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Abstract.—Although an increasing number of phylogenetic data sets are incomplete, the effect of ambiguous data on phy-
logenetic accuracy is not well understood. We use 4-taxon simulations to study the effects of ambiguous data (i.e., missing
characters or gaps) in maximum likelihood (ML) and Bayesian frameworks. By introducing ambiguous data in a way that
removes confounding factors, we provide the first clear understanding of 1 mechanism by which ambiguous data can
mislead phylogenetic analyses. We find that in both ML and Bayesian frameworks, among-site rate variation can interact
with ambiguous data to produce misleading estimates of topology and branch lengths. Furthermore, within a Bayesian
framework, priors on branch lengths and rate heterogeneity parameters can exacerbate the effects of ambiguous data, re-
sulting in strongly misleading bipartition posterior probabilities. The magnitude and direction of the ambiguous data bias
are a function of the number and taxonomic distribution of ambiguous characters, the strength of topological support,
and whether or not the model is correctly specified. The results of this study have major implications for all analyses that
rely on accurate estimates of topology or branch lengths, including divergence time estimation, ancestral state reconstruc-
tion, tree-dependent comparative methods, rate variation analysis, phylogenetic hypothesis testing, and phylogeographic
analysis. [Ambiguous characters; ambiguous data; Bayesian; bias; maximum likelihood; missing data; model misspecifica-

tion; phylogenetics; posterior probabilities; prior.]

Phylogenetic analysis has become well established
as an important research tool in the biological sci-
ences (Harvey et al. 1996; Avise 2006), with applications
spanning broad fields of research, including evolution
(Murphy et al. 2001; Bowers et al. 2003; McKenna and
Farrell 2005), ecology (Armbruster 1992; Webb 2000),
and medicine (Bush et al. 1999; Hillis 2000; Eickmann
et al. 2003). Numerous studies have demonstrated that
model misspecification can affect the accuracy of phy-
logenetic estimates (Kuhner and Felsenstein 1994; Yang
et al. 1994; Sullivan et al. 1995; Lockhart et al. 1996;
Lemmon and Moriarty 2004). An important, but un-
resolved, question is whether ambiguous data affect
the accuracy of phylogenetic estimates (Kearney 2002;
de Queiroz and Gatesy 2007; Wiens 2003a, and refer-
ences therein). The answer to this question is becom-
ing increasingly relevant as more studies combine data
sets. With partial sequences of more than 165000 taxa
now available in large sequence databases, such as Gen-
Bank, EMBL, or DDB]J, an increasing number of stud-
ies will use large-scale combinations of sequences from
these databases in meta-analyses. Incomplete sequences
and sampling biases in these databases have led re-
searchers to build phylogenetic data sets that have large
numbers of ambiguous characters and gaps (Driskell
et al. 2004).

The effects of ambiguous data are unclear, at least
in part, because the terminology used to describe the
problem has neither been defined carefully nor used
consistently across studies. Consequently, we begin by
clarifying our terminology. We define the data as a
matrix of cells with rows and columns corresponding to

sequences and homologous sites, respectively. The value
in each cell represents the character state for the corre-
sponding sequence and site. The state of each character
is unambiguous (taking the state “A,” “C,” “G,” or “T”),
partially ambiguous (taking the state “B,” “D,” “H,” “V,”
“S,” "W, “R,” MY, “K,) or “M”), or ambiguous (taking
the state “?” or “N”). Ambiguous character is used to refer
to a character with an ambiguous state. Note that un-
less explicitly modeled, a gap (represented by the state
“—" and resulting from an insertion or a deletion) will
have the same effect as an ambiguous character. Also
note that partially ambiguous character states are not
considered here for simplicity. We use the term ambigu-
ous site to refer to a site containing 1 or more ambigu-
ous characters and the term ambiguous sequence to refer
to a sequence containing 1 or more ambiguous charac-
ters. Last, we use invariable site to refer to a site in which
all unambiguous characters have the same state. To en-
sure clarity, we henceforth avoid using the term “miss-
ing data,” although the reader may think of ambiguous
or gap characters as missing data.

