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A B S T R A C T

Presurgical evaluation that can precisely delineate the epileptogenic zone (EZ) is one important step for suc-
cessful surgical resection treatment of refractory epilepsy patients. The noninvasive EEG-fMRI recording tech-
nique combined with general linear model (GLM) analysis is considered an important tool for estimating the EZ.
However, the manual marking of interictal epileptic discharges (IEDs) needed in this analysis is challenging and
time-consuming because the quality of the EEG recorded inside the scanner is greatly deteriorated compared to
the usual EEG obtained outside the scanner. This is one of main impediments to the widespread use of EEG-fMRI
in epilepsy. We propose a deep learning based semi-automatic IED detector that can find the candidate IEDs in
the EEG recorded inside the scanner which resemble sample IEDs marked in the EEG recorded outside the
scanner. The manual marking burden is greatly reduced as the expert need only edit candidate IEDs. The model
is trained on data from 30 patients. Validation of IEDs detection accuracy on another 37 consecutive patients
shows our method can improve the median sensitivity from 50.0% for the previously proposed template-based
method to 84.2%, with false positive rate as 5 events/min. Reproducibility validation on 15 patients is applied to
evaluate if our method can produce similar hemodynamic response maps compared with the manual marking
ground truth results. We explore the concordance between the maximum hemodynamic response and the in-
tracerebral EEG defined EZ and find that both methods produce similar percentage of concordance (76.9%, 10
out of 13 patients, electrode was absent in the maximum hemodynamic response in two patients). This tool will
make EEG-fMRI analysis more practical for clinical usage.

1. Introduction

Epilepsy has been ranked as one of the most common neurological
disorders in the world (de Boer et al., 2008). It is characterized by re-
peated occurrence of epileptic seizures, defined as brief episodes of
signs or symptoms due to abnormal excessive or synchronous neuronal
activity in the brain (Fisher et al., 2005). Around 20 to 40% of epilepsy
patients are likely to have an epilepsy refractory to antiepileptic drug
therapy and those with focal epilepsy are considered surgical candi-
dates.

Presurgical evaluation that can precisely delineate the epileptogenic
zone (EZ) is one important step for successful surgical treatment. Until
now, the intracranial electroencephalography recordings (icEEG) are
considered the gold standard for localizing the seizure onset zone (SOZ)
which in turn provides the definition of EZ (Rosenow and Luders,
2001). However, this invasive monitoring technique is not without risk
(Hamer et al., 2002) and can only explore a small fraction of the brain.

Furthermore, it is time consuming as the frequency of seizure occur-
rence is relatively low compared with (interictal epileptic discharges)
IEDs. Recently, researchers have paid great attention to the noninvasive
EEG-correlated functional magnetic resonance imaging (EEG-fMRI)
technique as an additional tool for this work (An et al., 2013; Khoo
et al., 2017; Pittau et al., 2012; Thornton et al., 2010; van Houdt et al.,
2013; Zijlmans et al., 2007). Generally, IEDs are first marked by trained
experts based on visual inspection of EEG simultaneously recorded with
the fMRI. The general linear model (GLM) is then applied by convolving
the timing of IEDs and the hemodynamic response function to estimate
the hemodynamically active regions. Finally, the regions that pass a
certain statistical threshold are considered as markers of the EZ.

Visual inspection and marking of IEDs can be quite challenging and
time-consuming, especially in the environment of simultaneous EEG-
fMRI acquisition (Gotman, 2008). Due to the strong magnetic field, the
quality of the EEG is reduced in the scanner compared with EEG outside
the scanner. Despite the many gradient and pulse artifact removal
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methods (Abreu et al., 2016; Allen et al., 2000; Allen et al., 1998;
Bonmassar et al., 2002; Kim et al., 2004; Klovatch-Podlipsky et al.,
2016; LeVan et al., 2013; LeVan et al., 2016; Maziero et al., 2016;
Srivastava et al., 2005) which have been proposed, there is still residual
artifacts affecting EEG quality. Furthermore, the marked IEDs should be
accurate and consistent for acceptable statistical analysis results
(Flanagan et al., 2009). Studies showed that visual inspection and
marking procedure is subjective (Zijlmans et al., 2007) and requires a
high level of vigilance (Nonclercq et al., 2012). Therefore, a system that
can reduce the labor of manual marking and improve reproducibility is
desirable.

Several studies have proposed to automatize this marking procedure
and one of the well-known technique is a topography-based method
(Grouiller et al., 2011). A patient-specific topographic amplitude dis-
tribution map was built by averaging IEDs recorded outside scanner and
used to compute its correlation with each time frame of the EEG inside
the scanner. The resulting correlation time course was used as a re-
gressor for fMRI analysis to map the haemodynamic changes. However,
IEDs are not only characterized by their topography but also by their
morphology. Another study proposed a template-based method
(Tousseyn et al., 2014) that computed the spatiotemporal cross-corre-
lations between patient-specific spike-template built by IEDs recorded
outside the scanner and the EEG inside the scanner. GLM analysis was
performed using the time course of correlations binarized with a spike-
template-specific threshold. Improved sensitivity and specificity for
detecting the EZ were reported compared with the topography-based
method. However, these correlation-based methods may not work well
as the morphology of IEDs inside the scanner may differ from those
outside the scanner because of the impact of the scanner. Furthermore,
in both of these reports, only the resulting hemodynamic response maps
were analyzed but there was no direct evaluation of the performance of
the automatically detected IEDs compared with those detected by an
expert. To build a practical IED marking tool, it is important that it
could reproduce reasonable IED markings compared with those of an
expert.

