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Crosstalk between astrocytic CXCL12 and
microglial CXCR4 contributes to the
development of neuropathic pain

Xin Luo, PhD1,2, Wai L Tai, MPhil1,2, Liting Sun, PhD1,2,
Zhiqiang Pan, PhD3, Zhengyuan Xia, PhD1,4, Sookja K Chung,
PhD2,4,5 and Chi Wai Cheung, MD1,4,5

Abstract

Background: Chemokine axis chemokine C-X-C motif ligand 12/C-X-C chemokine receptor type 4 (CXCL12/CXCR4) is

an emerging pain modulator, but mechanisms for its involvement in neuropathic pain remain unclear. Here, we aimed to study

whether CXCL12/CXCR4 axis modulated the development of neuropathic pain via glial mechanisms. In this study, two

mouse models of neuropathic pain, namely partial sciatic nerve ligation (pSNL) model and chronic post-ischemia pain (CPIP)

model, were used.

Results: In the dorsal horn of L3–L5 segment of spinal cord, CXCL12 and CXCR4 were expressed in both astrocyte and

microglia in normal mice. In the pSNL or CPIP model, the expression level of CXCL12 in the ipsilateral L3–L5 segment of

mice spinal cord was increased in an astrocyte-dependent manner on post-operative day (POD) 3. Intrathecal administration

of CXCL12 with AMD3100 (CXCR4 antagonist) or minocycline (microglia activation inhibitor), but not fluorocitrate (astro-

cyte activation inhibitor), reversed CXCL12-indued mechanical allodynia in naı̈ve mice. In these models, AMD3100 and

AMD3465 (CXCR4 antagonist), administered daily from 1 h before surgery and up to POD 3, attenuated the development of

mechanical allodynia. Moreover, AMD3100 administered daily from 1 h before surgery and up to POD 3 downregulated

mRNA levels of tumor necrosis factor alpha, interleukin 1b, and interleukin 6 in the ipsilateral L3–L5 segment of spinal cord

in the pSNL and CPIP models on POD 3.

Conclusion: This study demonstrates the crosstalk between astrocytic CXCL12 and microglial CXCR4 in the pathogenesis

of neuropathic pain using pSNL and CPIP models. Our results offer insights for the future research on CXCL12/CXCR4 axis

and neuropathic pain therapy.
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Background

Pathological pain is a disease caused by abnormal
processing in the nervous system under various patho-
logical conditions, which lasts for more than three
months clinically.1 Neuropathic pain is induced by the
lesion or the disease in the somatosensory nervous
system and is the major subtype of pathological pain.2

Central mechanisms contribute to the chronification of
pain and have been taken as the target in the research of
pathological pain, especially neuropathic pain.1,3

Mounting studies indicate that spinal glial cells (astro-
cyte and microglia) are activated in animal models of
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neuropathic pain4 and in patients suffering from chronic
pain.5,6 Then, these reactive glial cells release cytokines
and chemokines, which contribute to the neuroinflam-
mation and the central mechanisms of neuropathic
pain.7 Chemokines are small and secreted proteins
which include four subfamilies (C-C, C-X-C, X-C, and
C-X3-C).8 Chemokines bind to chemokine receptors that
belong to G-protein-coupled receptor (GPCR) family to
exert the biology function.9 Nowadays, increasing body
of preclinical evidence suggests chemokine axis, such as
chemokine C-C motif ligand 2/C-C chemokine receptor
type 2 (CCL2/CCR2) axis and chemokine (C-X3-C
motif) ligand 1 (CX3CL1)/C-X3-C chemokine receptor
type 1 (CX3CR1) axis,10–13 as the novel neuromodulator
in the pain perception.

Chemokine C-X-C motif ligand 12 (CXCL12) belongs
to C-X-C subfamily of chemokine and is the ligand of C-
X-C chemokine receptor type 4 (CXCR4). CXCL12/
CXCR4 axis widely exists in the central nerve system
(CNS) and serves multiple functions, from ‘‘well-
known’’ migration regulation to ‘‘newly found’’ neuro-
modulation.14 Knowledge from CXCL12 and CXCR4
knockout mice would be the best way for us to under-
stand the role of CXCL12/CXCR4 axis in pathological
pain. However, animals with the deficiency of CXCL12
or CXCR4 could not survive due to the abnormal tissue
development.15 The distribution of CXCL12/CXCR4
axis on the nociceptive structure and its pro-nociceptive
property indicates the involvement of this chemokine
axis in the pain perception. CXCL12/CXCR4 axis is dis-
tributed in different components in the nociceptor at the
peripheral nervous system, such as dorsal root ganglion
neuron, satellite glia, and Schwann cell,16–18 and at the
CNS, such as neuron, astrocyte, and microglia.16,19,20

Furthermore, CXCL12 peptide has been shown to
induce mechanical allodynia by peripheral18 and by cen-
tral administration.16,19 Moreover, CXCL12/CXCR4
axis was proved to function in the peripheral processing
of pathological pain as shown in animal models of dia-
betes disease, sciatic nerve injury, and acquired immune
deficiency syndrome.17,18,21–23 Recently, the role of
CXCL12/CXCR4 axis in central mechanisms of patho-
logical pain raised a growing concern.11 For example,
central CXCL12/CXCR4 axis contributed to the patho-
genesis of opioid tolerance.24 Moreover, the spinal
blockade of CXCL12/CXCR4 axis showed analgesic
effects in animal models of sciatic nerve injury25 and
bone cancer pain.19,26,27

Nowadays, CXCL12/CXCR4 axis has been con-
sidered an emerging pain modulator;28 however, the
common mechanisms accounting for roles of CXCL12/
CXCR4 axis in various pathological pain states, espe-
cially neuropathic pain, remain unclear. As the glial
mechanism is the common mechanism for neuropathic
pain,1 we hypothesized that the glial–glial crosstalk may

account for the involvement of CXCL12/CXCR4 axis in
a wide range of neuropathic pain conditions. To verify
this, the roles of CXCL12/CXCR4 axis in the central
mechanisms were explored in two different mouse
models of neuropathic pain, with partial sciatic nerve
ligation (pSNL) to induce peripheral neuropathic pain
(PNP)29 and chronic post-ischemia pain (CPIP) as a
model for complex regional pain syndrome (CRPS).30

