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Abstract: Ambient air pollution from energy use and other sources is a major environmental risk
factor in the incidence and progression of serious diseases, such as cardiovascular and respiratory
diseases. This study elucidates the health effects of energy consumption from air pollution in China
based on multiple threshold effects of the population-weighted exposure to PM2.5 (fine particles
less than 2.5 microns in diameter) on particle-related mortality rate. We firstly estimate the causal
relationship between coal consumption and PM2.5 in China for 2004–2010 using a panel regression
model. Panel threshold models are applied to access the non-linear relationships between PM2.5

and cause-specific mortality rates that indicate the health effects are dependent on the PM2.5 ranges.
By combining these steps, we calculate the health impacts of coal consumption based on threshold
effects of PM2.5. We find that a 1% coal consumption increase induces a 0.23% increase in PM2.5.
A triple threshold effect is found between PM2.5 and cardiovascular mortality; for example, increasing
PM2.5 exposure causes cardiovascular mortality rate to increase when PM2.5 lies in 17.7–21.6 µg/m3 and
21.6–34.3 µg/m3, with the estimated increments being 0.81% and 0.26%, respectively, corresponding
to 1% PM2.5 increase. A single threshold effect of SO2 on respiratory mortality rate is identified and
allows the estimation of the mortality effects of PM2.5 regarding the two regimes of SO2. Finally, we
access the health impacts of coal consumption under specific estimated thresholds. This study provides
a better understanding of sources contributing to related-air pollution mortality. The multi-threshold
effect of PM2.5 could be considered for further applications in harmonizing emission standards in
China and other developing countries.

Keywords: air pollution; energy consumption; population-weighted PM2.5 exposure; cardiovascular
mortality; respiratory mortality; panel threshold model

1. Introduction

PM2.5 is derived predominantly from principal air pollution that is caused directly by gases
like nitrogen oxides (NOx), sulfur dioxide (SO2), and carbon monoxide (CO) from fuel combustion
emission in power generation, manufacturing, transportation, etc. Since PM2.5 could infiltrate deeply
into the gas-exchange region of the lungs, and smaller particles can cross alveolar membrane into
the blood vessels [1–3], it is the most health-damaging particle, and tends to be associated with the
mortality risks from cardiovascular disease [4–8] and respiratory system diseases [9–13].

In China, known to be the largest developing country in the world, a heavy reliance on coal as a
cheap and major source of energy for maintaining essential industrial activities, for instance, operating
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coal-fired power plants, is considered to be the main source of gaseous air pollutants, including PM2.5.
Such a strong causal relationship between coal burning and increasing PM2.5 in China has been proved
in previous studies [14–16]. As a result, air quality degradation in China related to high levels of PM2.5

has put huge pressures on the environment and public health. According to the National Bureau of
Statistics of China, cardiovascular disease and respiratory disease ranked among the top five causes of
death at the national level from 2000–2015. Because of the seriousness of and popular interest in air
pollution and mortality, accumulating studies have investigated PM2.5 and found significant impacts
on fatal damage to the cardiovascular system and respiratory disease [17–19]. As can be seen, there is a
transitive relationship between coal consumption, PM2.5 and human mortality that could be studied
further and more integratedly. In other words, instead of directly studying the association between
consumption of coal and health consequences, the impacts of energy consumption on mortality rates
could be clarified through the health effects of PM2.5 to gain a better understanding of the sources
contributing to air pollution and polluted air-related mortality.

Regarding the determination of the relationship between mortality and fine particulate matter,
many researchers initially focused on the shape of the concentration-response curve to reveal that the
relationship between mortality and exposure to PM2.5 is nonlinear and speculated that one or more
PM2.5 segments (thresholds) might exist. This has inspired epidemiologic studies to model the health
effects of fine particulate matter using a variety of methods supporting nonlinearities. However, prior
findings remain inconsistent: some studies have indicated that the concentration-response curve is
close to linear [20–22], while others found evidence of nonlinearity [23–25], and there is still no clear
evidence that supports the existence of PM2.5 thresholds, to our knowledge.

The traditional approach on the shapes of concentration-response (C-R) determines PM2.5 threshold
levels exogenously, which may create some problems, such as being unable to obtain confidence
intervals for threshold, and the estimates may be sensitive to the chosen threshold level [26,27] or
ignoring exposure estimation errors while estimating average exposure concentration led to low-dose
nonlinearities or thresholds being obscured [28]. This paper employs Hansen [26] threshold model to
estimate the relationship between PM2.5 and particle-related mortality in China on a national scale.
Specifically, we use panel threshold models to test whether there are threshold effects between PM2.5

and mortality, search for two or more regimes endogenously, and then estimate the effect of different
pollutant regimes on mortality.

In light of the importance of identifying threshold effects of PM2.5 on human health, and inferring
the health impacts of coal consumption from air pollution based on PM2.5 thresholds, the specific
objectives of this research are, firstly, (1) to estimate PM2.5 caused by energy consumption in China;
then (2) to elucidate how exposure to PM2.5 influences cause-specific mortality rate with threshold
effects; and, finally, (3) to explore the relationship between energy consumption and mortality rate
through PM2.5 health impacts.

To fulfil research objectives, this paper is constructed as follows. We firstly introduce the research
background and review the literature. In the next section, we discuss panel data models for examining
the impact of coal consumption on PM2.5 and panel threshold regression models for estimating the
effects of PM2.5 on mortality rate. Then, we discuss the data set. Finally, the empirical results of each
model and two-stage approach are interpreted, and some concluding remarks are presented.