Inspired by the recent great progress in deep learning (LeCun et al.,
2015) and its successful implementation on face recognition (Parkhi
et al., 2015; Schroff et al., 2015), we propose a deep learning based IED
detection method to tackle this problem. First, we train a neural net-
work model by mapping EEG data into a space in which the same types
of IEDs lie close to each other but far from other IED types or from
baseline. A multi-task learning strategy is used to simultaneously clas-
sify different types of IEDs and learn a Euclidean distance embedding
space. Then, we get candidate IEDs by applying our model to EEG of
new studies and let the expert edit them. At last, we apply GLM analysis
using fMRI images and the marked IEDs. During the validation, we first
tested the accuracy of IED detection by comparing with the template
based method (Tousseyn et al., 2014) and then performed an EEG-fMRI
analysis using our method to see if we can reproduce the hemodynamic
response maps obtained the traditional way.

2. Materials and methods

2.1. Subjects

Patients with epilepsy admitted to our epilepsy monitoring unit who
have adequate number of IEDs (usually at least one IED every 2 min) on
the EEG were selected for EEG/fMRI study. Between April 2004 and
December 2016, 445 patients participated in EEG/fMRI studies. For
training data, from the abovementioned database, we selected ran-
domly 30 patients with focal interictal EEG findings who had> 3 IEDs
on the EEG during EEG-fMRI study (An et al., 2013; Khoo et al., 2017),
significant BOLD responses, and did not undergo stereo-EEG (SEEG)
implantation (see rationale below). For test data, we identified 37

consecutive patients (13 male; mean age at evaluation,
28.5 ± 8.2 years, range, 16–50) with active EEG and significant BOLD
responses from the database of patients who participated in EEG/fMRI
studies between April 2006 (start of 3 T scanning) and December 2016,
who underwent SEEG implantation for pre-surgical evaluation and with
post-implantation CT or MRI (Khoo et al., 2017). The implantation, a
clinical procedure, was performed independently of the experimental
EEG/fMRI study. Each patient gave written informed consent for the
EEG/fMRI study approved by the Research Ethics Committee of Mon-
treal Neurological Institute and Hospital.

2.2. Acquisition and marking of EEG outside the scanner

We first used scalp EEGs recorded in the epilepsy monitoring unit.
Scalp EEGs were recorded according to 10–20 system (referential FCz)
with additional infero-temporal electrodes from the 10–10 system (F9,
T9, P9, F10, T10 and P10), acquired using a Harmonie system (200 or
1000 Hz sampling, Stellate Harmonie, Montreal, Canada). EEGs were
reviewed using referential and bipolar montages, high-pass filtered at
0.5 Hz and low-pass filtered at 50 Hz. For each subject, the trained
expert first reviewed the EEG outside scanner and identified the habi-
tual IEDs, as pointed out in the clinical reports. The IEDs were marked
on a 24-h EEG recording. IEDs with the same spatial distribution but
different morphology were grouped and considered as a single type.
IEDs with different spatial distributions were considered as different
event types. To help make the marked events of each type of IED cover
the possible shape and distribution variabilities, we marked at least two
events for each type. The number of marked events varied (20 ± 16)
according to the availability and convenience of marking.

2.3. EEG/fMRI acquisition

The acquisition procedure of EEG/fMRI is identical to previous
studies from the same lab (An et al., 2013; Moeller et al., 2009; Pittau
et al., 2012). EEG was recorded inside a 3 T MRI scanner (Trio; Sie-
mens, Erlangen, Germany) with 25 MR compatible scalp electrodes
placed according to 10–20 (reference FCz) and 10–10 (F9, T9, P9, F10,
T10, and P10) systems, using a Brain-Amp system (5 kHz sampling;
Brain Products, Munich, Germany). Two electrodes were placed on the
shoulder to record the electrocardiogram. The head of the patient was
immobilized with a pillow filled with foam microspheres (Siemens,
Germany) to minimize movement artifacts and for patient's comfort.
Data were transmitted from a BrainAmp amplifier (Brain Products,
Munich, Germany, 5 kHz sampling rate) to the EEG monitor located
outside the scanner room via an optic fiber cable.

A T1-weighted anatomic image was acquired first using the fol-
lowing sequences: Until July 2008: 1-mm slice thickness; 256 × 256
matrix; echo time (TE), 7.4 msec; repetition time (TR), 23 msec; flip
angle 30° and from July 2008: 1-mm slice thickness; 256 × 256 matrix;
TE 4.18 msec; TR, 23 msec; flip angle 9°. T1 image was used for su-
perimposition with functional images. Functional data were collected in
6-min runs lasting 60–90 min, with a T2*-weighted echo planar ima-
ging (EPI) sequence: Until July 2008: TR, 1.75 s; TE, 30 msec; 64 × 64
matrix; 25 slices; voxel, 5 × 5 × 5 mm; flip angle 90 degrees and from
July 2008: TR, 1.9 s; TE, 25 msec; 64 × 64 matrix; 33 slices; voxel,
3.7 × 3.7 × 3.7 mm; flip angle 90°.

2.4. Processing and marking of EEG inside the scanner

The EEG inside scanner was processed offline (bandpass 0.5–50 Hz),
and scanner gradient artifact was removed by an averaged subtraction
method (Allen et al., 2000) implemented in BrainVision Analyzer
software (Brain Products, Gilching, Germany). Two ballistocardio-
graphic (BCG) artifact removal techniques were used in our dataset. For
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the majority, we used the average artifact subtraction method (Allen
et al., 1998) to remove the BCG artifact. For subjects in whom there was
still undesirable BCG artifacts, we further applied an ICA based BCG
artifact removal method (Benar et al., 2003; Srivastava et al., 2005).
Both the EEG inside and outside scanner were down sampled to 200 Hz.

For each subject in the training and testing data sets, the expert
marked the IEDs inside the scanner according to the marking on the
EEG outside scanner. The EEG outside the scanner shows clearly the
distributions and shapes of the different IED types present in a parti-
cular patient, and this is very helpful in marking correctly the degraded
EEG recorded inside the scanner. This is a standard procedure in EEG-
fMRI studies in epilepsy. The number of IED types was the same for EEG
inside and outside the scanner: IEDs with the same distribution but
different morphology were grouped; IEDs with different distributions
were considered as different event types. For each IED type, the number
of events ranged from 2 to 80. The average duration of EEG recording
inside scanner was 50 min (range, 18–72 min).