Methods

Animals

Animal experiments in this study were approved by the
Committee on the Use of Live Animals in Teaching and
Research and performed according to the guidelines for
the care and use of laboratory animals as established by
the Laboratory Animal Unit at the University of Hong
Kong. The experiments were conducted using adult male
C57BL/6 wild-type mice (25–30 g). Animals were housed
at 23� 3�C, with humidity ranges between 25% and
45% under a 12-h light/12-h dark cycle (lights on at
07:00). The mice were offered free access to water and
food. They were fed with Lab Diet 5012 (1.0% calcium,
0.5% phosphorus, and 3.3 IU/g of vitamin D3).

pSNL model

The pSNLmodel is an animal model of PNP.29Mice were
anesthetized with the inhalation anesthesia by isoflurane
in O2. Under aseptic conditions, the right sciatic nerve was
exposed by an incision from the right sciatic notch to the
distal thigh. By using the femoral head as a landmark, the
location of the sciatic nerve ligation was identified.
Approximately half of the sciatic nerve was tightly ligated
with a 7-0 silk suture. The incision was closed with 5-0
cotton suture and disinfected with ethanol. As the control
treatments, the right sciatic nerve of sham-operated mice
was only exposed, but not ligated. Furthermore, time
after the operation was counted, when the nerve was
ligated. The first day after the surgery was counted as
post-operative day 1 (POD 1).

CPIP model

In the CPIP model, ischemia-and-reperfusion injury
(CPIP injury) caused the edema and mechanical allody-
nia in the mice hindpaw.31 As the symptoms usually
occur in the distal part of the affected limb in CRPS
patients, the CPIP model was developed and used to
study the pathology of CRPS-1.30 Animals were anesthe-
tized with the inhalation anesthesia by isoflurane in O2.
After the induction of anesthesia, Durometer O-rings
(O-rings West) were placed around the mice’s right hind-
limbs just proximal to the ankle joint and caused the
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CPIP injury to ipsilateral hindpaws. As the control treat-
ments, sham-operated mice were only anesthetized, but
not placed by O-rings. These rings were removed 3 h later
to induce the reperfusion. Furthermore, time after the
operation was counted, when O-ring was removed. The
first day after the surgery was counted as POD 1.

Study drugs

Rat CXCL12 peptide (Genscript) and two CXCR4
antagonists, AMD3100 (Sigma) and AMD3465
(Tocris), were prepared in saline on the day of the
experiment. Recombinant tumor necrosis factor alpha
(TNF-a) from Genscript was used. Astrocyte activation
inhibitor fluorocitrate (Sigma) and microglia activation
inhibitor minocycline (Sigma) were prepared in 1%
dimethyl sulfoxide (DMSO) on the day of the experi-
ment. Saline or 1% DMSO was taken as vehicle controls
in this study.

Cell culture

DI TNC1 astrocyte cell line, derived from rat dienceph-
alon type I astrocyte in a day 1 neonate, was used.32

These cells were maintained with Dulbecco’s modified
Eagle’s medium (Gibco) supplemented with 10% (v/v)
fetal bovine serum (Invitrogen) and 1% (v/v) penicillin/
streptomycin (P/S) (Invitrogen) at 37�C with 5% CO2.
Astrocytes (1� 105 cells/ml) were plated on six-well cul-
ture plate and treated with the medium (control) or
TNF-a (10, 100 ng/ml) for 24 h.

Intrathecal injection

A single dose of the intrathecal injection was performed
following previous protocol.33 Before the injection, mice
were anesthetized by gaseous anesthesia with isoflurane
and O2 as mentioned above. Using a microliter syringe
(Hamilton) with a 30-gauge needle (BD), a spinal cord
puncture was made to deliver a total volume of 5 ml of
drug(s) to the subarachnoid space between the L3 and L5
levels. Successful administration was indicated by a tail
configuration of the ‘‘S’’ type or tail swinging immedi-
ately after the administration.

von Frey test

Paw withdrawal threshold (PWT) of mice was assessed
by von Frey test, and the same protocol was used in our
previous research.34 Before the experiments, the mice
were placed in a transparent plastic dome with a metal
mesh floor for nearly 30min. PWT was measured with a
series of von Frey filaments (IITC). These filaments were
applied perpendicularly to the plantar surface of mice
hindpaws, with sufficient force to bend the filaments

into an ‘‘S’’ shape. Licking of the paw or quick with-
drawal was considered as a positive response.

Immunohistochemistry

Mice were deeply anesthetized with sodium pentobar-
bital and perfused with ice-cold 0.9% saline, followed
by 4% paraformaldehyde in 0.1M phosphate buffer via
the cardiovascular system. The ipsilateral and contralat-
eral L3–L5 spinal cord tissues were collected and post-
fixed in 4% paraformaldehyde and then dehydrated
overnight in 25% sucrose at 4�C. The tissue samples
were frozen in tissue freezing medium (Jung) and sliced
transversely at 15 mm, using a cryostat (Leica). The
sections were blocked with 10% normal goat serum in
phosphate-buffered saline (PBS) containing 0.1% Triton
X-100 (PBST) at room temperature for 2 h and incu-
bated with antibody(s), including CXCL12 (1:100,
Abcam, #25117), CXCR4 (1:100, Abcam, #2074), glial
fibrillary acidic protein (GFAP; 1:250, Abcam, #10062),
and ionized calcium binding adaptor molecule 1 (IBA1;
1:100, Abcam, #15690), at 4�C overnight. After washing
with PBS, sections were incubated for 2 h with secondary
antibody conjugated with Alexa Fluor 488 or/and 568
(Abcam) and followed by nuclear staining using DAPI
(Vector). The immunoreactivity in these sections was
detected with a confocal microscope LSM 710 (Zeiss),
and the immunofluorescent images were analyzed by
Image-Pro Plus (Media Cybernetics).

Rotarod test

To assess the potential side effects of treatments in this
study, a rotarod test was conducted to measure the
motor coordination and balance of the mice.35 Animals
were habituated to the rotarod apparatus (IITC) for two
consecutive days at low-speed rotation (5 r/min) for 600 s
each day before basal measurement. Mice that could not
stay on the rod for 600 s were excluded from this experi-
ment. During the experiment, the animals were tested in
three accelerating trials of 300 s with the rotarod speed
increasing from 5 to 40 r/min over first 120 s. There was
an inter-trial interval of at least 20min between each trial
for the same mouse. The falling latency of mice was rec-
orded for each trial with a cutoff time at 300 s.

