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Phase diagram of quantum critical 
system via local convertibility of 
ground state
Si-Yuan Liu1,2, Quan Quan1,3, Jin-Jun Chen2, Yu-Ran Zhang2, Wen-Li Yang1 & Heng Fan1,2,4

We investigate the relationship between two kinds of ground-state local convertibility and quantum 
phase transitions in XY model. The local operations and classical communications (LOCC) convertibility 
is examined by the majorization relations and the entanglement-assisted local operations and classical 
communications (ELOCC) via Rényi entropy interception. In the phase diagram of XY model, LOCC 
convertibility and ELOCC convertibility of ground-states are presented and compared. It is shown that 
different phases in the phase diagram of XY model can have different LOCC or ELOCC convertibility, 
which can be used to detect the quantum phase transition. This study will enlighten extensive studies of 
quantum phase transitions from the perspective of local convertibility, e.g., finite-temperature phase 
transitions and other quantum many-body models.

Many developments in quantum information processing (QIP)1 unveiling the rich structure of quantum states 
and the nature of entanglement have offered many insights into quantum many-body physics2. Because the 
ground-state wavefunction undergoes qualitative changes at a quantum phase transition, it is important to 
understand how its genuine quantum aspects evolve throughout the transition3,4. For the spin chain model, this 
question has been widely discussed4,5. Many alternative indictors of quantum phase transitions, for example, 
entanglements measured by concurrence3, negativity6, geometric entanglement7, and von Neumann entropy8,9 
have been investigated in several critical systems, which have become a focus of attention in detecting a number 
of critical points. From the viewpoint of quantum correlations, mutual information10, quantum discord11 and 
global quantum discord12–14 have been used for detecting quantum phase transitions. There are investigations on 
entanglement spectra15–17, fidelity18 and local quantum thermal susceptibility19 showing their abilities in explor-
ing numerous phase transition points in various critical systems as well.

With the concepts of QIP, these studies have achieved great success in understanding the deep nature of the 
different phase transitions. The reverse, however, is still unclear and deserves further investigations. Recently, 
from a new point of view, Cui et al. find that the systems undergoing quantum phase transition will also show 
different operational properties from the perspective of QIP both analytically20 and numerically21,22. For sev-
eral models, they reveal that the entanglement-assisted local operations and classical communications (ELOCC) 
convertibility decided by the Rényi entropy23,24 suddenly changes nearly at the critical point. In ref. 25, the local 
operations and classical communications (LOCC) convertibility decided by the majorization relation26 has also 
been investigated in the one-dimensional transverse field Ising model27. These significant results suggest that not 
only are the methods of QIP useful as alternative signatures of quantum phase transitions, but also the study of 
quantum phase transitions can offer interesting insight into QIP.

In this paper, we study the relationship between two kinds of ground-state local convertibility and quantum 
phase transitions in XY model. The majorization relation studied here is necessary and sufficient for the LOCC 
convertibility26 and Rényi entropy interception is a necessary and sufficient condition for the ELOCC converti-
bility28. In the phase diagram of XY model, LOCC convertibility and ELOCC convertibility of ground-states are 
presented and compared. Since the one-dimensional transverse field Ising model can be seen as a special case of 
our model, we promote and widen the results in previous literature. It is shown that different phases in the phase 
diagram of XY model can have different LOCC or ELOCC convertibility and both of them changes around the 
phase transition point, which have successfully help us understand the deep nature of the different phases in XY 

1Institute of Modern Physics, Northwest University, Xian 710069, P. R. China. 2Beijing National Laboratory for 
Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China. 3School 
of Mathematical Sciences, Capital Normal University, Beijing 100048, China. 4Collaborative Innovation Center of 
Quantum Matter, Beijing, P. R. China. Correspondence and requests for materials should be addressed to H.F. (email: 
hfan@iphy.ac.cn) or Y.-R.Z. (email: yrzhang@iphy.ac.cn) or W.-L.Y. (email: wlyang@nwu.edu.cn)

received: 29 January 2016

accepted: 15 June 2016

Published: 06 July 2016

OPEN

mailto:hfan@iphy.ac.cn
mailto:yrzhang@iphy.ac.cn
mailto:wlyang@nwu.edu.cn


www.nature.com/scientificreports/

2Scientific Reports | 6:29175 | DOI: 10.1038/srep29175

model. On the contrary, it will also benefit many applications such as to detect the quantum phase transition and 
to estimate the computational power of different phases in quantum critical systems22.