2.5. EEG/fMRI analysis

To evaluate the reproducibility of BOLD maps, we applied the GLM
method to analyze the IEDs from the manual and from the edited
marking. The GLM method is similar to that used in prior studies (An
et al., 2013; Fahoum et al., 2012; Moeller et al., 2009; Pittau et al.,
2012). Motion correction and smoothing (6-mm full width at half
maximum) are applied to the fMRI images. An autoregressive model of
order 1 is used to account for the temporal autocorrelations (Worsley

et al., 2002). Low frequency drifts were modeled with a third-order
polynomial fitting to reach run. Timing and duration of each IED were
built as a regressor and convolved with four hemodynamic response
functions (HRFs) peaking at 3, 5, 7, and 9 s. Motion parameters were
modeled as confounds. All regressors were included in the same general
linear model. A statistic t map was created for each regressor using the
other regressors as confounds for each event type. A combined t map
was created by taking, at each voxel, the maximum t value from the
four t maps based on the four HRFs. The single combined t map was
used for comparison. To be significant, a response required five con-
tiguous voxels having a t value> 3.1 corresponding to p < 0.01 for
the individual analysis, corrected for multiple comparisons (family wise
error rate), or equivalent to p < 0.05 for the combined analysis using
the four HRFs (Bagshaw et al., 2004).

2.6. Spike detection method

Our method contains a network that is trained on a training set. We
will explain the training part in a subsequent section. Assuming that we
have the trained network, here we show how to apply it on a new
subject (Fig. 1). This method starts from a set of subject-specific spike-
templates T ∈ {T(n) ∈ ℝC × (2R + 1)}n = 1

N, where N is the number of
templates, C denotes the number of channels (C = 25), and (2R + 1)
the length of the template windows (range from –R to R with the spike
onset in the center). We then estimate the distance between these
templates and windows that slide across the EEG inside scanner. The
sliding window has a size equal to the template, and a step of 32, which

Fig. 1. Pipeline of our semi-automatic spike detector.
Distance calculation: The dash blue line indicates the distance between the network output of subject-specific spike-template and that of sliding windows from EEG inside the scanner.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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relates to our network architecture and reduces the computation
burden (see the explanation in the supplementary section: “testing
implementation”). To do this, the templates and sliding windows are
first passed as inputs to a trained neural network which represents the
signals in a learned spike-feature space. The distances between the
sliding windows and templates in this spike-feature space are then es-
timated by calculating the Euclidean distance between their outputs
from the network. The calculated distances represent the likelihood of
having one IED type described by these templates at the time points
located at the center of the corresponding sliding windows (the smaller
the distance is, the more likely there is an IED). We then binarize the
distances with a selected threshold H. The time points with distances
lower than the threshold are treated as detected time points. Detected
time points separated by< 1 s are connected together as one event. A
human expert can edit the detected events to remove the false positive
events. Finally, the retained events are convolved with the hemody-
namic response function (HRF) and used as a regressor-of-interest in
GLM for EEG-fMRI analysis.

2.7. Training of the neural-network

The purpose of this training step is to build a general neuro-network
model that can use the IEDs outside the scanner as template to find
similar IEDs inside the scanner. Fig. 2 shows our learning network ar-
chitecture. During each training iteration, we first randomly select
three sets of samples: (i) template sample with a window containing
one type of IED extracted from EEG outside the scanner, (ii) positive
sample with a window containing one IED of the same type extracted

from EEG from inside the scanner; (iii) negative sample with a window
extracted from the baseline of EEG inside the scanner. We use the term
sample to refer to window extracted from EEG inside or outside
scanner. The last two sets of samples are only necessary for subjects in
the training set. After training, for IED detection in new subjects, our
model does not need the expert to read the full EEG from inside
scanner; only template samples from outside the scanner are needed.
We then reorder the EEG channels according to channel similarities to
make our algorithm invariant with respect to channel location. Samples
are then fed into a deep residual network (ResNet (He et al., 2015)) and
changed from 2D arrays to vectors by a fully connected layer. Finally,
we train our model based on two objective functions, one being the
softmax loss function for multi-class classification of different IED
types, and another being the triplet loss function (Schroff et al., 2015)
mapping IEDs into a space in which the Euclidean distance between the
same types of IEDs is smaller than the distance between IEDs and
baseline. The idea of choosing these two objective functions is mainly
inspired by their successful application in face recognition. State-of-art
studies in face recognition (Schroff et al., 2015) used triplet loss func-
tion. The softmax loss function is a widely used objective function for
multi-class classification, it is helpful for the training of triplet loss
function (Parkhi et al., 2015). In the following subsections, we explain
in detail the reordering, ResNet architecture, and objective functions.

2.8. Reordering

The spatial distributions of IEDs are different across different IED
types and different patients: the spikes from EZs located in different

Fig. 2. Training procedures of the neural-network.
Three sets of samples (Template, Positive and Negative) were fed as input to a deep residual network (ResNet) model, after a reordering procedure is applied to the channels to make our
algorithm invariant with respect to channel location; L2 normalization (L2-Norm) is applied to the output of the network to constrain the projection to live on a hypersphere; finally, the
model is trained based on two objective functions (softmax loss and triplet loss). See detailed description in the main text.
Notes: Template: template sample with a window containing one type of IED extracted from EEG outside the scanner, Positive: positive sample with a window containing one IED of the
same type extracted from EEG inside the scanner, Negative: negative sample with a window extracted from the baseline inside the scanner.
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lobes will appear in different EEG channels. But IEDs also have local
channel similarities, spikes being visible in spatially adjacent channels.
The purpose of the reordering is to make our algorithm invariant with
respect to channel location and at the same time preserve local channel
similarities.