Real-time polymerase chain reaction

After being euthanized with pentobarbital, both ipsilat-
eral and contralateral L3–L5 segments of spinal cord
were quickly removed from mice and stored at �80�C
until RNA extraction. These spinal cord segments were
homogenized in 1ml of ice-cold RNAiso Plus (Takara),
and total mRNA was extracted following the manufac-
turer’s protocol. The quality and quantity of extracted
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RNA were determined with GeneQuant spectrophotom-
eter (Pharmacia). cDNA library was prepared by the
reverse transcription using 2 mg of the extracted total
mRNA with the reverse transcriptase (Life
Technologies). Then, these cDNA samples were diluted
and stored at �20�C until further tests. Real-time poly-
merase chain reaction (PCR) test was performed using
Taqman chemistry method (Life Technologies), and the
probes of targets, including TNF-a, interleukin 6 (IL-6),
IL-1b, substance P (SP), calcitonin gene-related peptide
(CGRP), prodynorphin (PDYN), and b-actin (as inter-
nal reference; Life Technologies), were used in this study.

Statistical analysis

The data were expressed as means�SEM. Results from
the immunohistochemical work and the real-time PCR
test (on the samples from in vitro work) were tested using
one-way analysis of variance (ANOVA) followed by
Tukey’s post hoc test. Two-way ANOVA followed by
Tukey’s post hoc test were used to analyze data from
the von Frey test, the rotarod test, and the real-time
PCR test (on the samples from in vivo work). A p
value< 0.05 was considered to be statistically significant
in this study.

Results

Mechanical allodynia developed in the pSNL
and CPIP models

In this study, the ipsilateral hindpaws of pSNL-injured
mice showed decrease in the PWT from POD 1 to POD
21 in the pSNL model (p< 0.001, n¼ 6, Figure 1(a)).

In CPIP-injured mice, the ipsilateral PWT was decreased
from POD 2 to POD 21 comparing to that of POD 7
(p< 0.05, n¼ 6, Figure 1(b)). However, it was increased
on POD 21 (p< 0.001). Moreover, CPIP-injured mice
showed transient edema in the ipsilateral hindpaws
from 1h to POD1 (p< 0.001, n¼ 5, data not shown).

Expression and distribution of CXCL12/CXCR4 axis
in the lumbar spinal cord of mice

Next, we used immunofluorescence co-staining to inves-
tigate whether CXCL12 and CXCR4 were co-expressed
in glia cell of spinal cord of naı̈ve mice. We found that
CXCL12 and CXCR4 were co-expressed with GFAP
and IBA1, indicating CXCL12 and CXCR4 were
expressed in both astrocyte and microglial cells of
spinal cord (Figure 2).

Expression pattern of CXCL12 in the lumbar spinal
cord in the pSNL and CPIP models

The expression pattern of CXCL12 axis in the spinal
cord has not been reported in the pSNL or CPIP
model. To explore this, animals were divided into
three groups (sham group, pSNL POD 3 group, and
CPIP POD 3 group, n¼ 3 in each group), which
received sham, pSNL, and CPIP surgery, respectively.
Then, the spinal cord tissues were harvested on POD 3
for the immunohistochemical study. In the ipsilateral
lumbar spinal cord dorsal horn, the spinal expression
of GFAP was increased on POD 3 in both pSNL and
CPIP models (p< 0.05, Figure 3(a) and (b)). The
expression of CXCL12 was also increased in the ipsi-
lateral spinal cord dorsal horn of mice receiving the

Figure 1. Mechanical allodynia developed in pSNL- or CPIP-injured mice. The PWTof mice was decreased in the pSNL model (a) and the

CPIP model (b) as determined by the von Frey test. Results are means� SEM (n¼ 5–6). ***p< 0.001 and *p< 0.05 versus the baseline and
###p< 0.001 versus data on POD 7 from the same group.

pSNL: partial sciatic nerve ligation; CPIP: chronic post-ischemia pain; PWT: paw withdrawal threshold; POD: post-operative day.
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pSNL or CPIP surgery, comparing to that in sham-
operated mice (p< 0.05, Figure 3(a) and (c)).
Moreover, CXCL12 was mainly co-localized with
GFAP in both models (Figure 3(a)). As the spinal
expression of TNF-a was increased in the pSNL and
CPIP models as mentioned below, TNF-a was applied
to induce the pathological insult in vitro in the current

study (n¼ 4 in each group). Our results showed that
TNF-a increased mRNA levels of CXCL12 in astro-
cyte in a dose-dependent manner (p< 0.001,
Figure 3(d)). However, there was no any change in
the expression of CXCR4 at the ipsilateral lumbar
spinal cord among mice receiving pSNL, CPIP, or
sham operation (data not shown).

Figure 2. Expression and distribution of CXCL12/CXCR4 axis in L3–L5 segment of spinal cord in normal mice. In the spinal cord dorsal

horn, CXCL12 (green) and CXCR4 (green) were co-expressed with IBA1 (red) and GFAP (red). High-resolution images were shown in

boxes, the co-expression was marked with arrows, and nuclear was marked with blue (original magnification: 200�, scale bar¼ 100mm).

CXCL12/CXCR4: chemokine C-X-C motif ligand 12/C-X-C chemokine receptor type 4; GFAP: glial fibrillary acidic protein; IBA1: ionized

calcium binding adaptor molecule 1.
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Cellular mechanisms accounting for CXCL12/
CXCR4-mediated nociception in naı̈ve mice

As CXCR4 was expressed in microglia and astrocyte as
mentioned above, the cellular targets of astrocytic
CXCL12 in the neuropathic pain were further assessed.
Minocycline is a selective inhibitor of the microglial acti-
vation, whereas fluorocitrate is a selective inhibitor of the

astrocytic activation at a relatively low concentration.36

These two glial activation inhibitors were found to
account for the analgesic effects in various neuropathic
pain models,37 and they were thus used in this study.
Normal mice were randomly divided into five groups,
and the pain behavioral responses (PWT) of these mice
were assessed by the von Frey test. In these groups, mice
received a single intrathecal injection of (1) CXCL12 rat

Figure 3. Expression pattern of CXCL12 in ipsilateral L3–L5 segment of spinal cord in the pSNL or CPIP model. (a) The immunor-

eactivity of GFAP (red) and CXCL12 (green) were increased in the ipsilateral lumbar spinal cord of pSNL-injured and CPIP-injured mice on

POD 3, which was summarized in (b) and (c). Original magnification: 200� for all the confocal images (Bar¼ 100 mm). (d) TNF-a increased

the mRNA levels of CXCL12 in astrocyte in vitro. Results are means� SEM (n¼ 3). ***p< 0.001, **p< 0.01 and *p< 0.05 versus sham

group. ###p< 0.001 versus TNF-a 0 ng group.

