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A B S T R A C T   

Recently, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has spread around the world and is 
receiving worldwide attention. Approximately 20% of infected patients are suffering from severe disease of 
multiple systems and in danger of death, while the ocular complications of SARS-CoV-2-infected patients have 
not been reported generally. Herein, we focus on two major receptors of SARS-CoV-2, ACE2 and CD147 (BSG), in 
human ocular cells, and interpret the potential roles of coronaviruses in human ocular tissues and diseases.   

1. Introduction 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a 
new zoonotic coronavirus which came from bat species and has not been 
observed in humans. The outbreak of COVID-19 is caused by SARS-CoV- 
2 infection, and it has reached pandemic proportions within a very short 
time, leading to a health emergency. Since the first detection of the 
virus, more than 242,000,000 people have been infected worldwide, and 
more than 820,000 have died as of Aug 27, 2020 (https://coronavirus. 
jhu.edu/map.html). Although the transmission of SARS-CoV-2 has 
been illustrated in detail, the association of ocular diseases with viruses 
has not been extensively studied. We hope that this review will lead the 
way for more studies on coronavirus and ocular implications. 

1.1. Coronavirus structure and host 

SARS-CoV-2, identified in December 2019, is a member of the 
positive-sense single-stranded RNA virus family. The disease with severe 
pneumonia imputable to SARS-CoV-2 was named by the World Health 
Organization (WHO) as COVID-2019 (Guan et al., 2020; Wang et al., 
2020a). Coronavirus can be divided into four genera, including Alpha-
coronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus. 
On the envelope of the coronavirus, there are crown-like surface pro-
jections - spike proteins (S proteins), and the virus is named after this 

crown-like appearance. Both SARS-CoV causing the 2003 outbreak and 
SARS-CoV-2 are derived from the same family of coronaviruses. It has 
been shown that SARS-CoV can transmit through the direct or indirect 
contact of infectious aerosols with mucous membranes (Peiris et al., 
2003). 

As we all known, coronaviruses are hosted and originated from bats 
(Fig. 1). The results from genome sequence showed that the novel virus 
has high sequence identity to a bat coronavirus—RaTG13 (approxi-
mately 96.2%) (Zhou et al., 2020). As a zoonotic virus, SARS-CoV-2 is 
most likely originated from bats and transmitted to human via the in-
termediate hosts (Junejo et al., 2020). It had been proposed that many 
species such as pangolins (Lam et al., 2020), minks (Enserink, 2020), 
snakes (Ji et al., 2020) and turtles (Liu et al., 2020) are the intermediate 
hosts, but the latter two are still in controversial and needed further 
confirmation (Luan et al., 2020; Zhang et al., 2020a). Additionally, in 
some case reports, domestic animals like dogs, cats (Chini, 2020), tigers 
and lions (McAloose et al., 2020) were positive for SARS-CoV-2 (Fig. 1). 
In such scenario, it is important to understand the virus hosts to prevent 
the spread of SARS-CoV-2. 