We denote the EEG inside scanner of one subject as E ∈ ℝC × L,
where (C = 25) is the number of channels and L is the total number of
time points in the EEG. For each channel i, we set it as reference
channel and get one reordered EEG as Ei by ranking all other channels
according their similarities with i using Pearson correlation. In this way,
the reorder sequence is determined by both the selected reference
channel and the similarity between channel signals. By selecting a
different reference channel, we can get a different reorder sequence.
Then, we can get the C reordered EEGs �∈ ∈

×

=
E E{ }i

C L
i
C

1 by selecting
each channel as reference channel. As the reorder sequences are com-
puted based on EEG inside scanner signals of the subject, we need to
apply the same reorder operation on the subject's templates (recorded
outside the scanner) to make their reordered results consistent with that
of the EEG from inside the scanner. To do this, the reorder sequences for
all the combinations are saved and can be applied to the spike-tem-
plates T of the same subject to get T. The reorder sequences are cal-
culated once for each subject and can apply to different types of the
spike-templates.

2.9. Network architecture

Residual learning (He et al., 2015; He et al., 2016) is a recently

proposed breakthrough framework for training deep neural networks. It
has been shown that these networks are easier to optimize and can gain
persistent improvement of accuracy in networks with> 20 layers.

Inspired by this idea, we design our network based on a revised
version of ResNet (Fig. 3). The inputs of the network can be templates
from outside the scanner or sliding windows from inside the scanner.
Their size is C × K with C as the number of channels and K as the
number of time frames. We treat the input as C one dimensional data
with length K. Parameters concerning the design of network archi-
tecture (such as the number of layers, feature map size and output size)
are chosen based on the typical duration of spikes, computation time
and complexity. Twenty-nine convolutional layers (in which the output
of neurons are connected to local regions in the input) with filter size
1 × 3 are involved in our model. The rectified linear unit (ReLU) (Nair
and Hinton, 2010) is used as the non-linear function of each layer.
Following the philosophy of visual geometry group (VGG) nets
(Simonyan and Zisserman, 2014), two design rules are employed for the
convolutional layers (He et al., 2015): (i) the layers have the same
number of filters if their output feature map sizes are the same, and (ii)
the number of filters is doubled if the feature map size is halved.
Downsampling is performed by the convolutional layers with a stride of
2. Identity shortcut connections are used when the input and output
have the same dimensions (shown as solid shortcuts lines in Fig. 3), and
Projection shortcuts (He et al., 2015) are used when the dimension
increases (shown as dashed shortcut lines in Fig. 3). By using these
shortcut connections, the residual networks allow the information from
the input or earlier layers to flow more easily to deep layers. The feature

Fig. 3. Network architecture.
This network contains one input layer, twenty-
nine convolutional (conv) layers, one dropout
layer and one full connection (FC) output layer.
The conv layer computes the output of neurons
that are connected to local regions in the input by
using K (with value ranging from 16 to 256 as
denoted by the second parameter of corre-
sponding layer) filters of size 1 × 3, the number
of filters K is doubled if the feature map size is
halved (demonstrated with/2 for the third para-
meter of corresponding layer). Following the idea
of residual learning, Identity shortcut connec-
tions (when the input and output have same di-
mensions, solid shortcuts line) and projection
shortcut (dashed shortcuts lines) are used here to
allow the information from the input or earlier
layers to flow more easily to deep layers. Please
see a more detailed description in the text.
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map size goes from 16 to 256 as the layers go deeper. We end the
network with a fully connected layer (FC) of size 128. Before that,
dropout with coefficient value 0.5 (Baldi and Sadowski, 2013) showed
0.5 dropout can result in the maximum amount of regularization is used
to improve the generalization of our model (Srivastava et al., 2014).
The field of view (FOV) of our model is 417, which means our model
can take into consideration ~2 s (as the EEG sampling rate is 200 Hz)
along the time dimension. The total number of training parameters in
this model is 999,920.

2.10. Objective function

By applying the mentioned network, each template from outside the
scanner or each sliding window from inside the scanner can be pro-
jected onto a vector. Our objective function contains two parts: one
softmax loss function for classifying the EEG baseline and different IED
types as different classes, and another triplet loss function for embed-
ding the IEDs into a space where same type of IEDs can be easily
identified. The softmax is one kind of loss function for multi-class

Fig. 4. Examples of ROC curves comparing different methods.
For each ROC plot, the x axis corresponds to false positive rate (events/min), while the y axis corresponds to sensitivity. ROC curves in the first three rows show the best 5, moderate 5 and
worst 5 studies. For the subjects corresponding to the worst 5, we also show the ROC curves of different IED types of the same subject in rows 4 and 5 at the same column if there is more
than one IED type. For the ROC curves in our plots, the sensitivity does not necessarily increase monotonically with increasing false positive rate as different events may merge as we
decrease the threshold for detecting events. Black vertical line shows the position at 5 events/min. C-rN represents the correlation template-based methods with template duration as N
ms, using cold colors; L-cN represents our learning-based method with N as the number of reorder combinations, using warm colors.
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classification. The input samples (as shown in Fig. 2) are assigned to
different classes. The negative samples extracted from baseline are
treated as one class. Template or positive samples containing the IED

with the same reorder sequence, of the same type and from the same
patient are treated as one class. This loss function can help the network
learn to extract patterns that can distinguish not only IEDs from base-
line but also different type of IEDs. The aim of the triplet loss function is
to improve the performance of spike detection by learning the desired
distance scores. This is inspired from metric learning, which generally
tries to learn a reduced dimension projection that is discriminative and
compact at the same time. This function helps bring the input template
sample closer to the same type of IED inside the scanner than to any
other window inside the scanner, such as baseline or a different type of
IED. A more detailed mathematical description can be found in the
supplementary section: “objective function in detail”. In the supple-
mentary section: “training procedure”, we also explain our training
procedure as well as parameter setting and training details.