CXCL12: chemokine C-X-C motif ligand 12; GFAP: glial fibrillary acidic protein; pSNL: partial sciatic nerve ligation; CPIP: chronic post-

ischemia pain; POD: post-operative day; TNF-a: tumor necrosis factor alpha.
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peptide (250 ng, n¼ 6), (2) CXCL12 rat peptide (250 ng)
and AMD3100 (5 mg) (n¼ 6), (3) CXCL12 rat peptide
(250 ng) and minocycline (15 mg), (4) CXCL12 rat pep-
tide (250 ng) and fluorocitrate (2 mg), and (5) 1% DMSO
as the vehicle control (n¼ 6). As shown in Figure 2, the
intrathecal delivery of 1% DMSO did not influence PWT
in normal mice (p> 0.05). A single intrathecal injection
of rat CXCL12 peptide (250 ng) decreased PWT from 1h
to one day after the treatment (p< 0.05), comparing to
the baseline. The co-administration of CXCL12 peptide
(250 ng) and AMD3100 (5 mg) also did not affect PWT in
normal mice as compared to the baseline (p> 0.05).
Similarly, the intrathecal administration of CXCL12
(250 ng) and minocycline (15 mg) did not affected the
PWT. In contrast, the intrathecal administration of
CXCL12 (250 ng) with fluorocitrate (2 mg) decreased
PWT from 1h to one day after the injection in normal
mice (p< 0.05), comparing to the baseline (Figure 4).

Effects of intrathecal CXCR4 antagonists on
motor function in naı̈ve mice

AMD3100 and AMD3465 are CXCR4-specific antagon-
ists. AMD3465 exhibited nearly 10-fold affinity to
CXCR4, comparing to AMD3100.38 To explore the

effects of these reagents on the motor function, normal
mice were randomly divided into three groups. The study
drugs were given intrathecally, and motor function was
assessed by the rotarod test then. Animals respectively
received intrathecal AMD3100 (10mg, n¼ 6), AMD3465
(10 mg, n¼ 6), and saline (control, n¼ 6) for four days
consecutively. Comparing to the control treatment, the
intrathecal injection of AMD3100 or AMD3465 did not
affect the falling latency (p> 0.05) (Figure 5).

Effects of intrathecal AMD3100 or AMD3465
on the development of mechanical allodynia
in the pSNL model

The effects of intrathecal CXCR4 antagonists on mech-
anical allodynia in pSNL-injured mice were assessed by
the von Frey test. Animals were randomly divided into
three groups before receiving the study drugs and the
von Frey test. In these groups, mice received a single
intrathecal injection of AMD3100 (10mg, n¼ 10),
AMD3465 (10 mg, n¼ 7), or saline (vehicle, n¼ 6) daily
from 1 h before the surgery and up to POD 3. Following
the pSNL surgery, mice from the three groups exhibited
decrease in the PWT from POD 1 to POD 14 (p< 0.001).
Comparing to control group, intrathecal AMD3100

Figure 4. Cellular mechanisms accounting for CXCL12/CXCR4 axis-mediated nociception in naı̈ve mice. The co-treatment of CXCL12

with AMD3100 and minocycline, but not fluorocitrate, prevented CXCL12-induced mechanical allodynia. Results are means� SEM (n¼ 6–

8). ***p and ###p< 0.001, *p< 0.05 versus the baseline.

CXCL12/CXCR4: chemokine C-X-C motif ligand 12/C-X-C chemokine receptor type 4; DMSO: dimethyl sulfoxide.
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increased the ipsilateral PWT from POD 1 to POD 6
(p< 0.001) and intrathecal AMD3465 increased the ipsi-
lateral PWT from POD 1 to POD 4 (p< 0.05, Figure
6(a)). The pSNL surgery or the intrathecal treatment of
AMD3100 or AMD3465 did not affect the contralateral
PWT (Figure 6(b)).

Effects of intrathecal AMD3100 on the spinal
production of pain molecules in the pSNL model

The molecular mechanisms accounting for the anti-allo-
dynia effects of CXCR4 antagonism on the development
of PNP remain unclear. Therefore, we studied the effects
of intrathecal AMD3100 on the spinal production of
pain-related molecules in the pSNL models. After
pSNL-injured mice had been received intrathecal
AMD3100 (n¼ 8) or saline (n¼ 6) daily from 1h
before the surgery and up to POD 3, both ipsilateral
and contralateral L3–L5 segments of spinal cord tissue
were harvested on POD 3, and the mRNA levels of pain
molecules were assessed by real-time PCR test. In saline
group, the unilateral sciatic nerve injury increased the
mRNA levels of TNF-a, IL-6, SP, CGRP, and PDYN
(p< 0.05), but did not increase the mRNA levels of IL-
1b, in the ipsilateral lumbar spinal cord as compared to
their contralateral levels (p> 0.05). Comparing to the
control group, intrathecal AMD3100 decreased the ipsi-
lateral levels of TNF-a and IL-6 (p< 0.05) and increased

the contralateral levels of PDYN in pSNL-injured mice
(p< 0.05, Figure 7).

Effects of intrathecal AMD3100 or AMD3465
on the development of mechanical allodynia
in the CPIP model

The behavioral effects after intrathecal CXCR4 antagon-
ists were also studied in the CPIP model. Normal mice
were randomly divided into three groups. In these three
groups, animals received a single intrathecal injection of
AMD3100 (10 mg, n¼ 9), AMD3465 (10mg, n¼ 8), or
saline as the vehicle (n¼ 6) daily from 1h before the
surgery and up to POD 3. Animals from control group
showed decrease in the PWT from POD 2 to POD 14
(p< 0.001). Mice receiving intrathecal AMD3100 also
showed decrease in the ipsilateral PWT from POD 4 to
POD 14 (p< 0.001). Comparing to control group, intra-
thecal AMD3100 progressively and significantly
increased ipsilateral PWT on POD 3 and 4 (p< 0.05).
Mice receiving intrathecal AMD3465 exhibited
decreased ipsilateral PWT from POD 5 to POD 14
(p< 0.001). Comparing to the control group, intrathecal
AMD3465 increased the ipsilateral PWT on POD 4
(p< 0.001, Figure 8(a)). Moreover, CPIP injury or the
intrathecal treatment of AMD3100 or AMD3465 did not
affect the contralateral PWT (Figure 8(b)). These results
indicated that central CXCL12/CXCR4 blockade also

Figure 5. Effects of intrathecal injection of two CXCR4 antagonists on motor function in naı̈ve mice. The falling latency of mice were not

affected by intrathecal AMD3100, AMD3465, or saline. Results are means� SEM (n¼ 5–6).