1.2. Coronaviruses enter into host cells via ACE2 

The metallopeptidase angiotensin-converting enzyme 2 (ACE2) is a 
functional receptor for coronaviruses to invade host cells (Hoffmann 
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et al., 2020; Li et al., 2003; Wang et al., 2004). Yang et al. established 
human ACE2 (hACE2) gene overexpression mouse and hACE2 was 
driven by endogenous mouse ACE2 gene promoter. In transgenic mouse, 
tissue distribution of hACE2 protein exhibited similar phenomena to 
human. After being infected with SARS-CoV, the transgenic mouse had 
more severe and typical pathological changes in lungs compared to the 
wild-type mouse. In addition, the genetically modified mouse showed 
extrapulmonary organs damage such as inflammation, degeneration, 
and necrosis. They illustrated that virus entry into the cell was a critical 
step (Yang et al., 2007). Besides, transmembrane serine protease 2 
(TMPRSS2) is a serine protease that primes the S protein of SARS-CoV-2. 
The propagation of SARS-CoV-2 also depends on the activity of 
TMPRSS2 (Hoffmann et al., 2020), as a host cell factor, TMPRSS2 can be 
blocked by the inhibitor of the cellular serine protease-camostat mesy-
late (Kawase et al., 2012). Camostat mesylate can inhibit the entry of 
SARS-CoV-2 (Hoffmann et al., 2020) and is expected to be used in the 
treatment of SARS-CoV-2. In Japan, camostat mesylate has been 
approved for use in human. After the cell membrane fusion, RNA of 
SARS-CoV-2 begins viral replication in the intracellular environment. Li 
et al. found ACE2 expressed in many human tissues. Therefore, SARS- 
CoV-2 can target multiple organs and cause dysfunction of various or-
gans. For example, Huang et al. uncovered cardiac injury in five SARS- 
CoV-2-infected patients (Huang et al., 2020). Holshue et al. detected 
SARS-CoV-2 from the stool of a patient with SARS-CoV-2 infection 
(Holshue et al., 2020). Shen et al. found coronaviruses in tear and 
conjunctival secretions obtained from a patient infected with SARS-CoV- 
2 (Xia et al., 2020). Apart from the understanding of different ACE2 
expression in various tissues, Li et al. also confirmed that SARS-CoV-2 
infection risks are equal among sexes, ages, and races (Li et al., 
2020a). The above studies provided new insights into the role of ACE2 in 
this pandemic. 

1.2.1. Structure of the ACE2 protein 
ACE2 is a type I transmembrane protein consisting of a short C-ter-

minal cytoplasmic tail and N-terminal domain with the active site 
intracellularly and extracellularly, respectively (Lambert et al., 2005). It 
belongs to the dipeptidyl carboxydipeptidase angiotensin-converting 
enzyme family. ACE2 is the primary regulatory enzyme of the vascular 
protective axis of the classic renin-angiotensin system (RAS). The pro-
tein, which has high homology with human angiotensin 1 converting 
enzyme, is capable of catalyzing angiotensin I into angiotensin 1–9 and 
degrading angiotensin II into angiotensin 1–7 peptides (Imai et al., 
2008, 2005). Thus, the vasodilator angiotensin 1–7 counteracts the 
function of vasoconstriction caused by angiotensin II (Zisman et al., 

2003). Both SARS-CoV and SARS-CoV-2 can invade into host cells by 
binding with ACE2 (Li et al., 2003; Wan et al., 2020b). 

1.3. Coronaviruses enter into host cells via CD147 

CD147 (cluster of differentiation 147) known as basigin or EMM-
PRIN (extracellular matrix metalloproteinase inducer), is a plasma 
membrane protein, encoded by BSG gene (Yurchenko et al., 2006). 
Lately, Wang et al. found that anti-CD147 humanized antibody Mepla-
zumab can prevent SARS-CoV-2 from entering into host cells during in 
vitro antiviral tests (Wang et al., 2020b). And they uncovered a tight 
interaction between SARS-CoV-2 S protein and CD147 with the aid of co- 
immunoprecipitation, ELISA, and immunoelectron microscopy. They 
discovered a novel binding site of SARS-CoV-2 and led a new way for 
seeking therapies of COVID-19 (Fig. 2A). At present, the excitement is 
that Meplazumab, a new humanized anti-CD147 monoclonal antibody, 
for treating SARS-CoV-2 is carried out in China and is now in phase II 
clinical trials (ClinicalTrial.gov Identifier NCT04275245). It has been 
proved that intcrlcukclin-6 (IL-6) in plasma would increase significantly 
in severe CODIV-19 patients (Zeng et al., 2020a). Aghai et al. demon-
strated azithromycin could suppressed IL-6 synthesis (Aghai et al., 
2007). In terms of anti-virus, Gielen et al. found that azithromycin can 
reduce the replication and release of rhinovirus in primary human 
bronchial epithelial cells (Gielen et al., 2010). As an antibiotic, azi-
thromycin is used in a variety of infectious diseases. Therefore, Ulrich 
and Pillat suggested that azithromycin can be used as a potential anti-
viral drug for SARS-CoV-2 treatment by targeting CD147 (Ulrich and 
Pillat, 2020). 