Results
Local convertibility of ground states of XY model.  In this section, given the XY model29–31 in the 
zero-temperature case, we use majorization relation and Rényi entropy interception to study the relationship 
between two kinds of local convertibility and quantum phase transitions. The Hamiltonian of our model is as 
follows14:
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with L being the number of spins in the chain, σ̂i
m the ith spin Pauli operator in the direction m =​ x, y, z and peri-

odic boundary conditions assumed. The XX model and transverse field Ising model thus correspond to the spe-
cial cases for this general class of models. For the case that γ →​ 0, our model reduces to XX model. The quantum 
criticality of ground and thermal states in XX Model has been studied32. When γ =​ 1, the model reduces to trans-
verse field Ising model27. For h =​ 1, a second-order quantum phase transition takes place for any 0 ≤​ γ ≤​ 1. In fact, 
there exists additional structure of interest in phase space beyond the breaking of phase flip symmetry at h =​ 1. It’s 
worth noting that there exists a circle boundary between Phase 1A and Phase 1B, h2 +​ γ2 =​ 1, on which the ground 
state is fully separable. According to the previous literature, this circle can be seen as a boundary between two 
differing phases which are characterized by the presence and absence of parallel entanglement33–37. In fact, for 
each fixed γ, the system is only locally non-convertible when h2 +​ γ2 >​ 1. Now we can divide the system into three 
separate regimes, Phase 1A, Phase 1B and Phase 2, where the ferromagnetic region is now divided into two 
regions defined by their differential local convertibility. These results are summarized in “phase-diagram” 
Fig. 1(a).

We study the ground states of this model for different system sizes with the field parameter h varying from 0 
to 1.5. The ground states labeled as  G h( ) AB

 are obtained by exactly diagonalizing the whole Hamiltonian (1). For 
infinite long spin chain of XY model, the analytical results of the thermal ground states are also discussed, see 
Methods for details. This proposal is also worth further investigations by other numerical methods such as the 
Lanczos algorithm and density matrix renormalization group (DMRG), which are not included in this work.

Figure 1.  Phase diagram of XY model. (a) Phase diagram of XY model. XY model has three different quantum 
phases: Phase 1A, Phase 1B and Phase 2. (b) Eigenvalues of the density matrix of two nearby spins against 
parameter h for γ =​ 0.6. (c,d) ELOCC convertibility via Rényi entropy of ground states of XY model. In yellow 
(light) area, the sign of ∂​hSα(ρA(h)) is negative for all α which indicates that |G(h +​ Δ​)〉​AB can be transformed 
to |G(h)〉​AB by ELOCC with 100% probability of success. The red (dark) areas are for other cases. (c) is obtained 
by exact diagonalization of the Hamiltonian of XY model, and (d) is obtained by the analytical method given 
in Methods. (e,f) LOCC convertibility via majorization of ground states of XY model. In yellow (light) area, 
|G(h +​ Δ​)〉​AB can be transformed to |G(h)〉​AB by LOCC with 100% probability of success; whilst, in the red 
(dark) area, |G(h +​ Δ​)〉​AB can not be transformed to |G(h)〉​AB by LOCC with certainty. (e) is obtained by exact 
diagonalization of the Hamiltonian of XY model, and (f) is obtained by the analytical method given in Methods.
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ELOCC convertibility via entanglement Rényi entropy.  Using this method, we provide a phase dia-
gram which describes the ELOCC convertibility for different phases in XY model. We consider the case that Alice 
shared a reduced system of two spins.