CXCR4: C-X-C chemokine receptor type 4.
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Figure 6. Effects of intrathecal AMD3100 or AMD3465 on the development of mechanical allodynia in the pSNL model. The PWT of

pSNL-injured mice was increased by intrathecal AMD3100 and AMD3465 in the ipsilateral (a) but not the contralateral (b) hindpaws as

compared to the saline group. Results are means� SEM (n¼ 6–10). ***p, ###p, and cccp< 0.001 and #p< 0.05 versus the baseline. aaap and
bbbp< 0.001, bbp< 0.01 and bp< 0.05 versus the saline group.

pSNL: partial sciatic nerve ligation; POD: post-operative day; PWT: paw withdrawal threshold.

Figure 7. Effects of intrathecal AMD3100 on the spinal production of pain molecules in the pSNL model. After pSNL-injured mice

receiving the intrathecal injection of AMD3100 (n¼ 8) or saline (n¼ 6), the lumbar spinal cord tissue was harvested on POD 3, and pain

molecule levels were assessed by the real-time PCR test, including pro-inflammatory cytokines (a) and neuropeptides (b). Results are

means� SEM (n¼ 6–8). ###p< 0.001, aap< 0.01, ap< 0.05 versus the contralateral data in the saline group. bp< 0.05 versus the contra-

lateral data in AMD3100 group. *p< 0.05 versus the ipsilateral data in the saline group.

TNF-a: tumor necrosis factor alpha; IL-6: interleukin 6; IL-1b: interleukin 1-beta; pSNL: partial sciatic nerve ligation; POD: post-operative

day.
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attenuated the development of mechanical allodynia in
the CPIP model.

Effects of intrathecal AMD3100 on the spinal
production of pain molecules in the CPIP model

The molecular mechanisms for intrathecal AMD3100 in
pain were also studied in the CPIP model. After having
received intrathecal injections of AMD3100 (10mg,
n¼ 8) or saline (n¼ 6) for four consecutive days, both
ipsilateral and contralateral L3–L5 segments of spinal
cord were harvested from the CPIP-injured mice on
POD 3, and the levels of pain molecules were assessed
by the real-time PCR test. In saline group, CPIP injury
increased the ipsilateral levels of TNF-a, IL-6, IL-1b, SP,
and PYDN (p< 0.05) and decreased the ipsilateral level
of CGRP, comparing to their contralateral levels
(p< 0.05, Figure 9). Comparing to saline group, intra-
thecal AMD3100 decreased the ipsilateral levels of TNF-
a, IL-6, and IL-1b (p< 0.05) and the contralateral level
of CGRP (p< 0.05, Figure 9).

Discussion

In the present study, two different types of neuropathic
pain models were used. The pSNL model is a classic PNP
model.29 In this model, pSNL-injured animals showed
pain behavioral signs of patients with causalgia, and the
mechanical allodynia induced in these animals lasted for
weeks. The mechanisms accounting for CRPS are not
fully understood, but neuropathy is considered as an
essential factor in the pathogenesis of CRPS.39 The
CPIP model has been developed as an animal model of
CRPS type 1.30 In the CPIP model, the ischemia-and-

reperfusion injury caused the transient edema and mech-
anical allodynia, two important features of CRPS type 1.
In the current study, it was found that CXCL12 and
CXCR4 were expressed in astrocyte and microglia.
Therefore, it is highly possible that CXCL12/CXCR4
axis might be involved in the central mechanisms of
pain through the glial–glial (astrocyte–astrocyte, micro-
glia–microglia, or/and astrocyte–microglia) crosstalk.
With the use of these two neuropathic pain models, we
aimed to explore whether CXCL12/CXCR4 axis would
be involved in the communication between glial cells and
would contribute to the development of neuropathic pain.

In the pSNL or CPIP model, the spinal expression of
GFAP was increased following the surgery. Spinal
astrocyte is activated under various neuropathic pain
conditions which contribute to the persistent pain by
releasing cytokines and chemokines.40 Therefore, react-
ive astrocyte might contribute to the central mechanisms
for pain hypersensitivity in the pSNL or CPIP model. In
these two models, the spinal expression of CXCL12 was
increased and mainly expressed in reactive astrocyte on
POD 3, an early stage of persistent pain. Furthermore,
the expression pattern of CXCL12 in astrocyte was fur-
ther substantiated by our in vitro study results.
Previously, it was reported that CXCL12 was expressed
in an astrocyte-dependent way in a bone cancer pain
model, which was reversed by the intrathecal administra-
tion of the astrocyte inhibitor fluorocitrate.19 Our results
also supported that the spinal level of CXCL12 was
increased in an astrocyte-dependent manner under vari-
ous neuropathic pain conditions. In normal mice, intra-
thecal AMD3100 reversed CXCL12-induced mechanical
allodynia, which confirmed the pro-nociceptive proper-
ties of central CXCL12/CXCR4 axis.16,19,26 It was

Figure 8. Effects of intrathecal AMD3100 or AMD3465 on the development of mechanical allodynia in the CPIP model. The PWTof CPIP

mice was increased by intrathecal AMD3100 and AMD3465 in the ipsilateral (a) but not the contralateral (b) hindpaws as compared to the

saline group. Results are means� SEM (n¼ 6–10). Results are means� SEM (n¼ 6–9). ***p, ###p, and cccp< 0.001 and **p< 0.01 versus

the baseline. bbbp< 0.001, aap< 0.01, and ap< 0.05 versus the saline group.