2.11. Evaluation

Two evaluations are used to test the performance of our method.
The first compares the accuracy of IEDs detected by different methods,
and the second test if we can reproduce the EEG-fMRI analysis results
by using our detector as an assistant.

2.11.1. IED detection accuracy
After training our model based on 30 patients with 70 studies, we

use another 37 patients with 78 studies to test the model's accuracy. For
each study, using the IEDs (at least 2) marked in EEG outside the
scanner as templates, we calculate the distance between the network
output of the templates and that of each window of EEG inside the
scanner. By choosing one threshold, the set of distances with value
lower than the threshold are marked as IED frames. This threshold is
adaptively set (see description in section “Reproducibility of hemody-
namic response maps” below). We then define IED frames separated by
less than 1 s as belonging to the same event (we use the similar pro-
cedure for manual IED marking) and get a set of IED events. Finally, we
compare the detected events with the manually marked ground truth
events. If one event has overlap with one of the ground truth events, we
define it as a true positive; otherwise, we define it as a false positive.
Two values are computed to define performance. One is sensitivity,
defined as number of true positive events divided by the number of
ground truth events. The other is the false positive rate, defined as the
number of false positive events per minute. This pair of values can be
seen as one position in the modified Receiver Operating Characteristic
(ROC) curve. By choosing different thresholds and performing the same
analysis, we can draw the ROC curves and compare different methods.
For our method, as the reorder sequences are determined by both the

Fig. 6. Boxplots show the factor (Events of IED types with or without duration) that have
statistical significant differences (p= 4.77e-2) impact on the sensitivity of studies, with
false positive rate set as 5 events/min.

Fig. 5. Sensitivity comparisons across different
methods.
a) Box-plot of sensitivity in the training set across
different methods with false positive rate set as 5
events/min. Post-hoc paired t-test showed the
best one (L-c25) of our learning methods is sig-
nificantly better than the best one (C-r500) of
template based methods (p= 5.41e-20). b) Box-
plot of sensitivity in the testing set across dif-
ferent methods with false positive rate set as 5
events/min. Post-hoc paired t-test showed the
best one (L-c25) of our learning methods is sig-
nificantly better than the best one (C-r500) of
template based methods (p= 1.39e-14). C-rN
represents correlation template-based methods
with template size along time dimension as N ms;
L-cN represents our learning-based methods with
N as the number of reorder combinations.

Table 1
Statistical analysis of factors affects detection accuracy of studies (sensitivity with false
positive rate set as 5 envents/min).

For factors with categorical values (IED type with or without duration, distribution of
brain regions related to the IED types and the EEG quality), one way ANOVA is used and
its F statistical results and p value are reported. For factors with continuous values (IED
event rate and the length of movement artifacts), Pearson correlation is used and its
corresponding r and p values are reported. Factors showing results with statistical sig-
nificant impact on detection accuracy are marked as bold.

IEDs
duration

Brain
regions

Event rate Movement
artifacts

EEG
quality

ANOVA(F)/
Correlation
(r)

4.05(F
(1,76))

0.95(F
(11,66))

0.21(r) -5.8e-2(r) 0.44(F
(2,75))

p-value 4.77e-2 0.50 0.07 0.61 0.65
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selected reference channel and the similarity between channel signals,
there are 25 kinds of reorders (see more detailed description in re-
ordering section). We can use the average results of multiple combi-
nations of these to do the detection. We tested 5 configurations with 5,
10,15,20,25 combinations (denoted by L-c5, L-c10, L-c15, L-c20, and L-
c25) here. We also test the template-based method (Tousseyn et al.,
2014) which directly calculates cross-correlation between the template
and spatial-temporal windows of EEG inside scanner. But one mod-
ification is made here from the original paper (Tousseyn et al., 2014):
instead of using an adaptively and visually determined template size
which can change in duration, we use a predefined fixed duration. In
their paper, they only considered one type of IED (i.e. spike) as they
defined the border of IED template that starts from the onset of the
spike at baseline until the negative peak of the slow wave that follows.
In our experiment, we considered all possible types of IED, such as spike
and wave, burst of spike and wave, repetitive spikes, poly-spikes, which
makes this procedure unusable as the durations of different events from
the same IED type can be different. However, we set the template
duration as one parameter r and tested 5 configurations with windows
of 250 ms, 500 ms, 1000 ms, 1500 ms, 2000 ms (denoted by C-r250, C-
r500, C-r1000, C-r1500, and C-r2000), representing 50, 100, 200, 300,
400 time points respectively. The ROC analysis helps us compare dif-
ferent methods at the subject level. We then compared the performance
at the group level using the sensitivity values corresponding to the false
positive rate set as 5 events/min. This value is chosen based on the need
to achieve a sufficient sensitivity (with average around 80%) at a rea-
sonable cost of false positive rate so it does not take too much time to
edit the candidate events (see results in section IED detection accuracy).

2.11.2. Factors affecting detection accuracy
We are also interested in finding which factors affect the perfor-

mance across studies. We select five factors: IED types with or without
duration, distribution of brain regions related to the IED types, IED
event rate, the length of movement artifacts marked by the expert, and
the EEG quality inside the scanner (rated as good, moderate and bad by
expert), and perform univariate statistical analysis with the sensitivity

values (with false positive rate set as 5 events/min) using ANOVA (for
categorical factors) or Pearson correlation (for factors with continuous
value).

2.11.3. Reproducibility of hemodynamic response maps
To test if we can reproduce the EEG-fMRI analysis results by using

the detector as an assistant, we randomly selected 15 subjects and
edited the events for each study by displaying only the candidate frames
marked as IEDs by our detector (i.e. the proposed human editing step in
Fig. 1). During the generation of the candidate IEDs, we choose a
threshold that leads to at least 5 event/min being detected. This value is
based on our IEDs detection accuracy analysis that we can achieve
median sensitivity of 84.2% with the false positive rate set as 5 events/
min in our method (see Results below). It is true that the sensitivity may
be lower as the true positives are also included in the 5 events per
minute, but the number of true events is low (with median value as 0.9
event/min in our test dataset), so the average false detections/min
should be still around 4–5. It should also be noted that the 5 events/min
is the lower limit of the setting, during the implementation, we gra-
dually reduced the threshold and stopped when at least 5 events/min
were detected, slight change of threshold can sometimes introduce
important variations in the number of new events. The time for editing
each study was recorded. We then generated a hemodynamic response
map for each study by performing GLM using the manually marked
ground truth events and the detected/edited events to create the re-
gressors-of-interest. Finally, we analyze the results by checking the
editing time, similarities between two hemodynamic response maps
and their concordance with SEEG results.

