and 0.03–0.08 for carbon and
nitrogen amended soils and did not vary much between ecosystems. As a result of
uncertainty in the literature about the relationship between growth rate and CUE14,
several different relationships were postulated to model per-taxon CUE as a
function of per-taxon growth rate: linear increase, linear decrease, exponential
decrease, unimodal with peak CUE at growth rate of 0.5, and unimodal with peak
CUE at a growth rate of 0.05 (the median of all per-taxon growth rates in the data).
Comparisons between functions were made by calculating AIC values from per-
taxon respiration, summed, and regressing against measured respiration values.
Likewise, for each function, we tested how well per-taxon CUE estimates
reconstructed community-level CUE by weighting the CUE value of each taxon by
its relative abundance, summing, and regressing against community-level CUE. To
select the best per-taxon CUE function, AIC values from both scaling efforts were
combined. To make AIC values comparable, all respiration and CUE terms were z-
transformed prior to regression scaling. To reflect our priority of estimating per-
taxon respiration, AIC values from the respiration scaling regression models were
multiplied by two and summed with AIC values from CUE scaling such that
AICTotal = 2(AICResp) + AICCUE. Across these comparisons, the best estimate of
per-taxon CUE was the unimodal function of growth rate, constrained by
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community-level CUE and peaking at growth rates of 0.5 (Table 1), such that:

CUEi ¼ �4ðCUEE:T:rangeÞ � g i � 0:5
� �2 þ ðCUEE:T:maxÞ; ð6Þ

where CUEi indicates per-taxon CUE, CUEE:T:max indicates the maximum CUE
values observed for a group of replicates within a given ecosystem and treatment
(E:T). With this function, higher per-capita growth rate values were parameterized
to produce higher CUE values initially and then decrease reflecting a growth-CUE
tradeoff14, here bound by the difference in maximum and minimum CUE values.
We applied per-taxon CUE estimates from Eq. 6 to per-taxon growth rates to yield
estimates of per-taxon respiration:

ri ¼ rg;i þ rm;i ¼
g i

CUEi
� g i

� �
þ g i

CUEi
� g i

� �
� β; ð7Þ

where ri indicates per-capita respiration for taxon i, rg,i indicates growth-related
respiration, rm,i indicates maintenance-related respiration, and β is a constant of
0.01 that represents the maintenance requirements as a proportion of total energy
use40. We used these values of per-taxon, per-capita respiration rates to estimate
per-taxon respiration per gram of dry soil per week:

Ri ¼ Pi � rg;i þ Pi � rm;i; ð8Þ

where Ri indicates respiration of CO2–C (µg C g dry soil−1 week−1) for taxon i.
In addition to per-taxon respiration estimates based on 18O enrichment, we

used another model for comparison. Here, respiration was calculated based on 16S
abundance alone:

Ri ¼ N i � f ðR � N þ 0Þ; ð9Þ

where Ni indicates final 16S abundance for taxon i, R indicates microbial
respiration of CO2-C (µg C g dry soil−1 week−1) and N indicates total 16S
abundance at the end of the incubation. Here, the R ~ N function indicates the
linear relationship, with an intercept of 0, between CO2 respiration and 16S gene
concentration across all samples.

Diversity, compositional, and statistical analysis. For patterns of evenness in
bacterial carbon use and relative abundance, we used Pielou’s evenness which is the
quotient of Shannon’s diversity and the observed richness. For each sample, we
applied Pielou’s evenness to bacterial abundances as well as bacterial carbon use
(relativized to sum to one, in both cases).

We created a linear mixed model to test the relationship between the carbon use
(the sum of biomass production and respiration) and relative abundance of
bacterial genera from the dominant phyla, which accounted for >90% of all C flux.
Here, we averaged carbon use and relative abundance for all replicates in a given
ecosystem and treatment. We used the lme4 R package (version 1.1-20)41 and
obtained p-values using the Satterthwaite method in the lmerTest R package
(version 3.1-0)42. To limit pseudo-replication, we accounted for differences in
carbon use across ecosystems and due to bacterial Genus by implementing random
intercepts. We selected for the optimal random and fixed components by dropping
individual terms and comparing models with likelihood ratio tests, disregarding
models that failed to converge. Our final model fit was:

log10ðCiÞ � log10 yi
� �

*T þ 1jEð Þ þ ð1jGenusÞ; ð10Þ

where Ci indicates the relativized carbon use for taxon i (averaged across all three
replicates in a given ecosystem and treatment), yi indicates the relative abundance
of taxon i (averaged across all three replicates), T indicates soil treatment, and E
indicates ecosystem.

For differences in composition, we created species abundance tables using the
traditional abundances, as well as measures of carbon use (growth and
maintenance respiration) of each ASV in each sample. To account for differences
in absolute abundances and flux rates between sites, we relativized all abundance
tables. We summarized compositional differences using Bray–Curtis dissimilarities
then identified multivariate centroids for all replicates in a site by treatment group.
We tested the effect of site and nutrient amendment on the resulting group
centroids using PERMANOVA tests implemented with the adonis function in the
vegan package (version 2.5-3)43. We related compositional shifts in relative
abundance to those in relativized growth and maintenance using Mantel tests with
the mantel function in vegan.

To test for changes in the type of soil C preferred by microbial genera (either
13C-labeled glucose or 12C soil carbon) in response to nitrogen addition, we used
Levene’s test with the car package (version 3.0-10)44. Specifically, we analyzed the
relationship between 13C use and 12C use (both relativized) on bacterial genera
across all replicates and in C and C + N treatments using a linear model. We then
extracted model residuals and tested whether variance was significantly different
across treatments by focusing on the interaction between individual replicates and
treatment. This produced a significance test describing treatment-level differences
in 13C–12C use.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequence data and sample metadata have been previously deposited in the NCBI
Sequence Read Archive under the project number PRJNA521534. All other data have
been made available at https://github.com/bramstone/bacterial-carbon-flux-qSIP
(https://doi.org/10.5281/zenodo.4592585).

Code availability
All statistical and modeling analyses have been made available at https://github.com/
bramstone (https://doi.org/10.5281/zenodo.4592585).
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