CPIP: chronic post-ischemia pain; POD: post-operative day; PWT: paw withdrawal threshold.
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further showed that intrathecal minocycline, but not
fluorocitrate, attenuated CXCL12-induced allodynia,
which implicated that microglial CXCR4 might play a
major role in CXCL12-induced allodynia. Moreover, the
intrathecal intervention with two CXCR4 antagonists,
AMD3100 and AMD3465, delayed the development of
chronic pain without impairing the motor function.
Spinal blockade of CXCL12/CXCR4 axis signaling was
reported to attenuate pain hypersensitivity in a PNP
model25 and a bone cancer pain.19 Taken together, our
immunohistochemical and pharmacological evidence
uncovered the cellular and molecular pattern of
CXCL12/CXCR4 axis-mediated glial crosstalk in the
pSNL and CPIP models.

Intracellular elements downstream to GPCR modu-
late gene transcription through a signaling-dependent
manner.41 Since CXCR4 belongs to GPCR family, we
thus evaluated whether the levels of pain molecules were

regulated by central CXCL12/CXCR4 axis in neuro-
pathic pain. TNF-a, IL-6, and IL-1b represented an
important group of pro-inflammatory pain mediators,
and they were mainly released by spinal microglia in
the development of neuropathic pain.4,42,43 It has been
found that pro-inflammatory cytokines contribute to the
synaptic plasticity44 and the glial–glial interaction45

under different neuropathic pain conditions. In this
study, spinal level of TNF-a and IL-6 is upregulated in
the pSNL model, which is in line with their contributive
role in the pain processing and consistent with previous
findings in a model of peripheral neuropathy.46 The
expression pattern of spinal cytokines in the CPIP
model has not been reported before, and we first found
that the levels of TNF-a, IL-6, and IL-1b were increased
in the ipsilateral lumbar spinal cord by the CPIP injury.
In a model of sciatic nerve injury, pharmacological
evidence has shown that microglia contributed to

Figure 9. Effects of intrathecal AMD3100 on the spinal production of pain molecules in the CPIP model. After IR-injured mice receiving

the intrathecal injection of AMD3100 (n¼ 8) or saline (n¼ 6), the lumbar spinal cord tissue was harvested on POD 3, and the levels of pain

molecules were assessed by real-time PCR test, including pro-inflammatory cytokines (a) and neuropeptides (b). Results are means� SEM

(n¼ 6–8). #p< 0.05 and ap< 0.05 versus the contralateral data in the saline group. bp< 0.05 versus the contralateral data in AMD3100

group. *p< 0.05 versus the ipsilateral data in the saline group.

TNF-a: tumor necrosis factor alpha; IL-6: interleukin 6; IL-1b: interleukin 1-beta; CPIP: chronic post-ischemia pain; SP: substance P; CGRP:

calcitonin gene-related peptide; PDYN: prodynorphin; IR: ischemia-and-reperfusion.
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the development of pain hypersensitivity and neuroin-
flammation.47 Previously, it was shown that CXCL12/
CXCR4 axis modulates the production of proinflamma-
tory cytokines (TNF-a and IL-6) in microglia
in vitro.45,48 Here, our results first showed that the
spinal blockade of CXCL12/CXCR4 axis downregulated
levels of these pro-inflammatory cytokines in both the
pSNL and CPIP models. Taken together, our results
demonstrated the crosstalk between astrocytic CXCL12
and microglial CXCR4, which might contribute to pain
hypersensitivity via modulating the neuroinflammation
in the pSNL and CPIP models.

Among pain neuropeptides, SP was essential to the
pain signal transduction at the lumbar spinal cord,
while CGRP facilitated SP-mediated pain signaling.49

Our results showed that the spinal level of SP was
increased in two neuropathic pain models whereas that

of CGRP levels was only increased in the pSNL model.
Such difference in the expression pattern of CGRP and
SP might represent the difference in the central mechan-
isms between PNP and CRPS potentially. Even
CXCL12/CXCR4 axis was co-localized with SP and
CGRP in rat spinal cord,16 we could not find that the
spinal blockade of CXCL12/CXCR4 axis affect the levels
of SP and CGRP at the ipsilateral spinal cord in both
models. These findings implicated that CXCL12/CXCR4
axis might not modulate SP or CGRP-mediated pain
signaling in the pathogenesis of neuropathic pain. In
both pSNL and CPIP models, we found that the ipsilat-
eral level of PDYN was increased on POD 3. PDYN-
containing neurons are widely distributed on the pain-
related brain areas, and PDYN-derived peptides
promote the abnormal pain perception.50 Here, our
results first showed the involvement of PDYN in the

Figure 10. Proposed mechanisms for CXCL12/CXCR4 axis in the pathogenesis of pain hypersensitivity in the pSNL or CPIP model.

pSNL injury or CPIP injury might facilitate the increase of CXCL12 in the spinal cord dorsal horn through an astrocyte-dependent manner.

By binding to microglial CXCR4, CXCL12 might increase the production of pro-inflammatory cytokines in microglia and contribute to the

development of neuropathic pain.

CXCL12/CXCR4: chemokine C-X-C motif ligand 12/C-X-C chemokine receptor type 4; CPIP: chronic post-ischemia pain; pSNL: partial

sciatic nerve ligation; TNF-a: tumor necrosis factor alpha; IL-1b: interleukin 1-beta; IL-6: interleukin 6.
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spinal cord in neuropathic pain development. The cross-
talk between chemokine and opioid system has been con-
sidered as an emerging target for chronic pain therapy.51

However, it was found that spinal level of PDYN was
not affected by AMD3100 in the pSNL or CPIP model,
suggesting that CXCL12/CXCR4 axis may not interact
with PDYN at least in the current experimental settings.
Additionally, our results also showed that other pain
molecules might not contribute to CXCL12/CXCR4
axis-mediated pain processing in the pSNL or CPIP
model, including proopiomelanocortin, proenkephalin,50

endothelin-1, endothelin receptor A, endothelin receptor
B,32,34,52 intercellular adhesive molecules-1, and vascular
cell adhesive molecules-153 (data not shown).

Based on the results presented in the current study,
the mechanisms for central CXCL12/CXCR4 axis in the
development of pain hypersensitivity in the pSNL or
CPIP model are proposed at Figure 10. pSNL or CPIP
injury leads to the increase of CXCL12 in the spinal
dorsal horn through an astrocyte-dependent manner.
By binding to microglial CXCR4, CXCL12 increases
the production of pro-inflammatory cytokines in micro-
glia, which contributes to the development of pain hyper-
sensitivity. In this study, we found that CXCL12/
CXCR4 axis contributed to the development of the neu-
roinflammation and pain hypersensitivity in two neuro-
pathic pain models.