3. Results

3.1. IED detection accuracy

For evaluating IED detection accuracy, we compared the template-
based method and our method in a test dataset of 37 patients with 78
studies. To give an intuitive impression, we show sample studies having

Table 2
Comparing results of ground-truth manual marking and edited marking on 15 patients.

In the column of studies, Pa_Tb denotes patient a with IED type b. Sensitivity values correspond to values as false positive rate set as 5 events/min. In the column of sign of activation, A
means the max absolute t value of hemodynamic response is an activation, B means it is a deactivation. n/a means no significant activation is found for that IED type. – in the last column
means absence of stereo-EEG electrode at the maximum hemodynamic response. Detailed results of IED-related BOLD response (primary cluster) and SEEG findings were listed in Table
S1.

Studies Number of
runs

Editing time
(min/run)

Edit length
ratio

Number of IEDs
(GT/Edited)

Sensitivity Sign of
activation

Same anatomical
location?

Same
lobe?

SEEG concordant (GT/
Edited)

P1_T1 9 4.67 0.08 23/83 82.6 A N N N/Y
P2_T1 12 5.50 0.15 30/62 100 A N Y Y/Y
P3_T1 8 5.63 0.15 29/35 55.2 A Y Y Y/Y
P4_T1 6 4.83 0.09 334/179 88.6 A Y Y Y/Y
P5_T1 4 0.75 0.15 11/17 100 D Y Y N/N
P6_T1 11 1.45 0.02 35/48 100 D Y Y Y/Y
P7_T1 9 3.33 0.16 91/77 96.7 A Y Y Y/Y
P7_T2 9 2.22 0.17 3/11 100 A Y Y Y/Y
P7_T3 9 1.11 0.07 5/4 0 A N Y N/Y
P8_T1 11 7.45 0.14 192/126 16.2 A Y Y Y/Y
P9_T1 10 3.2 0.12 45/65 100 A Y Y N/N
P10_T1 10 2.8 0.07 2/16 100 n/a n/a n/a n/a
P10_T2 10 6.4 0.08 202/101 48.5 D Y Y Y/Y
P10_T3 10 13.1 0.11 326/476 96.3 D Y Y -/N
P11_T1 3 1.17 0.03 15/11 100 A Y Y Y/Y
P12_T1 8 8.38 0.15 10/41 40 A N Y -/N
P13_T1 6 6.00 0.21 18/39 88.9 n/a n/a n/a n/a
P13_T2 6 6.67 0.12 1/31 100 A N N Y/−
P14_T1 7 7.57 0.14 74/177 85.1 A Y Y −/−
P15_T1 10 1.60 0.08 36/26 94.4 A Y Y Y/Y
P15_T2 10 1.30 0.05 109/72 73.4 A Y Y Y/N
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the best, moderate and worst performance in the first three rows of
Fig. 4 (We first sort all the studies by the value of average area under
ROC across different methods and select the first, middle and last 5
studies for analysis). From the ROC curves, our method performed
consistently better than the template based method. Our learning based
method with 25 combinations (L-c25) performed best. For the best 5
studies, the sensitivities can achieve 100% and the false positive rates
be< 3 events/min. For the moderate 5 studies, the sensitivities are
around 80% for false positive rate at 5 events/min. Based on the above
observations, we used 5 events/min as a threshold for determining the
number of candidate events to detect for expert editing. This does not
add too much burden for expert editing and at the same time can
generally cover 80% of the ground truth events. For the worst 5 studies,
the sensitivities were< 40% when the false positive rate was 5 events/
min. In four of these five studies, the IEDs were not the dominant IED
types of the patients. The dominant IED types for the same patients had
better performance. ROC curves of other IED types from the same
subject are shown in the same column in rows 4 and 5 of Fig. 4.

To make a group level comparison, we found the sensitivity values
with false positive rate set at 5 events/min for each study and show the
box-plots for the training and testing sets in Fig. 5a and Fig. 5b. We can
observe that (i) our learning-based method is consistently better than
the template-based method, (ii) for the training set, the highest median
sensitivity for the template based method is 52.6% for C-r500 and the
highest median sensitivity for our learning-based method is 100.0% for
L-c25. Post-hoc paired t-test showed that the best (L-c25) of our
learning methods is significantly better than the best (C-r500) template
based method (with p = 5.41e-20), (iii) for the testing set, the highest
median sensitivity for the template based method is 50.0% for C-r500
and the highest median sensitivity for our learning based method is
84.2% for L-c25. Post-hoc paired t-test showed that the best (L-c25) of
our learning methods is significantly better than the best (C-r500)
template based method (with p = 1.39e-14).

3.2. Factors affecting detection accuracy

Table 1 shows the statistical analysis results of factors affecting
detection accuracy. From the 5 tested factors, only one (IED types with
or without duration) showed statistical significant impact on the de-
tection accuracy: the sensitivity of IED types with duration is higher
than that of IED types without duration (p= 0.0477) (Fig. 6).