2. Research Background

2.1. Energy Consumption and PM2.5

As a basic concern about air quality in China, high concentrations of PM2.5 are believed to be closely
related to coal consumption, which is the primary source of energy in the country. During 2000–2015,
alongside the massive industrialization and urbanization, China consumed about 2.1 billion tons of
coal, of more than 3 billion tons of SCE (standard coal equivalent) of the total energy consumption
annually, which accounts for 70%. Among economic sectors, the coal-consuming industries such as
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coal-fired power plants (50% of consumed coal), cement, iron and steel, building, and coal conversion
have consumed 85.8% of the total coal [29]. Coal-burning is considered the largest contributor to
ambient PM2.5, since it negatively contributes about 40% to the PM2.5 population exposure in China [30].
Many papers have provided clear evidence to support the causal relationship between coal combustion
and PM2.5 [14–16]. In addition to coal-burning-related causes, consumption of other fossil fuels and its
products such as diesel oil, or gasoline also significantly contribute to ambient PM2.5 [31–33]. Based on
these studies, energy consumption, especially for coal, gasoline, and diesel oil, are the major factors
affecting the concentration of PM2.5 in China.

Other factors contributing to elevated levels of PM2.5 are also determined. For example, since
unpaved road dust emissions also significantly contribute to particulate matter concentrations [34,35],
we add the data of per capita area of paved road and expect a negative sign on its coefficient.
Meteorological factors including temperature, precipitation, and humidity are also used as the
controlling variables, because significant correlations between these climatic factors and PM2.5 level
have been found previously [36–38]. In addition, since China was elected as the host country for the
2008 Summer Olympic Games, Chinese officials imposed many stringent emission limits on vehicles,
industry, construction activities, and on fuel consumption in the most air-polluted regions. It is believed
that there has been a major change in air quality in China, and therefore, we use a dummy variable of
time (before and after 2008) to clarify this.

2.2. PM2.5 and Mortality

Many studies have been published asserting significant connections between PM2.5 and human
health with respect to short- and long-term effects in large Chinese cities. Specifically, for estimating
air pollution short-term effects, Kan, London, Chen, Zhang, Song, Zhao, Jiang and Chen [19] indicated
that in Shanghai, an increase of 10 µg/m3 in the 2-day moving average concentration of PM2.5

corresponded to 0.36%, 0.41%, and 0.95% increase of total, cardiovascular, and respiratory mortality.
For Shenyang city, Ma, Chen, Pan, Xu, Song, Chen and Kan [18] estimated that the risk of mortality
of all-causes, cardiovascular, and respiratory increased by 0.49%, 0.53%, and 0.97%, respectively, in
response to a 10 µg/m3 PM2.5 increase. Another study conducted by Yang, Peng, Huang, Chen, Xu,
Chen and Kan [17] provided more evidence that supports for short-term health effect of air pollution
by showing that a 10 µg/m3 increase in PM2.5 causes a 1.22% (95% CI: 0.63, 1.68) and 0.97% (95% CI:
0.16, 1.79) in cardiovascular and respiratory mortality in Guangzhou.

Due to the lack of PM2.5 data for the period prior to 2013, the ability to investigate the long-term
effect of PM2.5 on human health is limited in China. Thus, the health impacts of PM10 pollution have
been studied instead. For instance, retrospective cohort studies investigated by Zhang, et al. [39] and
Dong, et al. [40] found that in Shenyang, China, a 10 µg/m3 increase in PM10 leads to an increase of
67% in deaths caused by respiratory disease and a 55% increase in cardiovascular mortality. Regarding
other countries, the long-term health effects of PM2.5 have also been widely studied, such as in the US,
Canada, Netherlands, etc.

In addition to PM-related causes, mortality related to cardiovascular and respiratory diseases
is also associated with increased concentrations of nitrogen dioxide (NO2) and sulfur dioxide (SO2).
These associations have also been widely investigated by previous studies [41–46].

2.3. The Relationship between PM2.5 and Mortality Rate

Back to empirical studies from the literature, a class of nonlinear exposure-response models has
been applied to access the concentration-response relationship. Schwartz, Laden and Zanobetti [22]
developed smooth functions using data of PM2.5 and daily deaths for six US cities and showed that
the least-square fit of a linear association and no sign of a threshold. This finding is consistent with a
previous result, applying a different methodology with PM10, Daniels, Dominici, Samet and Zeger [20]
developed spline and threshold exposure-response models using daily time-series data for the 20
largest US cities and found that the association appeared to be linear. A similar approach was employed
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by Samoli, Analitis, Touloumi, Schwartz, Anderson, Sunyer, Bisanti, Zmirou, Vonk and Pekkanen [21]
to estimate the relationship between ambient particles and daily mortality in 22 European cities, with
the results indicating that the spline curves were roughly linear, but also suggesting that a threshold
model would be reasonable for respiratory mortality cases.

Even though many studies have reported a linear relationship without threshold when modeling
the concentration-response curve, accumulating studies have still made an effort to identify nonlinearity
relations between fine particles and mortality with a variety of methodologies applied. Krewski,
Jerrett, Burnett, Ma, Hughes, Shi, Turner, Pope III, Thurston and Calle [23] and Crouse, Peters, van
Donkelaar, Goldberg, Villeneuve, Brion, Khan, Atari, Jerrett and Pope III [24] used the logarithm of fine
particulate matter in the Cox survival models and showed that the log models were a better predictor
of PM2.5-related mortality. Using a meta-regression approach, Burnett, Pope III, Ezzati, Olives, Lim,
Mehta, Shin, Singh, Hubbell and Brauer [25] suggested fitting an integrated exposure-response (IER)
model by incorporating information on risk from other sources of PM2.5 to demonstrate that the
PM2.5-mortality association is nonlinear and more complex than assessments from concentration in
logarithm form. Apte, et al. [47] also applied the IER model to access how mortality from PM2.5

could be reduced in response to improvements in air quality; the global concentration-mortality
relationships were found to be nonlinear, especially for mortality of stroke and ischemic heart disease.
In addition, Yu and Chien [13] used a spatiotemporal structured additive regression model to examine
the concentration-response (C-R) relation between respiratory visits and PM2.5. The results emphasized
a non-linearity of the respiratory health effects of PM2.5 on humans.