1.3.1. Characteristic of the CD147/basigin 
Basigin has two subtypes, basigin-1 and basigin-2. The former one is 

a retina-specific form that expresses in the surface of rod and cone cells 
(Aït-Ali et al., 2015). The latter one is a common form and usually 
named as basigin or basigin-2. And in the mature mouse eyecups’ cry-
osections, Ochrietor et al. uncovered basigin-1 expressed in the apical 
and basal surfaces of retinal pigment epithelium (RPE), while basigin-2 
was absent in the RPE (Ochrietor et al., 2003). Monocarboxylate 
transporters (MCTs) have the function of transporting lactic acid which 
is an essential nutrient for RPE development in mouse (Philp et al., 
2003). They proposed that basigin is required for targeting MCTs to the 
membrane of plasma. And in Bsg− /− mice, the degeneration of photo-
receptors was observed with MCTs decreased (Philp et al., 2003). In 
human retina, rod photoreceptors secret a truncated thioredoxin-like 
protein called rod-derived cone viability factor (RdCVF), which plays 

Fig. 1. The potential transmission of SARS-CoV-2. SARS-CoV-2 hosted and formed by bats, and then infected intermediate hosts. After contacting with animals 
carrying the virus, people are infected. It reaches pandemic proportions by close contact patients and virus-infected aerosols in human society. 
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a vital role in preventing cone photoreceptors from degeneration. 
RdCVF can bind to the extracellular components of basigin-1, thereby 
activating the glucose transporter GLUT1. GLUT1 can increase the 
intracellular glucose level to stimulate glycolysis for cone survival (Aït- 
Ali et al., 2015) (Fig. 2B). Therefore, as a new treatment, RdCVF can be 
used to treat retinitis pigmentosa patients with cone degeneration. 

In a study on early-onset high myopia (EOHM), Jin et al. identified de 
novo mutations (DNMs) for EOHM by using trios (two normal parents 
and an EOHM children)-based whole-exome sequencing (WES). They 
discovered four DNMs in BSG gene (one nonsense mutation, two 
missense mutations, and one splice mutation), one of which was 
confirmed in BSG mutation knock-in mouse with axial length elongation 
(Jin et al., 2017) (Fig. 2B). This was the first time to verify a causative 
gene of EOHM using mouse model. Later, they found another four mu-
tations in BSG gene in a cross-sectional study involving 731 high myopia 
patients (Cai et al., 2019). Notably, a recent national survey conducted 
in June 2020 showed that the rate of myopia among Chinese primary 
and middle school students increased by 11.7 percent in the first months 
of the year. Other than the conceivable ration of the longtime online 
learning and digital screen reading in at-the-home children, it is 
necessary to know whether the BSG (CD147) palys any roles in it. 

Additionally, basigin also plays an important role in spermatogenesis 
(Akama et al., 2002), fertilization and embryo implantation (Chen et al., 
2009) (Fig. 2B). Igakura et al. found that a null mutation in basigin leads 
to embryonic lethality (Igakura et al., 1998). CD147 expression not only 
associates with tumor metastasis (Li et al., 2020c), but promotes tumor 
proliferation (Peng et al., 2020) and invasion as well (Wang et al., 
2020c) (Fig. 2B). In non-small cell lung cancer (NSCLC), CD147 exerts as 
an oncogene and expresses highly in NSCLC cells. The up-regulation of 
CD147 can promote NSCLC cells proliferation and inhibit cells apoptosis 
(Cheng et al., 2020). In infectious diseases, Crosnier et al. discovered 
malaria Plasmodium falciparum reticulocyte-binding protein homolog 5 
(PfRh5) can bind to basigin to invade erythrocytes (Crosnier et al., 
2011). And as a receptor for measles virus (MeV), basigin on epithelial 

cells can incorporate MeV cyclophilin B (CypB) for virus entry (Wata-
nabe et al., 2010). Besides, basigin also acts as a receptor for cyclophilin 
A (CypA) in HIV-1 virions for HIV-1 early cellular infection (Pushkarsky 
et al., 2001) (Fig. 2B). 