Because of the complexity of the problem and the
fact that conclusions from simulation studies are con-
flicting, the potential impact of ambiguous characters is
still unclear. Early evidence suggested that ambiguous
characters can reduce phylogenetic accuracy, especially
when taxa have large numbers of ambiguous characters
(Platnick et al. 1991). Subsequent studies of the effects of
ambiguous characters disagree in their conclusions. For
example, Wiens (1998, 2003a, 2003b) argued that adding
ambiguous sequences or sites to a phylogenetic analysis
has no detrimental effect and that the addition of more
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of these sequences increases accuracy, even if it means
adding ambiguous characters. This argument seems
counterintuitive because adding in-group taxa will
decrease the average length of internal branches and
thus make the estimation of phylogenetic relationships
more difficult (Jermiin et al. 2004). His analyses also
suggest that even highly ambiguous sequences have
little impact on the phylogenetic relationships of the
unambiguous sequences (Wiens 2003a, 2003b). In con-
trast, other studies (Huelsenbeck 1991; Hillis et al. 1992;
Bull et al. 1993; Wiens and Reeder 1995; Dragoo and
Honeycutt 1997) found that ambiguous characters re-
sulted in reduced phylogenetic accuracy, although
the severity of the effect was variable. This variation
was attributed to the number of ambiguous characters
(Huelsenbeck 1991; Hillis et al. 1992; Bull et al. 1993;
Wiens and Reeder 1995), the type of data (e.g., DNA vs.
restriction sites; Wiens and Reeder 1995), the taxonomic
distribution of the ambiguous characters (Dragoo and
Honeycutt 1997), or the topological information in the
data set (Dragoo and Honeycutt 1997; Wiens 2003b;
Philippe et al. 2004).

Most of the past research into the effects of ambigu-
ous characters focused on maximum parsimony analy-
sis (Huelsenbeck 1991; Platnick et al. 1991; Wiens 1998;
Kearney and Clark 2003; Wiens 2003b). More recently,
studies also have considered the effects of ambiguous
characters on neighbor joining (Wiens 2003a), maxi-
mum likelihood (ML) (Dunn et al. 2003; Wiens 2003a,
2006; Gouveia-Oliveira et al. 2007), or Bayesian (Wiens
2006; Wiens and Moen 2008) analyses. Although Wiens
(2006) concluded that adding ambiguous sequences or
sites to a data set increased phylogenetic accuracy for
maximum parsimony, neighbor joining, ML, as well
as Bayesian analyses, Dunn et al. (2003) found a 50%
reduced accuracy for maximum parsimony and no re-
duction in accuracy for ML when ambiguous characters
were added.

There are 2 conflicting views on how ambiguous
characters affect accuracy. Some authors argue that re-
duced accuracy is due to a lack of information (i.e., not
enough unambiguous characters) rather than due to
the ambiguous characters per se (Kearney and Clark
2003; Wiens 2003a). They view ambiguous character
states simply as representing the unknown, with lit-
tle impact on the outcome of a phylogenetic analysis
(Kearney and Clark 2003). The practical implication of
this view is that all available data, including ambiguous
sequences and sites, should be used in a phylogenetic
analysis to maximize the available information. In con-
trast, other studies suggest that ambiguous characters
bias the resulting phylogeny to an extent that goes be-
yond the lack of information (Huelsenbeck 1991). The
recommendation in this case would be to reduce the
data set in an effort to eliminate as many ambiguous
characters as possible. Even though rarely stated explic-
itly, this latter strategy is widely used, either by setting
arbitrary limits for including ambiguous sequences into
an analysis (Kearney and Clark 2003) or by excluding
the leading and trailing ends of sequences in a data

set. Though some researchers are careful to remove
ambiguous characters, others disregard their potential
effects and use largely ambiguous matrices in an effort
to maximize the number of taxa and genes sampled.
Because simulation studies have drawn conflicting con-
clusions regarding the effects of ambiguous characters,
and the exact mechanism by which ambiguous charac-
ters may affect phylogenetic accuracy remains unknown
(Wiens 2006), further investigation is needed.