In conclusion, our study demonstrates that CXCL12
is mainly expressed in astrocyte, while CXCR4 in both
astrocyte and microglia in the mouse spinal cord. In the
pSNL or CPIP model, the spinal expression of CXCL12
is upregulated in an astrocyte-dependent manner at the
early stage of the development of neuropathic pain. It is
further found that intrathecal CXCL12 induces mechan-
ical allodynia via microglial CXCR4. In both pSNL and
CPIP models, the spinal blockade of CXCL12/CXCR4
axis delays the development of mechanical allodynia and
neuroinflammation. This study suggests that the cross-
talk between astrocytic CXCL12 and microglial CXCR4
is involved in the pathogenesis of neuropathic pain
hypersensitivity using the pSNL and CPIP models. Our
results provide new insights for the future research on
CXCL12/CXCR4 axis and neuropathic pain.

Author Contributions

XL, ZX, SKC, and CWC have made substantial contri-
butions to the experiment design; XL and WLT have
made substantial contributions to the acquisition of
data; XL, LS, ZP, ZX, SKC, and CWC have made sub-
stantial contributions to the analysis and interpretation
of data. All authors have been involved in drafting the
manuscript or revising it critically for important intellec-
tual content. All authors have given final approval for
the manuscript to be submitted.

Acknowledgment

The authors would like to thank Dr. Chaoliang Tang,

Department of Anesthesiology, Anhui Provincial Hospital,
Anhui Medical University, for help in the animal experiment.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This study was supported by the Small Project Fund

(201409176065) from the University of Hong Kong and the
department fund, Department of Anaesthesiology, the
University of Hong Kong.

References

1. Kuner R. Central mechanisms of pathological pain. Nat
Med 2010; 16: 1258–1266.

2. Baron R, Binder A and Wasner G. Neuropathic pain: diag-
nosis, pathophysiological mechanisms, and treatment.

Lancet Neurol 2010; 9: 807–819.
3. Latremoliere A and Woolf CJ. Central sensitization: a gen-

erator of pain hypersensitivity by central neural plasticity.

J Pain 2009; 10: 895–926.
4. Watkins LR, Milligan ED and Maier SF. Glial activation:

a driving force for pathological pain. Trends in Neurosci
2001; 24: 450–455.

5. Loggia ML, Chonde DB, Akeju O, et al. Evidence for
brain glial activation in chronic pain patients. Brain 2015;

138: 604–615.
6. Del Valle L, Schwartzman RJ and Alexander G. Spinal

cord histopathological alterations in a patient with long-

standing complex regional pain syndrome. Brain Behav

Immun 2009; 23: 85–91.
7. Gosselin RD, Suter MR, Ji RR, et al. Glial cells and

chronic pain. Neuroscientist 2010; 16: 519–531.
8. Zlotnik A and Yoshie O. Chemokines: a new classification

system and their role in immunity. Immunity 2000; 12:
121–127.

9. Allen SJ, Crown SE and Handel TM. Chemokine: receptor
structure, interactions, and antagonism. Annu Rev Immunol

(Palo Alto, Annual Reviews) 2007; 25: 787–820.
10. Gao YJ and Ji RR. Chemokines, neuronal-glial inter-

actions, and central processing of neuropathic pain.

Pharmacol Ther 2010; 126: 56–68.
11. Ji RR, Xu ZZ and Gao YJ. Emerging targets in neuroin-

flammation-driven chronic pain. Nat Rev Drug Discov
2014; 13: 533–548.

12. White FA, Jung H and Miller RJ. Chemokines and the
pathophysiology of neuropathic pain. Proc Natl Acad Sci

U S A 2007; 104: 20151–20158.
13. Rostene W, Dansereau MA, Godefroy D, et al.

Neurochemokines: a menage a trois providing new insights

on the functions of chemokines in the central nervous
system. J Neurochem 2011; 118: 680–694.

Luo et al. 13



14. Li MZ and Ransohoff RA. Multiple roles of chemokine
CXCL12 in the central nervous system: a migration from

immunology to neurobiology. Prog Neurobiol 2008; 84:
116–131.

15. Tachibana K, Hirota S, Iizasa H, et al. The chemokine

receptor CXCR4 is essential for vascularization of the
gastrointestinal tract. Nature 1998; 393: 591–594.

16. Reaux-Le Goazigo A, Rivat C, Kitabgi P, et al. Cellular

and subcellular localization of CXCL12 and CXCR4 in rat
nociceptive structures: physiological relevance. Eur
J Neurosci 2012; 36: 2619–2631.

17. Bhangoo SK, Ren DJ, Miller RJ, et al. CXCR4 chemokine

receptor signaling mediates pain hypersensitivity in associ-
ation with antiretroviral toxic neuropathy. Brain Behav

Immun 2007; 21: 581–591.
18. Oh SB, Tran PB, Gillard SE, et al. Chemokines and glyco-

protein 120 produce pain hypersensitivity by directly excit-
ing primary nociceptive neurons. J Neurosci 2001; 21:

5027–5035.
19. Shen W, Hu XM, Liu YN, et al. CXCL12 in astrocytes

contributes to bone cancer pain through CXCR4-mediated

neuronal sensitization and glial activation in rat spinal
cord. J Neuroinflammation 2014; 11: 75.

20. Knerlich-Lukoschus F, von der Ropp-Brenner B, Lucius

R, et al. Spatiotemporal CCR1, CCL3(MIP-1 alpha),
CXCR4, CXCL12(SDF-1 alpha) expression patterns in a
rat spinal cord injury model of posttraumatic neuropathic

pain. J Neurosurg-Spine 2011; 14: 583–597.
21. Bhangoo SK, Ripsch MS, Buchanan DJ, et al. Increased

chemokine signaling in a model of HIV1-associated per-

ipheral neuropathy. Mol Pain 2009; 5: 48.
22. Dubovy P, Klusakova I, Svizenska I, et al. Spatio-tem-

poral changes of SDF1 and its CXCR4 receptor in the

dorsal root ganglia following unilateral sciatic nerve
injury as a model of neuropathic pain. Histochem Cell
Biol 2010; 133: 323–337.

23. Chen G, Park CK, Xie RG, et al. Intrathecal bone marrow
stromal cells inhibit neuropathic pain via TGF-beta secre-
tion. J Clin Invest 2015; 125: 3226–3240.