2. Ocular diseases caused by coronaviruses 

In various clinical specimens, including bronchoalveolar lavage, 
nasal sputum, blood, and urine, SARS-CoV-2 has already been detected 
(Wang et al., 2020d). When exposed to a contaminated environment, the 
surface of eye is an another probable location of viral infection (Olofsson 
et al., 2005). In anatomical theory, Belser et al. described respiratory 
disease spread through the eye by means of the nasolacrimal system 
(Belser et al., 2013). As a result, virus-infected aerosols contact the eye 
surface and can later enter the respiratory system through the nasola-
crimal system. As a mediator for virus enter into host cells, ACE2 re-
ceptor is also expressed in the retina, so it is possible that SARS-CoV-2 
can harm the retina as well (Fig. 2A). 

2.1. Virus-induced retina damage 

Recently, Maria et al. detected SARS-CoV-2 viral RNA in three 
samples out of fourteen retinas from fourteen deceased patients with 
COVID-19 (Casagrande et al., 2020). The ophthalmological changes of 
infected patients were uncovered by Marinho et al. (Marinho et al., 
2020). According to the optical coherence tomography (OCT) results, 
hyperreflective lesions were present not only at the ganglion cell level, 
but also at the inner plexiform layers of all COVID-19 patients. Addi-
tionally, four patients displayed cotton wool spots at the retinal arcade 
with microhemorrhages in color fundus photography and red-free 
imaging. 

SARS-CoV-2 infection can lead to primary severe viral interstitial 
pneumonia in the lung, and 10% of these patients infected with COVID- 
19 develop acute respiratory distress syndrome (ARDS) (Conti et al., 

Fig. 2. SARS-CoV-2 invasion in the retina and the function of CD147/basigin. (A) The SARS-CoV-2 invades into host cells via cell membrane protein ACE2 and 
CD147/basigin in the retina. TMPRSS2 is a serine protease that primes the S protein of SARS-CoV-2.(B) The function of CD147/basigin. HIV, human immunode-
ficiency virus; MeV, measles virus. 
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2020; Qiao et al., 2020). However, ARDS, a complication of COVID-19, 
has been shown to compromise the function of ocular tissue in ARDS 
pigs (Zadeh et al., 2019). Zadeh et al. constructed ARDS pig models by 
injecting lipopolysaccharide (LPS) into tracheas, and found endothelial 
dysfunction and increased ROS level in retinal arterioles. In addition, 
LPS-treated pigs developed blood-retina barrier damage and vascular 
rupture with obvious edema in the retina nerve fiber layer. 

2.2. Virus-related conjunctivitis 

CD147 is expressed in the epithelium and endothelium of the cornea 
and conjunctiva, and corneal stromal keratocytes (Määttä et al., 2006). 
Conjunctivitis is another complication of SARS-CoV-2 infection. Same as 
the respiratory tract, the ocular surface is an open pathway for virus 
entering. Based on the anatomic features of nasolacrimal duct (Mali-
borski and Rózycki, 2014), virus can be transported by tear from eye to 
nose. Zhang et al. (Zhang et al., 2020b) reported a nurse of Emergency 
Department who had conjunctivitis as the initial symptom, with positive 
test of the conjunctival and oropharyngeal swabs. In this case, the nurse 
was affected after the contaminated goggles touched her eyelids. Chen 
et al. (Chen et al., 2020) recruited 535 COVID-19 patients and found 27 
of them presented with conjunctival congestion. Furthermore, frequent 
hand-eye contact was regarded as the risk factor for conjunctival 
congestion in this study. In a cohort study conducted by Zeng et al. (Zeng 
et al., 2020b), among 276 patients with COVID-19, 16 (5.8%) of them 
were myopia and wore spectacles more than 8 h per day. When 
compared with the peer prevalence of myopia in Hubei province 
(31.5%), the proportion of myopia patients with COVID-19 was smaller 
than that in general population. The authors postulated that wearing 
spectacles could prevent from hand-eye contact so that avoid virus 
transferring from the hand to the eye. 