In Fig. 1(c), for a system size L =​ 15, we have two different regions that indicate different ELOCC converti-
bility. In the yellow (light) areas, the sign of ∂​hSα(ρA(h)) is negative for all α, that is, the two states |G(h)〉​AB and 
|G(h +​ Δ​)〉​AB can be converted to each other by ELOCC. In the red (dark) areas, the sign of ∂​hSα(ρA(h)) is positive 
for all α, there is no ELOCC convertibility in these regions. Similar as Fig. 2(e,f), the obscure areas in Fig. 1(c) 
reflect the level-crossings that redefine the ground state of the system (which are evident from the spectrum of 
the model). For infinite long spin chain of XY model, the ELOCC convertibility of the thermal ground state is 
plotted in Fig. 1(d), see methods for details. Comparing Fig. 1(a) and Fig. 1(c,d), it is obvious that some bound-
aries between yellow (light) area and red (dark) area can be used to detect the critical line for different phases. 
Specifically, in Phase 1A, the ELOCC convertibility does not exist; in some area of Phase 1B and the entire area of 
Phase 2, the ground states |G(h)〉​AB and |G(h +​ Δ​)〉​AB can be converted to each other by ELOCC. Therefore, the 
transition between Phase 1A and Phase 2 and the one between Phase 1A and Phase 1B can be described precisely 
by the ELOCC convertibility via entanglement Rényi entropy.

LOCC convertibility via majorization relation.  For the same case that the reduced system shared by 
Alice has two spins, we only need to consider three largest eigenvalues of the reduced states of any two neigh-
boring spins as λ1(h), λ2(h), and λ3(h) in descending order. To detect the majorization relations between two 
ground states |G(h)〉​AB and |G(h +​ Δ​)〉​AB given some infinitesimal Δ​, we should judge the monotonicities of 
three functions for the field parameter f1(h), f2(h) and f3(h) defined in Eq. (3). Thus, three cases will be met: (i) 
when monotonicities of these three functions are all non-increasing, |G(h +​ Δ​)〉​AB can be converted to |G(h)〉​AB 
by LOCC with 100% certainty; (ii) when monotonicities of these three functions all are non-decreasing, |G(h)〉​AB  
can be converted to |G(h +​ Δ​)〉​AB by LOCC with 100% certainty; (iii) except for these two cases, no state can be 
converted to the other via LOCC with certainty. For ease of comparison with ELOCC convertibility, We only 
show in Fig. 1(e) either the case (ii) or other two cases.

Using the method mentioned above, we can also provide a phase diagram describing the LOCC convertibility 
for different phase in XY model. In Fig. 1(e), for system sizes N =​ 15, we have shown two different regions. In 
the yellow (light) area, |G(h +​ Δ​)〉​AB can be transformed to |G(h)〉​AB by LOCC with 100% probability of success; 
whilst, in the red (dark) area, |G(h +​ Δ​)〉​AB can not be transformed to |G(h)〉​AB by LOCC with certainty. We 
should stress that in few parts of red (dark) area in Phase 1A, |G(h)〉​AB can be transformed to |G(h +​ Δ​)〉​AB by 
LOCC with certainty, which is not shown in Fig. 1(e). For infinite long spin chain of XY model, the LOCC con-
vertibility of the thermal ground state is plotted in Fig. 1(f), see methods for details. In the XY model, there are 
three regimes, Phase 1A, Phase 1B and Phase 2 as shown in Fig. 1(a). From Fig. 1(e,f), in Phase 1A, no majoriza-
tion relations can be fulfilled, |G(h +​ Δ​)〉​AB and |G(h)〉​AB can not be converted to each other by LOCC. However, 
in Phase 1B and Phase 2, there are two areas which have different LOCC convertibility, which have richer and 
more complex features of LOCC convertibility than those of ELOCC. Similarly, we can use the dividing line 
between red (dark) and yellow (light) areas with different LOCC convertibility to detect the critical line between 
Phase 1A and Phase 1B precisely. As the increase of the system size L, our result can be shown to get better using 
the scaling analysis on the critical point from LOCC convertibility25 and ELOCC convertibility21 to get rid of the 
finite-size effect.