24. Rivat C, Sebaihi S, Van Steenwinckel J, et al. Src family
kinases involved in CXCL12-induced loss of acute mor-
phine analgesia. Brain Behav Immun 2014; 38: 38–52.

25. Luo X, Tai WL, Sun L, et al. Central administration of C-
X-C chemokine receptor type 4 antagonist alleviates the
development and maintenance of peripheral neuropathic

pain in mice. PLOS ONE 2014; 9: e104860.
26. Hu X-M, Liu Y-N, Zhang H-L, et al. CXCL12/CXCR4

chemokine signaling in spinal glia induces pain hypersen-

sitivity through MAPKs-mediated neuroinflammation in
bone cancer rats. J Neurochem 2015; 132: 452–463.

27. Liu Y, Shen W, Hu X, et al. Role of chemokine CXCL12

in spinal cord in development of bone cancer pain in rats:
relationship with microglial activation. Chin J Anesthesiol
2014; 34: 40–42.

28. Luo X, Wang X, Xia Z, et al. CXCL12/CXCR4 axis: an
emerging neuromodulator in pathological pain. Rev
Neurosci 2016; 27: 83–92.

29. Bennett GJ and Xie YK. A peripheral mononeuropathy in
rat that produces disorders of pain sensation like those
seen in man. Pain 1988; 33: 87–107.

30. Coderre TJ, Xanthos DN, Francis L, et al. Chronic post-

ischemia pain (CPIP): a novel animal model of complex

regional pain syndrome-type I (CRPS-I; reflex sympathetic

dystrophy) produced by prolonged hindpaw ischemia and

reperfusion in the rat. Pain 2004; 112: 94–105.
31. Millecamps M, Laferriere A, Ragavendran JV, et al. Role

of peripheral endothelin receptors in an animal model of

complex regional pain syndrome type 1 (CRPS-I). Pain

2010; 151: 174–183.
32. Hung VKL, Tai L, Luo X, et al. Targeted overexpression

of astrocytic endothelin-1 attenuates neuropathic pain by

upregulating spinal excitatory amino acid transporter-2.

J Mol Neurosci 2015; 57: 1–7.

33. Fairbanks CA. Spinal delivery of analgesics in experimen-

tal models of pain and analgesia. Adv Drug Deliv Rev 2003;

55: 1007–1041.
34. Hung VKL, Chen SMY, Tai LW, et al. Over-expression of

endothelin-1 in astrocytes, but not endothelial cells, ameli-

orates inflammatory pain response after formalin injection.

Life Sci 2012; 91: 618–622.
35. Dunham NW and Miya TS. A note on a simple apparatus

for detecting neurological deficit in rats and mice. J Am

Pharm Assoc 1957; 46: 208–209.

36. Wieseler-Frank J, Maier SF and Watkins LR. Central

proinflammatory cytokines and pain enhancement.

Neurosignals 2005; 14: 166–174.
37. Cao H and Zhang YQ. Spinal glial activation contributes

to pathological pain states. Neurosci Biobehav Rev 2008;

32: 972–983.
38. Hatse S, Princen K, Clercq ED, et al. AMD3465, a mono-

macrocyclic CXCR4 antagonist and potent HIV entry

inhibitor. Biochem Pharmacol 2005; 70: 752–761.

39. Maihofner C, Seifert F and Markovic K. Complex regional

pain syndromes: new pathophysiological concepts and

therapies. Eur J Neurol 2010; 17: 649–660.
40. Gao YJ and Ji RR. Targeting astrocyte signaling for

chronic pain. Neurotherapeutics 2010; 7: 482–493.
41. Kang JH, Shi YF, Xiang B, et al. A nuclear function of

beta-arrestin1 in GPCR signaling: regulation of histone

acetylation and gene transcription. Cell 2005; 123:

833–847.
42. Taves S, Berta T, Chen G, et al. Microglia and spinal cord

synaptic plasticity in persistent pain. Neural Plasticity

2013; 10: 753656.

43. Calvo M and Bennett DLH. The mechanisms of microglio-

sis and pain following peripheral nerve injury. Exp Neurol

2012; 234: 271–282.
44. Kawasaki Y, Zhang L, Cheng JK, et al. Cytokine mech-

anisms of central sensitization: distinct and overlapping

role of interleukin-1 beta, interleukin-6, and tumor necrosis

factor-beta in regulating synaptic and neuronal activity in

the superficial spinal cord. J Neurosci 2008; 28: 5189–5194.
45. Bezzi P, Domercq M, Brambilla L, et al. CXCR4-activated

astrocyte glutamate release via TNFa: amplification by

microglia triggers neurotoxicity. Nat Neurosci 2001; 4:

702–710.

46. Lee HL, Lee KM, Son SJ, et al. Temporal expression of

cytokines and their receptors mRNAs in a neuropathic

pain model. Neuroreport 2004; 15: 2807–2811.

14 Molecular Pain 0(0)



47. Ledeboer A, Sloane EM, Milligan ED, et al. Minocycline
attenuates mechanical allodynia and proinflammatory
cytokine expression in rat models of pain facilitation.

Pain 2005; 115: 71–83.
48. Lu DY, Tang CH, Yeh WL, et al. SDF-1alpha up-regu-

lates interleukin-6 through CXCR4, PI3K/Akt, ERK, and

NF-kappaB-dependent pathway in microglia. Eur
JPharmacol 2009; 613: 146–154.

49. Basbaum AI, Bautista DM, Scherrer G, et al. Cellular and

molecular mechanisms of pain. Cell 2009; 139: 267–284.
50. Przewlocki R and Przewlocka B. Opioids in chronic pain.

Eur JPharmacol 2001; 429: 79–91.

51. Parsadaniantz SM, Rostene W and Goazigo ARL. Opioid
and chemokine receptor crosstalk: a promising target for
pain therapy? Nat Rev Neurosci 2015; 16: 69–78.

52. Hung VKL, Tai LW, Qiu Q, et al. Over-expression of
astrocytic ET-1 attenuates neuropathic pain by inhibition
of ERK1/2 and Akt(s) via activation of ETA receptor. Mol

Cell Neurosci 2014; 60: 26–35.
53. Zhang HQ, Trivedi A, Lee JU, et al. Matrix metallopro-

teinase-9 and stromal cell-derived factor-1 act synergistic-

ally to support migration of blood-borne monocytes into
the injured spinal cord. J Neurosci 2011; 31: 15894–15903.

Luo et al. 15