The prevalence of conjunctivitis in patients with COVID-19 range 
from 0.8% to 31.6% (Atum et al., 2020; Guan et al., 2020; Güemes- 
Villahoz et al., 2020; Wu et al., 2020a). Conjunctivitis manifested as 
conjunctival congestion, chemosis and epiphora in most cases (Wu et al., 
2020a) and could happen prior to pneumonia or accompany with it. 
Nonetheless, cases of COVID-19 with conjunctivitis as the only symptom 
had also been reported (Ozturker, 2020; Scalinci and Battagliola, 2020; 
Wu et al., 2020b). Moreover, Navel et al. reported a case of COVID-19 
manifested as hemorrhagic and pseudomembranous conjunctivitis 19 
days after onset of cough (Navel et al., 2020). Therefore, it seems like 
that conjunctivitis could happen during the whole period. 

Although conjunctiva shares the same receptor with the respiratory 
tract for SARS-CoV-2, it is still controversial whether conjunctiva is a 
gateway to transmit the virus. Researches had reported conjunctivitis in 
COVID-19 patients, but seldom of them detected SARS-CoV-2 RNA in 
tears and conjunctival secretions. The positivity rate of conjunctival 
swab RT-PCR range from 2.78% to 15.6% (Atum et al., 2020; Kaya et al., 
2019; Wu et al., 2020a; Zhang et al., 2020b). The authors postulated that 
the low positive rate should be due to low viral load in tear, deficient 
sensitivity of PCR test and delayed sample collection. In the research of 
Seah et al., conjunctival swab samples of COVID-19 patients were ob-
tained from different points of time, but the viral RNA was negative in 
tears through the course of disease (Seah et al., 2020). Therefore, due to 
low positive detection rate in conjunctival sac, some authors suggested 
that eyes are not the main transmission routes of SARS-CoV-2 (Guo et al., 
2020; Liu and Sun, 2020). 

2.3. Virus-induced ocular implications in animals 

Additionally, the ocular implications of CoV-infected humans have 
not been completely elucidated. However, in various animals, such as 
cats and mice, ocular infection with CoVs has been well established 
(Doherty, 1971; Hök, 1993; Hooks et al., 1993; Robbins et al., 1990b). 

Feline coronavirus (FCoV), one of the Coronaviridae family mem-
bers, is the causative agent of feline infectious peritonitis (FIP) and 

consists of two pathotypes: avirulent and virulent (Pedersen, 2009). The 
latter always causes serious FIP, even leading to death in kittens, and 
there is no effective cure so far (Pedersen, 2009). Generally, FIP is 
divided into two forms: dry, or noneffusive, and wet, or effusive. Both 
types have common clinical symptoms, such as anorexia, lethargy, mild 
antibiotic-unresponsive fever, and abnormal weight loss (McReynolds 
and Macy, 1997). In addition, dry-type FIP always has ocular symptoms 
caused by the formation of granulomas in ocular tissue. Cats always 
have uveitis after FCoV infection, and pupil constriction occurs due to 
prostaglandin release with uveitis (Andrew, 2000). In addition, FCoV- 
induced vasculitis frequently leads to choroidal and retinal inflamma-
tion, which is called chorioretinitis. The most severe sign of chorior-
etinitis is retinal detachment (Doherty, 1971). Optic neuritis could also 
be seen in FCoV infection (Andrew, 2000). 

Mouse hepatitis virus (MHV), strain JHM, is a member of the coro-
naviruses that causes acute and chronic eye diseases in BALB/c mice 
(Robbins et al., 1991, 1990b, 1990a). Wang et al. intravitreally injected 
MHV into BALB/c mice. They found infectious virus present in the retina 
and RPE, with immune cell infiltration and pro-inflammatory factors 
released in the early stage. In the late phase, they observed a decreased 
number of photoreceptor cells and ganglion cells and a thin neuroretina 
(Wang et al., 1996). 