Figure 2.  The sign distribution of ∂hSα(ρA(h)) with Alice having a 2-spin system in XY model. The sign 
distribution of ∂​hSα(ρA(h)) with Alice having a 2-spin system in XY model for different system size L and 
parameter γ against α and the adjustable external parameter h. The green (dark) areas represent the sign to be 
negative and the yellow (light) areas indicate positive. In (a–d) the system size is L =​ 8, and (e–h) show the case 
that the system size is L =​ 15. Note that the transition between Phase 1A and 2 occurs at h =​ 1, and the transition 
between Phase 1A and 1B occurs at h =​ 0.25 for γ = 15 /4 [see (b,f)], h =​ 0.5 for γ = 3 /2 [see (c,g)], and 
h =​ 0.75 for γ = 7 /4 [see (d,h)].
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Comparing the result with the ELOCC method, we can see that the ELOCC method is superior to LOCC 
metohd for detecting the critical line between two different quantum phases. In order to detect the phase transi-
tions in our model, the ELOCC method is more accurate than LOCC method in the XY model as well as in the 
one-dimensional transverse field Ising model25. Moreover, we should note that if the LOCC convertibility exists, 
the ELOCC convertibility must exist. That is, in different phases of quantum critical systems, various and com-
plicated local conversion can be expected, will benefit many applications such as to estimate the computational 
power of different phases.

To get rid of the finite-size effect, we give a scaling analysis of the critical points h L( )c
(2)  of the second-order 

phase transition detected by the ELOCC convertibility for γ = 3 /2 in Fig. 3. With the exponential fitting, it is 
shown that for infinitely large size L →​ ∞​ and γ = 3 /2, the ELOCC convertibility changes at = .h 1 0273c

(2) , 
which detects the second-order phase transition of the XY model. The scaling analysis of critical points detected 
by the LOCC convertibility can be found in ref. 25.

Discussion
In conclusion, we have investigated the relationship between local convertibility of ground states and quantum 
phase transitions in XY model. We study the LOCC convertibility by examining the majorization relations and 
the ELOCC convertibility via Rényi entropy interception. It shows that the boundary of areas which have dif-
ferent LOCC or ELOCC convertibility can be used to detect the critical line for different phases. In Phase 1A, 
both the LOCC and ELOCC convertibility do not exist. In Phase 1B, the situation is slightly more complicated. 
There are two areas which has different LOCC convertibility. In most area of Phase 1B, the ELOCC convertibility 
exists. In Phase 2, there is no LOCC convertibility in the area that nearly the critical point. In the remaining area, 
both the LOCC and ELOCC convertibility exist. It is obvious that if the LOCC convertibility exists, the ELOCC 
convertibility must exist. We believe that our method should be applicable in other systems similar as in the XY 
model. The LOCC proposal in detecting quantum phase transition can play a complementary role to the ELOCC 
method, which will help to exploit the rich features of local conversion of ground states of quantum critical 
systems. This study will enlighten extensive studies of quantum phase transitions from the perspective of local 
convertibility, e.g., finite-temperature phase transitions and other quantum many-body models.

We remark that the majorization relation is necessary and sufficient for the LOCC convertibility28 and Renyi 
entropy interception is a necessary and sufficient condition for the ELOCC convertibility38,39 between two bipar-
tite pure quantum states. In applying those relations to a ground state of many-body system, it is important to 
divide the system into bipartitions to obtain the bipartite pure states. In our study of phase diagram of the spin 
chains, we can show that the local convertibility identified by majorization relation can demonstrate clearly dif-
ferent quantum phases by some bipartitions of the ground state.