Previous studies conflict because the approaches
taken by authors have confounded the effects of am-
biguous characters with the effects of phylogenetic
information (due to nucleotide substitutions). More
specifically, authors have manipulated data sets by ei-
ther adding sites containing more than 2 unambiguous
characters or by changing the state of characters from
unambiguous to ambiguous. In either case, authors
have inadvertently manipulated the amount of phyloge-
netic information along with the number of ambiguous
characters. Furthermore, different simulation studies
varied widely in their assumptions. For example, Wiens
(1998, 2003a, 2003b) assumed that all characters evolved
at the same rate and that branch lengths were equal. In
contrast, Dunn et al. (2003) assumed that characters and
lineages evolved at different rates and allowed for dif-
ferent branch lengths. To determine the consequences
of including ambiguous characters in phylogenetic ana-
lyses, it is necessary to separate these confounding vari-
ables and explore the effects of ambiguous characters
across a wide range of parameter space.

The goals of this study are 1) to determine whether
ambiguous characters bias estimates of phylogeny, and
if they do, 2) to understand the mechanism by which
this bias is introduced, and 3) to identify the factors that
contribute to the direction and magnitude of the bias.
Our approach differs from previous studies in that we
only introduce ambiguous sites that should be topo-
logically uninformative if ambiguous characters have
no effect. In this way, we are able to remove the con-
founding factors described above and arrive at a clear
understanding of the effects of ambiguous characters.
We show that at least 5 factors determine the direction
and magnitude of bias resulting from ambiguous char-
acters: the number and taxonomic distribution of am-
biguous characters, the strength of topological support
from unambiguous characters, the degree of among-site
rate variation, and the method and assumptions of the
analysis (including the priors assumed in a Bayesian
analysis). Although we focus on ambiguous characters,
we expect gaps due to insertions and deletions to have
the same effect, unless they are explicitly modeled. We
conclude by discussing the implications of this work
and introduce several possible solutions to the problem.

METHODOLOGICAL OVERVIEW

In the following section, we outline the simulation
conditions and the general conditions under which the
analyses were conducted. In the Results, we present
the specific conditions under which the analyses were
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conducted along with the result to which they pertain.
The factors found to contribute to the effects of ambigu-
ous characters are presented with increasing complex-
ity, beginning with individual factors and ending with
combinations of factors. In this way, the reader can more
easily understand the effect of each factor as well as the
interactions among the factors.

METHODS

In order to gain a clear understanding of the effects
of ambiguous characters on estimates of phylogeny, our
analyses incorporated the following 4 properties: First,
we primarily used simulated data (instead of empirical
data) in order to gain control over the factors affecting
our phylogenetic estimates and to vary those factors in-
dependently. Second, we simplified the simulations as
much as possible, focusing on variables that were of im-
mediate interest. Consequently, our analyses were based
on 4-taxon simulations under simple models of evolu-
tion. Third, our simulated data sets contained 2 regions
(sets of nucleotide sites). The first region, which was of
fixed length, contained only unambiguous characters
and provided a baseline amount of support for the true
topology. The second region was of variable length and
may have contained ambiguous characters. Fourth, we
were careful to include ambiguous characters in such a
way that we could eliminate other confounding factors.
More specifically, ambiguous sites provided no topo-
logical information because only 2 of the 4 characters
had unambiguous states. In this way, we were able to
remove the effects of substitutions in the ambiguous
sites that could affect support for the true topology. In
order to determine the effects of Bayesian priors, we
also compared results from ML and Bayesian analyses
(Hillis et al. 1996; Felsenstein 2004), when possible.