As a result, there is still no consensus on the shape of the concentration-mortality relationship,
and no clear evidence supports the existence of PM2.5 thresholds to our knowledge. A recent study
by Cox [28] has re-examined the shapes of C-R for PM2.5 with well-defined response thresholds and
concluded that ignoring exposure estimation errors while estimating average exposure concentration
has led to low-dose nonlinearities or thresholds being obscured. More appropriate approaches are
required in modeling the association. Hansen [26] suggested a threshold regression technique for panel
data model to test for threshold effects and to search for two or more regimes endogenously. In this study,
we examine the health impacts of air pollution in China on a national scale by estimating the association
between cause-specific mortalities for cardiovascular and respiratory diseases and annual average
population-weighted exposure to PM2.5 using Panel Threshold Models as an econometric approach.

The major purpose here is to directly access the statistical significance of the multi-threshold effect
of PM2.5 on air pollution-related mortality. The second objective of the study is to provide a better
understanding of the sources contributing to PM2.5 and mortality by estimating the health impacts of
coal consumption in China based on the multi-threshold effects of PM2.5 and SO2.

3. Methodology

3.1. Panel Regression Model

To depict the relationship between coal consumption and air pollution from different time
periods and locations, a multiple panel regression model is estimated in Logarithmic form.
The population-weighted exposure to PM2.5 is considered to be a dependent variable, while six factors
(coal consumption, gasoline and diesel consumption, area of paved road per capita, temperature,
precipitation, and humidity) are selected as main explanatory variables, since they are closely related to
China air pollution and have frequently been used in the literature as discussed in the previous section.

The panel regression model that elucidates the relationship between fuel consumption and
population-weighted exposure to PM2.5 is as follows:

LnPM2.5it = β0 + β1LnCoal_consit + β2B08 + β3LnGasDie_consit+

β4LnPavedRdit + β5LnTempit + β6LnPrecpit + β7LnHumidit+ εit
(1)
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for a balanced panel, where i and t denote province and time (year), PM2.5it is the regional
population-weighted exposure to fine particulate matter, Coal_consit is the coal consumption by
region, B08: a dummy variable that will be 1 if the data set is from 2004–2008, GasDie_consit is the
summation of regional consumption of gasoline and diesel oil, PavedRdit is per capita area of paved
road, Tempit is average temperature, Precpit is average precipitation and Humidit is average relative
humidity, and εit is the error term.

3.2. Panel Threshold Models

3.2.1. Theoretical Model

This study employs Hansen’s panel threshold regression model in natural logarithmic form to
further investigate the threshold effect of fine particulate matter on mortality rate.

The structure of the single panel threshold model is as follow:

yit = µi + β′1xitI(qit ≤ γ) + β′2xitI(qit > γ) + εit (2)

where the data are from a balanced panel, i and t denote indexes of the individual (1 ≤ i ≤ N) and the
time (1 ≤ t ≤ T), respectively; yit and the threshold variable, qit, are scalars; xit is a k vector of explanation
variables; I(•) is an indicator function; µi is the fixed effect (or heterogeneity of individuals); and the
error term, εit, is assumed to be independent and identically distributed, εit ∼ iid

(
0, σ2

)
. Equation (2)

can be written as follows:
yit = µi + β′xit(γ) + εit (2a)

where β′xit(γ) =

{
β′1xitI(qit ≤ γ)

β′2xitI(qit > γ)
The data are separated into two regimes, whereby the threshold variable, qit, is less than or greater

than the threshold value, γ. The two regimes have different regression slopes, β′1 and β′2, respectively.
Hansen extended the panel threshold model with more than one threshold, where the threshold

value, γ1, is less than γ2, as follows:

yit = µi + β′1xitI(qit ≤ γ1) + β′2xitI(γ1 < qit ≤ γ2) + β′3xitI(qit > γ2) + eit
)

(2b)

For more specific details on the model and threshold test, refer to Hansen [26].

3.2.2. Empirical Model

For choosing an appropriate threshold variable for specific mortality rate, we consider comparing
the health impacts of different air pollutants on mortality. In addition to significant mortality effects
of PM2.5 on both of cardiovascular mortality and respiratory mortality discussed, many previous
papers have shown that SO2 has the highest degree of impact compared to PM2.5 and NO2 in terms of
respiratory mortality [48,49]. Hence, we decided to choose PM2.5 for depicting the threshold effect
on the cardiovascular mortality rate, and SO2 is chosen as the threshold variable for estimating the
health effect regarding respiratory mortality. In each model, three air pollutants (PM2.5, NO2, SO2)
are selected as the main explanatory variables. The gross regional product (GRP) is also used, as a
socioeconomic factor that is believed to influence the public health. The specific structure of the panel
threshold models will be presented in this section.