Methods
Criterions for LOCC and ELOCC convertibility.  As showed in ref. 22, we consider a system with an 
adjustable external parameter h, which partitioned into two parties, Alice and Bob, and operated by ELOCC or 
LOCC. Let |G(g)〉​AB be the ground state of the system when the parameter is set as h. Given the infinitesimal Δ​,  
the necessary and sufficient condition for ELOCC between |G(h)〉​AB and |G(h +​ Δ​)〉​AB is given by the inequality 
Sα(ρA(h)) ≥​ Sα(ρA(h +​ Δ​)) for all values of α, where Sα(ρA) is the Rényi entropy of the reduced state of Alice 
ρA =​ TrB(|G(h)〉​AB〈​G(h)|) (called the entanglement Rényi entropy of |G(h)〉​AB) defined as23

ρ
α

ρ=
−

.α
αS h h( ( )) 1

1
log [Tr ( ) ] (2)A A2

When α →​ 1, the Rényi entropy tends to the von Neumann entropy. In brief, there are two different behaviors 
for entanglement Rényi entropies of two states neighboring states |G(h)〉​AB and |G(h +​ Δ​)〉​AB. The transverse field 
Ising model with critical point h =​ 1 is illustrated as an example in Fig. 4: (a) If entanglement Rényi entropies 
are crossing, those two states can not be locally transferred to each other by ELOCC; (b) If there is no crossing, 

Figure 3.  Finite-size scaling analysis. Finite-size scaling analysis of the the critical points h L( )c
(1)  of the second-

order phase transition of XY model by the ELOCC convertibility for γ = 3 /2.
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a state with higher entanglement can be locally transferred to the lower entanglement one by ELOCC21. These 
results can be applied to study the quantum critical phenomena, i.e. when a quantum phase transition occurs, the 
local transformation property of the ground state wave function changes as well as the different quantum phases 
boundaries can be determined by the behavior of entanglement Rényi entropies of ground states21,22. Referring 
the scaling analysis in ref. 21 phase transition point obtained by this proposal tends to 0.9940.

On the other hand, the majorization relations provide a necessary and sufficient condition for the LOCC converti-
bility. Using the Schmidt decomposition theorem40, the ground state can be written as λ= ∑ =G h k k( ) AB k

d
h
k

A B1 . 
Then, we have that if and only if the majorization relations
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are satisfied for all 1 ≤​ l ≤​ d (expressed as λ λ+∆h h, state |G(h +​ Δ​)〉​ can be transformed with 100% probability 
of success to |G(h)〉​ by LOCC. Otherwise, these two states are incomparable, i.e., |G(h +​ Δ​)〉​ cannot be converted 
to |G(h)〉​ by LOCC, and vice versa. In ref. 25, it provides a clear description of the local convertibility of the 
ground states of the transverse field Ising model: in the region 0 <​ h <​ 0.9940 within the ferromagnetic phase, 
neither LOCC nor ELOCC convertibility exist; in the region h >​ 1.1318 within the paramagnetic phase, both 
LOCC and ELOCC convertibility exist; and in the small interval 0.994 <​ h <​ 1.1318 around the critical point 
h =​ 1, merely the ELOCC convertibility exists.

Analytical results for infinite spin chain.  For the thermal ground state of XY model written as 
Equation (1), the reduced density matrix for two nearby spins at i and i +​ 1 has been obtained in ref. 41 as
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The eigenvalues of the reduced matrix (4) against parameter h for γ =​ 0.6 are shown in Fig. 1(b). With the 
analytical results of the thermal ground state for the infinite long spin chain, the ELOCC convertibility and LOCC 
convertibility of the ground state of the XY model at zero temperature are presented in Fig. 1(d,f), respectively.
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