Data Simulation

We first generated 6 alignments, each comprising 500
nucleotides, using a 4-taxon tree (in which each branch
length was equal to 1.0 My) and the Jukes—Cantor (JC)
model of evolution (Jukes and Cantor 1969). The 6 types
of data differed in that they were simulated under 6 dif-
ferent rates of evolution: 0.000015, 0.0015, 0.015, 0.15, 1.3,
and 15.0 substitutions per site per My (refer to Fig. 1;
note that 1.3 is not a typographical error). These rates
were chosen, based on preliminary simulations, to pro-
duce data sets containing a range of phylogenetic in-
formation, resulting in posterior probabilities (given 500
unambiguous sites) for the true topology of 1/3,2/3,1,
1, 2/3, and 1/3, respectively. The lowest rate of evolu-
tion produced data sets that were invariable at all sites
and the highest rate produced data sets that were satu-
rated. All data sets were simulated with Seq-Gen 1.2.5
(Rambaut and Grassly 1997).

To introduce among-site rate variation, we produced
36 types of combined data sets by concatenating pair-
wise combinations of the 6 rate types outlined above.
Each of the 36 combined data sets thus contained 1000

sites. We refer to the first 500 sites as Gene A and the
remaining sites as Gene B. To vary the taxonomic dis-
tribution of ambiguous characters across data sets, we
replaced all 500 characters in Gene B with ambiguous
characters (taking the state “?”) for 2 of the taxa (either
sister or nonsister on the 4-taxon tree) or none of the taxa
(Gene B unambiguous). Last, we varied the length of
Gene B by removing between 0 and 500 of the sites at the
end of Gene B (in increments of 50). One hundred repli-
cates of each of the 36 types were created for a total of
118 800 data sets (36 rate combinations x 100 replicates x
3 ambiguous character distributions x 11 lengths).

ML Analyses

Two types of ML analyses were performed. The first
type was performed to identify the effect of ambigu-
ous characters on estimates of topology. To identify
the ML topology for a given 4-taxon data set, each
of the 3 possible topologies was scored using PAUP*
v.4.0b10 (Swofford 2003) under the JC model of evolu-
tion. Branch lengths were optimized using default set-
tings, which include collapsing short branches (<1078
substitutions per site) to polytomies. The topology with
the highest likelihood after optimization was chosen
as the ML topology. We also computed the likelihood of
the data, given topologies with fixed branch lengths (see
description below). In order to accommodate rate het-
erogeneity in data sets with rate variation across genes,
we conducted additional ML analyses using TreeFinder
(Jobb 2008).

The second type of ML analysis was performed to
identify the effect of ambiguous characters on estimates
of branch lengths. Because we simulated the data using
an ultrametric tree, we expect the tips of the estimated
phylogeny to be equidistant from the root if ambigu-
ous characters have no effect. Therefore, a molecular
clock test can be used to determine whether relative
branch lengths are significantly affected. We first com-
puted the likelihood of the data given the true topology
and branch lengths optimized under the JC model. We
then computed the likelihood of the data given the true
topology and branch lengths optimized with a molecu-
lar clock assumption enforced (also under the JC model;
the root is assumed to be between the 2 internal nodes).
The molecular clock assumption forces the tips to be
equidistant from the root. The ratio of these likelihoods
was then computed to assess whether any departure
from a clock-like evolutionary process was significant
(x? test with 2 df; Felsenstein 1981, 1988). The Type I
error rate was computed as the proportion of replicates
in which the clock model was rejected.

Bayesian Analyses

Bayesian analyses were performed to assess the ef-
fect of ambiguous characters on estimates of topo-
logical support in the form of bipartition posterior
probabilities. Posterior distributions were estimated
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FIGURE 1. Simulation design. Among-site rate variation was simulated using 6 rates of evolution (chosen to produce the desired PP for the
true tree with 500 sites) combined across 2 genes to form 36 rate combinations. Gene A contained unambiguous sites, whereas Gene B contained
ambiguous sites. Ambiguous characters were present for either sister or nonsister taxa. Although Gene A always contained 500 sites, the length
of Gene B varied from 0 to 500 sites. Note that Gene B contained no topological information, regardless of the rate of evolution. PP = posterior

probabilities.

using MrBayes v.3.1.1 (Ronquist and Huelsenbeck 2003)
with 4 incrementally heated chains (temperature = 0.2).
Unless specified otherwise, we assumed the follow-
ing priors. For the topology, a uniform prior (across
all possible resolved topologies) was assumed (the de-
fault in MrBayes v.3.1.1). Note that this prior places a
zero prior probability on polytomies. For the branch
lengths, the exponential prior with mean equal to 0.1
was assumed (the default in MrBayes v.3.1.1). Note that
this prior penalizes long branch lengths and requires
branches to take lengths greater than 0 (i.e., does not
allow polytomies). Markov chains were sampled every
10 generations. MrConverge v1.2b (written by A.R.L,;
http:/ /www.evotutor.org/MrConverge) was used to
assess burn-in and convergence of 4 independent runs
(see Brown and Lemmon [2007] for details).