3. Clinical treatment and intervention 

3.1. Dexamethasone 

For the COVID-19 treatment, many drugs and agents are being 
investigated in clinical trials. Dexamethasone is a corticosteroid which 
exerts its anti-inflammatory and immunosuppressant effects in a wide 
range of conditions (Johnson et al., 2020). The recent RECOVERY (the 
Randomised Evaluation of COVID-19 therapy) trial (NCT04381936) at 
Oxford University in the UK showed that the use of dexamethasone in 
COVID-19 patients with invasive mechanical ventilation could reduce 
mortality by a third approximately. And the effect of dexamethasone 
among hospitalized patients on oxygen therapy without ventilators was 
also impressive: 20% reduction of mortality (The RECOVERY Collabo-
rative Group., 2020). So far, dexamethasone is the first drug to improve 
survival rate in COVID-19, with a low cost and extensively available, the 
National Institutes of Health (NIH) in the US and the National Health 
Service (NHS) in the UK recommended the use of glucocorticoids for 
hospitalized patients with ventilators or oxygen therapy (National 
Health Service., 2020, National Institutes of Health., 2020). 

The side effects of dexamethasone in eye include raised intraocular 
pressure, cataract, glaucoma, corneal or scleral thinning and conjunc-
tivitis. But in RECOVERY trial, there are no effects or adverse effects on 
mild COVID-19 patients so far. 

3.2. Chloroquine/Hydroxychloroquine 

Chloroquine and its analog hydroxychloroquine used in human anti- 
malarial treatment. It had been proved that these agents can result in 
under-glycosylated ACE2 expression to initiate antiviral mechanisms 
(Vincent et al., 2005). Gao et al. found chloroquine is positive for alle-
viating pneumonia of COVID-19 (Gao et al., 2020), and Gautret et al. 
discovered the combination of Azithromycin and hydroxychloroquine 
had more efficient in reducing SARS-CoV-2 vigour (Gautret et al., 2020), 
but the results of other clinical studies were inconsistent (Molina et al., 
2020). 

Some publications have pointed out the most adverse effect of 
chloroquine/hydroxychloroquine is macular retinopathy, and the risk of 
it depends on the cumulative dose rather than the daily dose (Savarino 
et al., 2003). Recent studies reported high dose in short therapy duration 
could also lead to retinopathy (with morbidity rate 25% to 40%) (Leung 
et al., 2015; Navajas et al., 2015). Additionally, because of methemo-
globinemia and cardiac side effects were developed in COVID-19 
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patients, food and drug administration (FDA) revoked chloroquine/ 
hydroxychloroquine emergency use authorization (EUA) (Revokes, 
2020). 

3.3. Clinical intervention 

In the face of unprecedented epidemics, it is crucial to cutting off the 
transmission routes compared to the treatment, many leading experts 
developed a consensus on preferred practice patterns during clinical 
practice (Gupta et al., 2020; Areaux et al., 2020). To avoid overcrowding 
by a large number of patients in the hospital, the group encouraged the 
use of tele-counseling for triage and to stagger appointments (Kalavar 
et al., 2020; Wan et al., 2020a). They triage patients according to their 
urgency and severity. These measures not only provide more convenient 
and efficient medical services for patients but also reduce the probability 
of nosocomial infection caused by overcrowding in hospitals. 

Indirect examinations and less time-consuming examinations are 
preferred in clinical practice, such as OCT and optical coherence to-
mography angiography (OCTA), which are replacements for dye-based 
angiography (Gupta et al., 2020). 

Before emergency surgeries, confirmed or highly suspected patients 
are sent to a COVID-19-designated center. The instillation of 5% povi-
done iodine in the conjunctiva is necessary before surgery to eliminate 
virus on the ocular surface and conjunctival cul-de-sac (Eggers et al., 
2015; Gupta et al., 2020). 