We firstly apply the threshold test on PM2.5 for the mortality rate of cardiovascular to see whether
any threshold relationship exists. The version with more regime-dependent coefficients enables
estimating the health impacts of different air pollutants including PM2.5, SO2, and NO2, under each
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certain level of PM2.5 for individual thresholds. Suppose a triple threshold effect were found between
cardiovascular mortality rate and PM2.5, the panel threshold model would be as follows:

LnMOT1it = µi +
(
α1LnPM2.5it−1 + β1LnSO2it−1 + θ1.LnNO2it−1

)
I
(
LnPM2.5it−1 ≤ γ1

)
+ (α2LnPM2.5it−1 + β2LnSO2it−1

+ θ2.LnNO2it−1)I
(
γ1 < LnPM2.5it−1 ≤ γ2

)
+ (α3LnPM2.5it−1

+ β3LnSO2it−1 + θ3.LnNO2it−1)I
(
γ2 < LnPM2.5it−1 ≤ γ3

)
+ (α4LnPM2.5it−1 + β4LnSO2it−1

+ θ4.LnNO2it−1)I
(
LnPM2.5it−1 > γ3

)
+ ϕ3.LnGRPit−1 + εit

(3)

Regarding respiratory mortality rate, we develop a panel threshold model to find PM2.5 health
effects under specific thresholds of SO2 emission level, as follows (supposing we found a single
threshold effect for SO2):

LnMOT2it = µi + α1LnPM2.5it−1I(LnSO2it−1 ≤ r) + α2LnPM2.5it−1I(LnSO2it−1 > r)
+ θ1.LnSO2it−1 + θ2.LnNO2it−1 + θ3.LnGRPit−1 + εit

(4)

where i and t denote province and time (year), MOTkit is the cause-specific mortality rate, which is
MOT1it for cardiovascular mortality rate and MOT2it for respiratory disease mortality rate, µi is the
fixed effect (controlling for the heterogeneity of individual regions), PM2.5it is the population-weighted
exposure to PM2.5, SO2it is the volume of regional SO2 emission, NO2it is the average concentration of
NO2, GRP is the gross regional product which refers to the final products at market prices produced by
all resident units in a province during a certain period of time, we make the calculation using 2005
as the base year, and εit, εit are the error terms. The right-hand-side variables interpret the lagged
effects of the independent variables on cause-specific mortality. The estimated health effect threshold
equation allows mortality rate to vary as it crosses three thresholds of PM2.5, as shown in the results in
the later section.

This study focuses on estimating the health impacts of air pollution based on the threshold effect
of PM2.5, thereby using the unit of PM2.5 as 10 µg/m3 not be appropriate, since this may create some
complicated cases for explanation. For example, increasing a 10 µg/m3 unit could move PM2.5 level
from a low threshold to higher thresholds, with different health impacts for each. Hence, we use the
natural logarithmic form for the models and will interpret the percentage change in mortality rate by a
1% PM2.5 increase.

3.3. Data Set

In this study, we use the data of annual population-weighted PM2.5 exposure of 30 Chinese
provinces and municipalities estimated by a team of US scientists and provided by Hsu [50].
The 30 Chinese provinces are Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin,
Heilongjiang, Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan,
Guangdong, Guangxi, Hainan, Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia,
and Xinjiang. Population-weighted PM2.5 exposure for a specific province is calculated by multiplying
the satellite-estimated PM2.5 concentration for each grid cell by the percentage of province population
that lives within that grid cell and producing an average for all the grid cells within a province: PW −
PM2.5 =

∑n
i=1(PMi ∗

Pi∑n
i=1 Pi

), where PMi is defined as the ith pixel value of satellite PM2.5 concentration,

Pi is the population density of the ith grid cell of a certain province, which is divided by n grid
cells [51]. As can be seen from the formula, that PW-PM2.5 implies that the exposure to PM2.5 in highly
populated areas is greater than that in regions with sparse density. This indicator is more telling of
actual exposure to PM2.5 and more in line with actual pollution situation compared to per capita PM2.5

concentration [51]. Hence, it would be appropriate for investigating the health consequences of poor
air quality.
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Data on other air pollutants (i.e., SO2 emission, NO2 concentration), energy consumption
(i.e., consumption of coal; total consumption of gasoline and diesel oil), meteorological conditions
(i.e., average temperature, relative humidity and precipitation), per capita area of paved road, and
socioeconomic factors, i.e., gross regional product (GRP), were retrieved from the National Bureau of
Statistics of China [52]. Table 1 displays descriptive statistics on these variables. The mean annual
PM2.5 level of China is 27.26 µg/m3 and most provinces and municipalities exceed the PM2.5 standard
level proposed by WHO, which is set at 10 µg/m3.

Table 1. Descriptive statistics for variables in panel regression model.

Variables Description Mean Median Max Min Std.
Dev.

PM2.5 PM2.5 concentration (µg/m3) 27.26 26.96 51.91 2.17 11.71
Coal_cons coal consumption (10,000 tons) 10,520.76 8559.73 37,327.89 332.23 7897.92

GasDie_cons gasoline-diesel consumption (10,000 tons) 682.03 568.77 2754.68 40.74 496.26
Paved_Rd per capita area of paved road (sq.m) 11.41 11.19 22.23 4.04 3.31

Temp average temperature (°C) 14.47 15.1 25.4 4.5 5.07
Humid relative humidity (%) 64.24 66 83 44 9.41
Precp precipitation (mm) 867.63 765.6 2628.2 74.9 503.46

Observations 203

The mortality estimates for specific causes including cardiovascular mortality and respiratory
mortality are provided by the Institute for Health Metrics and Evaluation, University of Washington,
Seattle, USA under the Global of Burden Disease Study 2013 [53]. Due to the lack of frequent yearly
data of mortality estimates, we convert the data in 5-year intervals provided into annual datasets using
the Geometric Power Series simulation method. Once annual cause-specific mortality estimates have
been simulated, the mortality rate of each province is calculated by dividing mortality estimates by the
average population of the province, and then multiplying by 100,000. Provincial average population
data is released by the National Bureau Statistical of China. Table 2 displays descriptive statistics for
variables those are used for estimating the threshold effects of PM2.5 on mortality rate.

Table 2. Descriptive statistics for variables in panel threshold regression model.

Variables Description Mean Median Max Min Std.
Dev.