3.3. Reproducibility of hemodynamic response maps

Table 2 shows the results of manual and edited marking on 15 pa-
tients with 21 studies. We calculated the length ratio of edited marking,
which is the ratio between the frame number of candidate IEDs de-
tected by our method and the total number of frames; the expert need to
look at only 11% of the total original frames during edited marking,
which is a great reduction of manual marking labor. It took
4.53 ± 3.13 min/run to mark using edited marking. We did not record
the time for manual marking because they were performed before we
initiated this project. But from our previous marking experience, it
takes on average 3 h to mark a 10-run recording and this would be

reduced to around 45 min by our method, a 75% reduction. The time
taken to mark the outside-scanner EEG was not taken into account in
our time calculation. But in our algorithm, we don't need to mark all the
IEDs in the clinical EEG. The procedure is similar to clinical routine that
one need only to quickly review the EEG segments and mark at least
two events for each type. The marked clinical events will be treated as
template for IED detection in our method. By comparing the number of
IEDs between manual marking ground truth (GT) results and edited
marking results, we found the edited marking had more IEDs in 13 of 21
studies.

After the GLM analysis, we compared the similarities between he-
modynamic response maps of the GT results and edited marking results
by looking at the positions of clusters with maximal absolute t-value
(primary cluster) at the anatomical structure and lobe levels. Two in the
21 studies did not have significant activation clusters for both methods.
In the remaining 19 studies, the primary cluster was found at the same
anatomical locations in 14 studies (73.7%) and at the same lobe in 17
studies (89.5%).

As the subjects had undergone SEEG, we examined the primary
cluster in relation to SEEG electrodes location by co-registering the
hemodynamic response maps to the post-implantation anatomical
imaging. We considered the results as concordant if the primary clusters
contain SEEG electrode contacts involved at seizure onset, within 2 cm
of the peak (Khoo et al., 2017). From the analysis of 19 studies, we got
12 concordant studies, 4 discordant studies and 3 studies without
electrode presence for the GT results, and we got 12 concordant studies,
5 discordant studies and 2 studies without electrode presence for the
edited marking results. If a subject has at least one event type that is
concordant with the SEEG result, we call this subject concordant. Then,
at the subject level, we also found similar percentage of concordance
(76.9%, 10 out of 13 patients, 2 patients without electrode presence) for
both GT results and edited marking results.

We illustrate three representative examples in Fig. 7–9. For each, we
show the IED template marked outside the scanner (subfigure a), the
top 6 candidate events provided by our method (subfigure b) and cor-
responding hemodynamic response maps from ground truth manual
markers and edited makers (subfigure c). The first example comes from
IED type 1 of patient 1 (Fig. 7), the number of events after editing is
much larger than that of GT results (83 vs 23). The primary cluster of
edited marking result is concordant with SEEG-defined SOZ, while we
cannot find such concordance from hemodynamic response map of GT
results. The second example comes from IED type 1 of patient 2 (Fig. 8),
the number of events from edited marking results is also much larger
than that of GT results (62 v.s. 30). The hemodynamic response map of
GT results and edited marking results look similar and both of their
primary clusters are concordant with SEEG-defined SOZ. The third ex-
ample comes from IED type 2 of patient 15 (Fig. 9), the number of
events from edited marking results is smaller than that of GT results (72
v.s. 109). Only the primary cluster of GT result is concordant with
SEEG-defined SOZ, but we can see that the activation regions of the two
results look similar, and the primary cluster of the edited marking result
is very close to the primary cluster of the GT result. For detailed com-
parisons for all the hemodynamic response maps, please see the sup-
plementary section: “comparisons of hemodynamic response maps”.

Fig. 7. Demonstration of marked events and the hemodynamic response maps for IED type 1 of patient 1.
a) One example of IED template marked outside of scanner shown on average montage (left) and bipolar montage (right). The IED contains spikes with maximum at T3 and F9-T9. b) Top
6 candidate events proposed by our method for EEG inside scanner (Top: average montage, bottom: bipolar montage; Note that the candidate events provide by our method contain
periods of varying length). Red lines show the positions of IEDs from the ground truth (GT) results, while black lines show the positions of IEDs from the edited results. The events were
classified into different situations by marking the outlines with different colors, Green: IEDs from edited results missed in GT-results, Red: IEDs from both GT and edited results, yellow: No
IED is found from either results. c) Corresponding hemodynamic response maps from ground truth manual markers (top) and edited makers (bottom). The primary cluster of edited result
is concordant with SEEG-defined SOZ, while we cannot find such concordance from hemodynamic response map of GT results. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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4. Discussion

EEG/fMRI analysis is a useful tool for predicting the EZ for patients
with refractory focal epilepsy (An et al., 2013; Khoo et al., 2017) and
has attracted attention in research and clinical practice. However, one
disadvantage that prevents its practical usage is that it heavily relies on
manual marking of the IEDs from the EEG inside scanner. This proce-
dure is difficult and time consuming.

The topography-based method (Grouiller et al., 2011) and the
template-based method (Tousseyn et al., 2014) are trying to reduce the
manual marking burden by automating this procedure. Both methods
rely on correlation to find similar events using templates from EEG
outside the scanner. As shown in our experiment, the template-based
method achieved median sensitivity of 50.0% with false positive rate of
5 events/min. This means that many positive events will be missed. The
reason may be that the correlation measurement is sensitive to artifacts
features introduce by the scanner.

We introduced a data-driven deep learning-based method to over-
come the above problem by learning a model using a relatively large
dataset (30 patients with 70 studies). We rely on this model to find the
subtle similarity between the same type of IEDs from inside and outside
the scanner. Validation on another large testing dataset (37 patients
with 78 studies) showed that our method could achieve median sensi-
tivity of 84.2% with false positive rate at 5 events/min, which is sig-
nificantly higher than that (50.0%) of the template-based method.

We have also found one factor (the duration property of the IEDs)
statistically significantly affecting the detection accuracy. We found
that the sensitivity of IEDs with duration tends to be higher compared
with that of IEDs without duration (p = 0.0477). This could be ex-
plained by the fact that IEDs with duration contain more fluctuating
signals that make them more easily separable from baseline.