3.4. The RAS in the eye 

As one of the binding proteins of SARS-CoV-2, ACE2 is also a nega-
tive regulator in the vascular protective axis of the RAS. The RAS plays a 
role in regulating blood pressure, body fluid volume, electrolyte bal-
ance, and inflammation (Fig. 3A). And many peptidases, tangiotensin 
peptides, and receptors are involved in this system (Ferrão, 2014). As a 
part of the protective axis of RAS, ACE2/angiotensin-(1–7) [Ang-(1–7)]/ 
Mas receptor can counterbalance the harmful effects of angiotensin II 
(Ang II) increase such as arteriole constriction (Santos et al., 2018). As 
one of angiotensin-converting enzyme family member, ACE2 has ability 
to cleave angiotensin II into angiotensin 1–7. As a vasodilator peptide 
(Ferrario et al., 1991), Ang-(1–7) plays a pivotal role in vasodilation, 
antioxidant activity, and antithrombosis through Mas receptors 
(Fig. 3B). The RAS comprises the circulatory RAS and local RASs, and 

the former exerts a vital role in controlling homeostatic arterial pressure. 
Local RASs play a role in proliferation, angiogenesis, and apoptosis in 

numerous organs (Fyhrquist and Saijonmaa, 2008; Paul et al., 2006). 
Local production of RAS components occurs in various organs, including 
in the kidney, heart, brain, and eye (Holappa et al., 2017; Paul et al., 
2006; Ribeiro-Oliveira et al., 2008). Recently, many components of the 
RAS have been found in the eyes of many species (Choudhary et al., 
2017; Danser et al., 1994; Igić and Kojović, 1980; Paul et al., 2006; 
White et al., 2015). The (pro)renin receptor exists in Müller glia and 
retinal ganglion cells (RGCs). Angiotensinogen is expressed in RPE, 
Müller glia and ciliary body. ACE has been found in retinal microvessels 
(Ward et al., 1979). Additionally, ACE2 and chymases are expressed in 
vitreous fluids and retina (Holappa et al., 2015; Senanayake et al., 
2007). Leonardi et al. found that the expression of ACE2 is in low level 
on the surface of conjunctiva and cornea (Leonardi et al., 2020). The 
intraocular RAS in retinal cells has been linked to various physiological 
functions and many blinding disorders, such as age-related macular 
degeneration (AMD), diabetic retinopathy (DR), and retinopathy of 
prematurity (ROP) (Choudhary et al., 2017; Moravski et al., 2000). 

Both kinds of DR, including nonproliferative and proliferative DR, 
have increased retinal vessel permeability, developed microaneurysms, 
etc. In addition, the latter type of DR has concomitant retinal neo-
vascularization that can cause hemorrhage, retinal detachment, and 
even visual loss (Prokofyeva and Zrenner, 2012). Strain et al. found that 
activation of the RAS promotes VEGF-mediated angiogenesis and retinal 
vessel permeability. The change in the RAS is responsible for DR 
development (Strain and Chaturvedi, 2002). 

DR is one of serious complications of diabetes. Yang et al. verified 
that diabetes and hyperglycemia are independent predictors of SARS 
infected patients’ mortality and morbidity (Yang et al., 2006). Two main 
reasons have contributed to the susceptibility of diabetics to virus 
infection. Firstly, diabetic patients have weakened immunity generally. 
A second reason is increased ACE2 in peripheral circulation. Patients 
with diabetes are usually administrated with the inhibitors of ACE 
(ACEis) or the angiotensin II receptor I blockers (ARBs) to treat com-
plications of diabetes. As a result, ACE2 is increased to resisit AngI and 
AngII elevated by ACEi or ARB treatment (Ferrario et al., 2005). SARS or 
SARS-CoV-2 invades host cells by binding ACE2, therefore the diabetics 
have higher risk of virus infection (Fang et al., 2020) and the infected 
ones might have a poor prognosis. Additionally, Patel et al., found the 
expression level of circulating ACE2 is higher in man than women (Patel 