MOT1
cardiovascular mortality rate (deaths per

100,000 persons) 238.84 239.02 355.85 152.94 49.04

MOT2
respiratory mortality rate (deaths per 100,000

persons) 114.39 104.42 226.05 55.73 43.25

PM2.5 PM2.5 concentration (µg/m3) 26.69 26.72 51.94 2.17 11.92
NO2 NO2 concentration (µg/m3) 40.86 41.30 73.00 11.90 13.69
SO2 SO2 emission (10, 000 tons) 76.30 63.35 200.30 0.10 48.16
GRP gross regional product (100 million yuan) 8279.15 6438.74 35,696.71 229.04 7139.56

Observations 210

Using the ggplot2 package in R-studio, we map the annual coal consumption and
population-weighted exposure to PM2.5 concentration data to provide a visualization of spatial
distribution and temporal changes for a 5-year time trend. In Figure 1, we can partially observe the
correlation between consumption of coal and fine particle pollution through the similarities in the
intensity of the color mapped.
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Figure 1. Mapping annual coal consumption and surface distribution of population-weighted exposure
to PM2.5 concentration in China for the years 2005 to 2010.

4. Results

4.1. Estimating the Environmental Impacts of Fossil Fuel Consumption

To deal with common panel data problems such as heteroscedasticity, autocorrelation, or
cross-correlation in cross-sectional units at the same point in time, we run pooled ordinary least
squares (OLS), fixed effects (FE) model, and random effects (RE) model. The results of F test, LM test
indicate that fixed effects model and random effects model are both better than the pooled model.
Since the balanced panel data has 29 cross-sections and only 7 years, the sum squares of residuals
decreased tremendously, leading to an increase of adjusted R2 in the fixed effects model. Therefore,
technically, the adjusted R2 of FE model is always higher than in RE model assuming the same
specification. We depend on the Hausman test, and its results show that the random effects model is
the most appropriate model for our data. The estimated parameters for the panel multiple regression
are displayed in Table 3.

At a significance level of 1%, we find that a 1% coal consumption increase leads to a 0.23% increase
in population-weighted exposure to PM2.5. The volume of gasoline and diesel oil consumption has
been found with a positive effect on PM2.5 with a 0.065% increase in PM2.5 concentration if there is
a 1% consumption of gasoline and diesel increase. We also find that estimated coefficient results
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of three meteorological variables are all significant at 1% and 5%, showing us the strong sensitivity
of population-weighted PM2.5 exposure to climate change. Temperature and relative humidity are
positively correlated with PM2.5, while average precipitation and PM2.5 have a negative correlation.
These estimated results have similar trends with the results in another research that using an 11-year
observational record over the contiguous US [37].

Table 3. Panel regression estimation results of impact of burning coal effects on PM2.5.

Variables
Pooled OLS FE Model RE Model

Coefficients

Constant −1.345 (1.228) −1.771 ** (0.829) −1.923 ** (0.755)
LnCoal_cons 0.404 *** (0.0544) 0.196 *** (0.056) 0.233 *** (0.051)

B08 0.126 * (0.0704) 0.142 *** (0.0164) 0.145 *** (0.016)
LnGasDie_cons 0.0168 (0.069) 0.076 ** (0.038) 0.0650 * (0.037)

LnPaved_Rd −0.158 (0.106) −0.046 (0.038) −0.056 (0.037)
LnTemp 0.689 *** (0.106) 0.233 ** (0.110) 0.241 ** (0.095)

LnHumid 0.244 (0.365) 0.604 *** (0.159) 0.581 *** (0.149)
LnPrec −0.260 ** (0.101) −0.059 ** (0.027) −0.061 ** (0.027)

Adj R2 0.481 0.984 0.376

F test (Pooled vs. Fixed) 216.96 ***
LM test (Pooled vs. Random) 540.24 ***

Hausman Test (Random vs. Fixed) 6.04

Note: Standard errors in parentheses. *, ** and ***, respectively, denote significance at the 10%, 5% and 1% levels.

In addition, the estimated coefficient of dummy variable B08 indicates that the difference in
population-weighted PM2.5 exposure before and after 2008, year the Olympics were held, is statistically
significant at 1% level and the concentration of PM2.5 after 2008 is lower than in 2004–2008 by about
14.5%. This means the achievements from China’s efforts in providing a better air quality during the
2008 Olympic Games are significant.

4.2. Estimating Multiple Threshold Effects of PM2.5 on Mortality

4.2.1. Testing for Multiple Thresholds

A logarithmic version of Hansen’s threshold model is estimated using a panel data approach, as a
panel threshold model (PTM). Table 4 shows the results of the threshold effect tests.

Table 4. Tests for threshold effects.

Threshold PM2.5 −MOT1 Relationship SO2 −MOT2 Relationship

Test for single threshold
F1 210.329 51.314

p-value 0.000 0.010
Critical values (10%, 5%, 1%) 29.720, 37.778, 49.981 27.013, 36.152, 45.191

Test for double threshold
F2 24.799 17.189

p-value 0.080 0.250
Critical values (10%, 5%, 1%) 23.274, 28.334, 34.176 23.340, 28.697, 36.832

Test for triple threshold
F3 142.326 21.743

p-value 0.000 0.013
Critical values (10%, 5%, 1%) 20.952, 27.461, 41.740 13.272, 16.893, 22.610

For the PM2.5–cardiovascular mortality (MOT1) relationship, the single and triple effects are
all significant at a 1% level. We choose the triple threshold effect for further estimation to see the
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health impacts of PM2.5’s thresholds more thoroughly. These three estimated thresholds (Table 5) are
17.67 µg/m3, 21.62 µg/m3 and 34.27 µg/m3 with narrow confidence intervals.

Table 5. Estimation results of PM2.5 effects on cardiovascular mortality.

Threshold Estimates Threshold Estimates 95% Confidence e(threshold)

γ1 2.872 [2.717, 2.872] 17.67
γ2 3.073 [3.074, 3.074] 21.62
γ3 3.534 [2.872, 3.610] 34.27

Variable Coefficient
Regime-dependent

OLS S.E. White S.E.