Before performing the GLM analysis, we decided to let the expert
edit the EEG based on the detected events to remove false positive
events. The duration of detected events in our method is only
11% ± 5% to the duration of the original recording. We think it is
necessary to add this human editing procedure as it does not add too
much time, especially if we compare to marking the full recording.

Evaluation on 15 patients for reproducibility of hemodynamic re-
sponse maps showed that our method got results similar to GT results in
73.7% of studies at anatomical level and in 89.5% of studies at lobar
level. Comparisons with SEEG results showed both the GT results and
edited marking results achieved similar concordance rate in 76.9% of
the subjects. Furthermore, detailed inspection on the discordant studies
showed that the edited marking results produced hemodynamic re-
sponse maps with more reasonable activations (Please see the de-
scription in supplementary section: “comparisons of hemodynamic re-
sponse maps”, we have systemically compared the fMRI detection
results between our method and the GT method to their agreement with
the SOZ results of intracranial EEG (SEEG)). We concluded that our
method can reproduce comparable and even more reasonable hemo-
dynamic response maps compared to the GT results.

To generate candidate events for human editing, we decided to se-
lect a threshold that allow detection of at least 5 events/min. We chose
this value based on our evaluation that we can generally achieve

around 80% sensitivity when the false positive rate is 5 events/min and
also it does not add too much manual editing burden. In the template-
based method (Tousseyn et al., 2014), the authors proposed to adap-
tively select the threshold by using a set of healthy subjects. They
claimed that the adaptively selected threshold is more favorable to
control false-positive detection and to avoid the need for visual ver-
ification. However, the false positive detection is not only related to the
threshold but also related to other factors, such as the separability be-
tween the IEDs and the baseline, or the method used. Even if we chose a
very strict threshold, there may still be false positive events as they can
be mixed with the true events. So we think that visual inspection is
indispensable and we rely on the human expert to deal with false po-
sitive events.

Another interesting finding is that the event numbers are not ne-
cessarily the same between GT and edited marking. It is true that in our
current implementation we will miss some true positive events as the
editing is based on our candidate events. However, from the validation
section it seems that this does not matter too much as we can reproduce
similar hemodynamic response maps. We also find that sometimes the
edited marking results in more IEDs (in 13 out 21 of the studies) than
the GT one. One reason maybe that the expert missed some events in
the original marking as it is a time-consuming and difficult work. This is
an advantage of our method as the expert only needs to mark a set of
candidate events, which is only a small portion of the original re-
cording. It should also be noted that the manual marking of IEDs is a
subjective procedure. This may have a negative impact on the training
of our detector. How to tackle this problem and to further improve the
performance of our method is an open question and deserve further
exploration.

As noted in the “EEG/fMRI acquisition” section, there has an up-
dating of fMRI configuration at July 2018. We checked our dataset and
found that subjects scanned before July 2008 were not representative in
our dataset (only 4 subjects from our 37 test subjects). No significant
correlation with detection accuracy was found associated with this
factor. It is difficult to analyze the effect as many different factors may
affect the results, such as those listed in Table 1. The effects were also
implicitly handled by our training procedure as our training set con-
tains subjects scanned both before and after the change of MR config-
uration. The change in MR specs may have an effect on gradient and
ballistocardiographic (BCG) artifacts for the EEG data; it might be in-
teresting to analyze its influence on artifact removal methods.

To the best of our knowledge, there has no research that study the
interrater agreement on marking inside-scanner EEG yet. This is prob-
ably for two reasons: first, it is difficult to find several trained and ex-
perienced raters as one need to practice a lot to get used to the marking;
second, the traditional marking is time-consuming. The lack of inter-
rater agreement comparison is one limitation of our study. In this study,
we focused on reproducing similar results with one experienced rater.
As our assistant method can provide recommended events and can
greatly reduce marking labor, we would hope our method can also
improve the interrater reproducibility. As this research direction de-
serve deliberate and systematic investigation, we would investigate this
topic in our future work.

Fig. 8. Demonstration of marked events and the hemodynamic response maps for IED type 1 of patient 2.
a) One example of IED template marked outside of scanner shown on average montage (left) and bipolar montage (right). The IED contains spikes with or without slow waves with
maximum at F8, T4, T10 and P10. b) Top 6 candidate events proposed by our method for EEG inside scanner (Top: average montage, bottom: bipolar montage; Note that the candidate
events provide by our method contain periods of varying length). Red lines show the positions of IEDs from the GT results, while black lines show the positions of IEDs from the edited
results. The events were classified into different situations by marking the outlines with different colors, Green: IEDs from edited results that were missed in GT-results, Red: IEDs from
both GT and edited results, Blue: IEDs from GT-results that were missed in edited results. c) Corresponding hemodynamic response maps from GT manual markers (top) and edited makers
(bottom). The hemodynamic response map of GT results and edited marking results look similar and both of their primary clusters are concordant with SEEG-defined SOZ. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5. Conclusions

We propose a deep learning-based semi-automatic spike detector for
EEG-fMRI. Comparisons with expert marked IEDs showed that our
method is superior to the template based method and has a sufficient
performance to be used as an assistant IED marking tool for reducing
the manual marking burden and improving reproducibility. This will
render the application of EEG-fMRI to epilepsy more practical.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2017.12.005.
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maximum at F10, T10, F8 and T4. b) Top 6 candidate events proposed by our method for EEG inside scanner (Top: average montage, bottom: bipolar montage; Note that the candidate
events provide by our method contain periods of varying length). Red lines show the positions of IEDs from the GT results, while black lines show the positions of IEDs from the edited
results. The events were classified into different situations by marking the outlines with different colors, Green: IEDs from edited results that were missed in GT-results, Red: IEDs from
both GT and edited results. c) Corresponding hemodynamic response maps from GT manual markers (top) and edited makers (bottom). Red arrows denote the primary cluster hemo-
dynamic response map. The primary cluster of GT result is concordant with SEEG-defined SOZ; the activation regions of the two results look similar and the primary cluster of the edited
marking result is very close to the primary cluster of the GT result. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
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