Fig. 3. Circulatory RAS and local RAS. (A) Origins of a part of the RAS components and the function of circulatory RAS. Renin is derived from the kidney, the liver 
is the main source of angiotensinogen in the circulation, ACE is expressed at high level in the lung. (B) The RAS cascade and the role of ACE2 in the axis of the RAS. 
Ang I, angiotensin I; Ang II, angiotensin II; Ang 1–7, angiotensin 1–7; Ang 1–9, angiotensin 1–9; ACE2, angiotensin-converting enzyme 2; AT1R, type1 angiotensin II 
receptor; AT2R, type2 angiotensin II receptor; MasR, MAS receptor. 
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et al., 2013). A recent study on COVID-19 has shown that male’s mor-
tality is 2.4 times higher than female, so gender is an another influencing 
factor for mortality of COVID-19 infected patients apart from diabetes 
(Jin et al., 2020). It has been proved that the organ involvement of SARS 
is related to the expression level of ACE2 in organs (Yang et al., 2010). In 
2008, Niu et al., detected ACE2 is expressed in pancreas and participated 
in glucose homeostasis (Niu et al., 2008). Its expression in the pancreas 
suggest that SARS can attack islets and result in acute insulin dependent 
diabetes mellitus and mortality increaed (Yang et al., 2010). 

AMD, one type of retinal degenerative diseases, leads to vision loss 
because of photoreceptor cells and RPE cells dysfunction. RPE cells have 
type1 angiotensin II (AT1) receptors, and their blockade is beneficial for 
preventing epithelial cells from damage and suppressing choroidal 
neovascularization (Nagai et al., 2006). In summary, the inhibition of 
the RAS is a novel strategy for AMD treatment (Satofuka et al., 2008). 

ROP is a childhood disease resulting in blindness. Sarlos et al. un-
covered that retinal vasculature development of rat pups is related to the 
RAS (Downie et al., 2010). The excessive activation of the retinal RAS 
may contribute to ROP progression. 

The RAS is a key player in controlling water and electrolytes balance 
and the cardiovascular system. In retina, the local RAS plays a critical 
role in neurovascular function (Bader, 2010; Bader and Ganten, 2008; 
Paul et al., 2006). The character of the RAS in ocular tissues provides 
insight to retinal disease therapy. Amelioration of the progression of 
diabetes-related retinopathy by intraocular delivery of ACE2 via adeno- 
associated (AAV) can be seen in rodent models. Overexpression of ACE2 
significantly reduced diabetes-induced complications such as oxidative 
stress, CD45+ or CD11b+ inflammatory cells infiltration, and acellular 
capillaries formation(Verma et al., 2012). It was indicated that ACE2 is a 
protective target in DR. 

Moreover, as a key stage in the COVID-19, ACE2 is a mediator of 
SARS-CoV-2 infection. So, it becomes a very popular therapeutic target. 
Recombinant human ACE2 (rhACE2) is a soluble protein which can bind 
to SARS-CoV-2 as a decoy to inhibit virus infection ability (Li et al., 
2020b). In the meantime, rhACE2 was reported to inhibit SARS-CoV-2 
infected engineered human blood vessel organoids and human kidney 
organoids(Monteil et al., 2020). Thus, as a victim of virus, ACE2 also 
exerts a promising protective agent against catastrophic results of the 
SARS-CoV-2. 

4. Conclusions 

SARS-CoV-2 can be disseminated through tears and aerosols, but 
more studies on the ocular diseases of SARS-CoV-2 infections and 
pathogenic mechanisms are urgently needed in the near future. As the 
epidemic continues, more studies will be carried out, and a better un-
derstanding of SARS-CoV-2 will be developed. Both the ACE2 and 
CD147 (BSG) are particularly highly expressed in human eyes, indi-
cating their potential role of the ocular complications in the affected 
patients. Meanwhile, it is necessary for health-care workers to wear 
personal protective equipment to prevent possible infections. 
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