PM2.5≤ 17.67
LnPM2.5 0.031 0.043 0.060
LnSO2 −0.003 0.020 0.013
LnNO2 0.196 ** 0.073 0.090

21.62 ≥ PM2.5 > 17.67
LnPM2.5 0.806 *** 0.245 0.198
LnSO2 −0.270 *** 0.078 0.064
LnNO2 −0.159 0.142 0.118

34.27 ≥ PM2.5 > 21.62
LnPM2.5 0.257 *** 0.059 0.054
LnSO2 0.054 * 0.025 0.028
LnNO2 −0.162 *** 0.045 0.042

PM2.5 > 34.27
LnPM2.5 −0.003 0.070 0.062
LnSO2 0.172 *** 0.028 0.020
LnNO2 −0.034 0.043 0.038

Variable Coefficient
Regime-independent

OLS S.E. White S.E.

LnGRP 0.0378 ** 0.016 0.017

Note: White S.E. denotes heteroscedasticity-consistent standard errors. *, ** and ***, respectively, denote significance
at the 10%, 5%, and 1% levels using the T-critical value.

In terms of respiratory mortality (MOT2), SO2 emission is selected as the threshold variable
instead. Table 4 shows that the double effect is not significant, while the test results of the single and
triple effects are significant at 1% and 5%, respectively. Hence, we choose a single effect based on the
lowest P-value. The estimated threshold of regional SO2 mission (Table 6) is 80.13 tons/year.

Table 6. Estimation results of PM2.5 effects on respiratory mortality.

Threshold Estimates Threshold Estimates 95% Confidence e(threshold)

r 4.3836 [4.3549, 4.3993] 80.13

Variable Coefficient
Regime-independent

OLS S.E. White S.E. t-statistic

LnPM2.5 (SO2 ≤ 80.13) 0.172 *** 0.028 0.043 4.050
LnPM2.5 (SO2 > 80.13) 0.250 *** 0.029 0.047 5.352

Ln SO2 −0.032 0.019 0.035 −0.904
Ln NO2 0.176 *** 0.041 0.043 4.052
LnGRP −0.188 *** 0.019 0.025 −7.585

Note: White S.E. denotes heteroscedasticity-consistent standard errors. ** and ***, respectively, denote significance
at the 5%, and 1% levels using the T-critical value.

As the best way to form confidence intervals for threshold is to form “no-rejection region” using
the likelihood-ratio (LR) statistic for tests on threshold estimates [26], we plot the LR statistic (Figure 2)
to display the threshold confidence intervals.
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Figure 2. Confidence interval construction in (a) PM2.5 thresholds and (b) SO2 thresholds. Note: The
dashed line denotes the critical value (7.35) at the 95% confidence level.

In Figure 2a, the LR statistic of the third threshold mostly exceeds α quantile (7.35), while LR
values of the first and the second threshold do not, which means that there exists a triple threshold
effect in the relationship between PM2.5 and cardiovascular mortality rate. Regarding association
between SO2 pollution and respiratory mortality rate, Figure 2b shows that only a single threshold
effect is significant.

4.2.2. Estimated Effects of PM2.5 on Cause-Specific Mortality Rate

As in Table 5, the estimated coefficients of the air pollutants are different compared to each
other and to itself under specific threshold levels of the annual population-weighted PM2.5 exposure.
We find that when PM2.5 is between 17.67 µg/m3 and 21.62 µg/m3, a 1% PM2.5 increase leads to a
0.80% increase in mortality rate of cardiovascular disease. When PM2.5 is between 21.62 µg/m3 and
34.27 µg/m3, a 1% PM2.5 increase results in a 0.26% increase in the mortality rate.

The regression estimates of NO2 and SO2 show that when the annual PM2.5 exposure is lower
than 17.67 µg/m3, a 1% increase in NO2 concentration leads to a 0.19% increase in cardiovascular
mortality rate, while the health impact of SO2 is not significant. When PM2.5 is between 21.62 µg/m3

and 34.27 µg/m3, a 1% increase in SO2 emission causes 0.05% cardiovascular mortality rate increase,
and when PM2.5 is higher than 34.27 µg/m3, this impact is increased by 0.17%. However, we get
negative signs for the estimated coefficients of SO2 and NO2 under the second and the third regimes.

In terms of respiratory mortality rate, Table 6 displays the panel threshold model outcomes,
indicating that the impact of PM2.5 depends on the initial SO2 emission. When the average regional
SO2 emission is lower than 80.13 tons/year, a 1% increase in PM2.5 leads to an increment of 0.17% in
mortality rate. When SO2 is higher 80.13 tons/year, a 1% increase in PM2.5 increases the respiratory
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mortality rate by 0.25%. The NO2 emission is also found to be associated with human health where a
1% increase in NO2 causes respiratory mortality increased by 0.17%.

We find a significant positive impact of the economic developing where a 1% increase in GRP
increases the cardiovascular mortality by 0.04%. However, we find a negative relationship between
GRP and respiratory mortality rate.

4.2.3. Two-stage Econometric Approach for Health Effects of Coal Consumption

Equation (1) allows us to estimate the change in PM2.5 given by the change in coal consumption.
We then combine this with Equation (3) and Equation (4), which found the threshold effects of PM2.5

on cause-specific mortality, to calculate the percentage change in mortality corresponded to a 1%
change in coal consumption. We do this by multiplying the estimated coefficient of coal consumption
and the values of regression estimates of PM2.5 together. Table 7 displays the results.

Table 7. Estimation results on the health impacts of coal consumption in air pollution.

Result of Stage 1 (Panel
Data Model) Result of Stage 2 (Panel Threshold Model) Result of Two-Stage

Approach

Estimate effect of coal
consumption on PM2.5

Estimate effect of PM2.5 on cause-specific mortality Estimate health effect of
coal consumption

0.233 ***

Estimated
threshold regimes Coefficient Coefficient

Cardiovascular
mortality

21.62 ≥ PM2.5 >

17.67
(
µg/m3

) 0.806 *** 0.188

34.27 ≥ PM2.5 >

21.62
(
µg/m3

) 0.257 *** 0.060

Respiratory
mortality

SO2≤ 80.13 (tons) 0.172 *** 0.040

SO2 > 80.13 (tons) 0.250 *** 0.058

The final outcome of the two-stage approach indicate that cardiovascular mortality rate increases
by 0.188% when coal consumption increases by 1% in regions where the population-weighted PM2.5

exposure is between 17.67 µg/m3 and 21.62 µg/m3, and that it increases by 0.06% for a 1% increase
in coal consumption when PM2.5 is between 21.62 µg/m3 and 34.27 µg/m3. In terms of respiratory
mortality, when the regional SO2 emission is less than 80.13 tons/year, under the health impacts of
PM2.5, a 1% coal consumption increase leads to a 0.04% increase in mortality rate. When SO2 emission
is greater than 80.13 tons per year, a 1% increase in coal consumption leads to a 0.058% increase in
respiratory mortality due to exposure to PM2.5.

5. Discussion

Regarding the trend of the estimated coefficient of PM2.5 for different thresholds of PM2.5, the
health effect at the second regime has the highest degree of impact on cardiovascular mortality rate.
However, the effect became less serious for the next regime of exposure to PM2.5, afterward. This could
be explained by human awareness of air pollution leading people to protect themselves from bad air
quality. When the level of PM2.5 is too high, it could be visually identified by the citizens or be notified
officially by a red alert with respect to air pollution; thus, people become more aware of the dangerous
characteristics of pollution levels and are more active in protecting their own health from the polluted
air. Mortality rate per 1% increment of PM2.5 tended to decrease at higher concentrations in accordance
with prior findings from Pope, et al. [54] and Pope III, Burnett, Turner, Cohen, Krewski, Jerrett, Gapstur
and Thun [7], which showed the adjusted relative risk of cardiovascular plotted over estimated daily
dose of PM2.5 and found that the exposure-response curve becomes flatter at higher degree of PM2.5.
According to Chen, et al. [55], it was inferred that possibly susceptible individuals may have died
before the PM2.5 concentration had reached higher levels. Thus, due to the severe health damage at
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the medium regimes of PM2.5 threshold, people should pay more attention to these levels because the
human body suffers gradually from exposure to air pollutants from low to high concentrations.

SO2 is formed when fossil fuels containing sulfur, such as coal or crude oil, are burned, and this
air pollutant is known to be one of the major causes of respiratory mortality. Since different levels of
SO2 emission lead to difference in PM2.5 concentrations, the health impacts of PM2.5 are not below the
emission thresholds of sulfur dioxide to the same degree. Particularly, the mortality effect of PM2.5

becomes more severe at higher levels of SO2 emission. Compared to findings from previous research,
where the acute effect of SO2 on respiratory disease mortalities was even higher than that from PM2.5

or NO2 [48,49], this study contributes to the existing literature as evidence of adverse effects of SO2 on
respiratory mortality, no matter whether it is studied separately or through PM2.5.

As mentioned, this study estimates the percentage of change in mortality given a percentage
change in PM2.5, to appropriately depict the exposure-response relation with multiple threshold effects.
However, to better compare our findings to previous studies, we convert the outcomes to comparable
values by dividing the estimates in the fourth column of Table 7 by average PM2.5, and multiplied by
1000. In this way, converted estimates of health effect showed the percentage change in cause-specific
mortality caused by a 10 µg/m3 increase in PM2.5. Table 8 presents the results in comparison with
previous studies.

Table 8. The percentage change in cause-specific mortality associated with a 10 µg/m3 increase in
PM2.5.

Study
Approach Regions [Author] Pollutant Methodology (Time

Period) Health Outcomes Estimated Coef.

Short-term
Studies

Shanghai, China [19] PM2.5 Time-series

Cardiovascular
mortality 0.41 [0.00, 0.82]

Respiratory
mortality 0.95 [0.17, 1.73]

Shenyang, China [18] PM2.5
Time-stratified
case-crossover

Cardiovascular
mortality 0.53 [0.09, 0.97]

Respiratory
mortality 0.97 [0.01, 1.94]

Quangzhou, China
[17]

PM2.5
Time-stratified
case-crossover

Cardiovascular
mortality 1.22 [0.63, 1.68]

Respiratory
mortality 0.97 [0.16, 1.79]

This study China PM2.5
Panel Threshold

Model

Cardiovascular
mortality

30.18 (21.62 ≥ PM2.5 > 17.67)

9.63 (34.27 ≥ PM2.5 > 21.62)

Respiratory mortality
6.45 (SO2 ≤ 80.13)

9.35 (SO2 > 80.13)

Long-term
Studies

Shenyang, China [39] PM10

Retrospective cohort
study

(1998–2009)

Cardiovascular
mortality 55 [51, 60]

Shenyang, China [40] PM10
Retrospective cohort

(1998–2009)
Respiratory

mortality 67 [60, 74]

US metropolitan
areas [56] PM2.5

Cohort study
(1979–1983)

Cardiopulmonary
mortality 6 [2, 10]

Netherlands [57] PM2.5
Cohort study
(1987–1996)

Respiratory
mortality 7 [−25, 52]

US metropolitan
areas [56] PM2.5

Cohort study
(1979–1983)

Cardiopulmonary
mortality 6 [2, 10]

Canada [24] PM2.5
Cohort study
(1991–2001)

Cardiovascular
mortality 31 [27, 35]

Note: [] refers to 95% confidence interval.

As can be seen, the health effects for the ranges in which population-weighted PM2.5 exposure
falls are larger than the short-term effects and smaller than health effects from long-term exposure
in China. For instance, for each 10 µg/m3 increase in PM2.5, the short-term (daily) exposure caused
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a 0.41% and 0.95% increase of cardiovascular and respiratory mortality, respectively [19], a 1-year
lagged effect of PM2.5 exposure that was conducted in this study leads to a 9.63–30.18% increment in
cardiovascular mortality rate and about 6.45–9.35% in mortality rate for respiratory diseases (Table 8),
while the long-term exposure to particulate matter in 10-year follow up studies has reported that it
caused an increase of 55% in cardiovascular mortality and 67% in respiratory mortality in Shenyang,
China [39,40], or an increase of 31% in ischemic cardiovascular mortality in Canada [24].

6. Conclusions

6.1. Contribution of the Study

The effect of ambient air pollution on human health has been extensively studied over the past five
decades. Among the research directions that are motivated, providing convincing evidence of nonlinear
exposure-response relationship with specific PM2.5 thresholds could provide useful information for
efforts to protect public health from the impacts of poor air quality. However, the threshold effects of
population-weighted PM2.5 exposure on cause-specific mortality in China have not been estimated.
In this study, we investigate this issue.

The empirical results indicate that air pollution will influence mortality of cardiovascular and
respiratory diseases through PM2.5 levels. We find that the effects depend on the ranges in which air
pollutant falls, with critical levels at 17.67 µg/m3, 21.62 µg/m3, and 34.27 µg/m3 for PM2.5 concentration,
at 80.13 tons/year for SO2 emission. In particular, between 17.67 µg/m3 and 21.62 µg/m3, we find that a
1% increase in PM2.5 causes a 0.8% increase in cardiovascular mortality rate. When SO2 is above 80.13
tons/year, a 1% increase in PM2.5 causes a 0.25% increase in respiratory mortality rate. We also estimate
the effect of coal consumption, where a 1% increase in coal consumption causes a 0.23% increase in
PM2.5 concentration.

Our two-stage econometric approach allows us to examine the health effects of coal consumption
through multiple threshold effects of PM2.5. The result shows that when exposure to PM2.5 is
between 17.67 µg/m3 and 21.62 µg/m3, a 1% increase in coal consumption leads to a 0.188% increase in
cardiovascular mortality rate. In terms of mortality, when SO2 emission is greater than 80.13 tons/year,
under the health impacts of PM2.5, a 1% increase in coal consumption leads to a 0.06% increase in
respiratory mortality rate.

The findings indicate that the consumption of fossil fuel energy is a major cause of particulate air
pollution and lead to further adverse cardiovascular and respiratory health impacts.

6.2. Implications of the Study

Compared to the standards of WHO Air Quality Guideline and the National Ambient Air Quality
Standard of China (GB 3095–2012), 17.67 µg/m3 is close to the lowest annual PM2.5 level of the China
standard (grade I), and the WHO interim target-3 (IT-3) is 15 µg/m3. In addition, the third estimated
PM2.5 threshold (34.27 µg/m3) seems to be close to the highest standard levels, such as IT-1 of the
WHO standard and limit value of grade II in the GB 3095–2012 standard (35 µg/m3). The findings of
threshold effect provide an intuitive metric of PM2.5 standards to reinforce or improve current air quality
standards, especially for countries with high level of air pollutants. The estimates of health effects
under the population-weighted PM2.5’s thresholds could be considered to set more specific emission
limits or punishment levels for controlling polluting activities in China and other developing countries.
It is also important to impose air quality control strategies that consider population density of area
since “population-weighted” exposure to PM2.5 is found significantly associated with mortality rate.

In addition, owing to the significant association between fossil fuel consumption and mortality
rates, it is necessary to reduce our dependence on this polluting energy sources. The improvement
achieved in reducing air pollution during and after 2008 is strong evidence that supports for optimistic
future of China’s air if the government continues durable clean air plans.
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6.3. Limitations of the Study

Despite the large-scale study area and the remarkable contribution to finding out the thresholds
of PM2.5, the database approach is a constraint with some limitations. The first limitation concerns the
data of regional cause-specific mortality. Due to the lack of available annual regional cause-specific
mortality, the annual data of mortality in this study are simulated from the GDB 5-year-interval
mortality data. This simulation may cause unusual changes in real mortality rate to be ignored,
leading to unconvincing estimation outcomes. The second limitation is rooted in the difference
in units of measurement for the air pollutants: population-weighted PM2.5 exposure (µg/m3), SO2

emission (10,000 tons) and NO2 concentration (µg/m3). Thus, the health effects of specific air pollutants
are not really logical to interpret and draw comparisons between them as well. Additionally, only
population-weighted PM2.5 concentration data without considering human activities with time spent
and breathing rates could not be considered as “exposure to PM2.5” to accurately estimate its health
impacts. This is the third limitation.

6.4. Recommendations for Further Research

As we need limitations to inspire better thinking, we firstly recommend that further studies use
a more appropriate database, such as higher frequency data or data better representing the actual
exposure to PM2.5, to achieve higher-quality estimation results. Second, health impacts caused by acute
PM2.5 exposure are not reflected by mortality rate alone; estimation of reduction in life expectancy, or
increases in morbidity may be preferable. Finally, the non-significance of the PM2.5 lowest threshold
could be considered a safe threshold of PM2.5 for cardiovascular mortality. Future research is also
encouraged in the direction of identifying a safe threshold of exposure to PM2.5 on cause-specific
mortality and morbidity for contributing more evidence supports environmental science even though
they may be different from this study.
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