Each data set was analyzed under the JC model of
evolution. In addition, 3 different models of among-
site rate variation were considered: gamma-distributed
rates with 4 discrete categories (I'y) (Steel et al. 1993;
Yang 1993, 1994), invariable sites (I) (Gu et al. 1995;
Waddell and Penny 1996), and unlinked rates across
partitions (P) (Ronquist and Huelsenbeck 2003). The
priors assumed for these 3 models of rate variation were
uniform(0,50), uniform(0,1), and dirichlet(1,1), respec-
tively. The latter model was used by partitioning the
sites according to the gene to which they belong (note
that in this case, the partition boundaries are known).
In addition, we also enforced a strong prior at the true
values for the JC + I and JC + P models to assess the
effect of the flat priors on the posterior distribution.

Manipulated Empirical Data

To confirm that the biases caused by ambiguous
characters in our simulated data sets could also affect

estimates of topology derived from empirical data sets,
we manipulated an empirical data set that originally
contained very few ambiguous characters. An 8-taxon,
single-gene (16S) subset of data was taken from Mueller
et al. (2004). To the original data set, we appended up to
1000 additional sites in 2 different schemes. In the first
scheme (referred to as sister variable), we randomly
chose sites in which the character states of 2 sister
species (Hydromantes italicus and Hydromantes brunus)
differed, appended copies of them to the original matrix,
and changed the character states of the other 6 species
at all appended sites to ambiguous (“?”). In the second
scheme (referred to as distant invariable), we randomly
chose sites in which the character states of 2 nonsister
species (Desmognathus fucus and Ensatina eschscholtzii)
did not differ, appended copies of them to the original
matrix, and changed the character states of the other 6
species at all appended sites to ambiguous (“?”). Phy-
logenetic trees were then inferred from each of these
new data sets using ML and Bayesian methods (set-
tings were the same as described above, except that
the unpartitioned GTR + I + T" model was assumed).
Because the appended sites in both types of manipu-
lated data sets contain unambiguous characters for only
2 taxa, they should carry no topological information
(i.e., their addition should not affect topological support
values).

RESULTS
Ambiguous Characters and Branch-Length Priors

Effectively invariable data.—We begin by describing the
results from analyses of effectively invariable data sets
(i.e., rate = 0.000015 substitutions per site per My).
We use the term “effectively invariable” because the
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rate of evolution was so low that all simulated data
sets were completely invariant at all sites. Here, the
JC model is assumed (no rate heterogeneity). In this
simple case, we expect the support for each of the 3
possible topologies to be equal, regardless of the length
of Gene B or the distribution of ambiguous characters.
This expectation is met in the ML framework (Fig. 2a). In
contrast, the expectation of equal support is not met in
the Bayesian framework (Fig. 2b). In this case, support
for the true topology increases if Gene B is ambiguous
for sister taxa, but decreases if Gene B is ambiguous
for nonsister taxa. The magnitude of the bias (deviation
from the expectation) increases as the length of Gene B
increases. When Gene B is ambiguous for none of the
taxa (the control), support for the true tree remains at
the expected value. One interesting pattern is that the
bias caused by the ambiguous data is asymmetric, with
the positive bias (Gene B ambiguous for sister taxa) be-
ing approximately twice that of the negative bias (Gene
B ambiguous for nonsister taxa). This asymmetry is
due to the fact that the posterior probability estimate
is positively biased for 1 tree and negatively biased for
each of the other 2 trees. Because the posterior probabil-
ities of all 3 trees must sum to 1, the magnitude of the
bias observed for each of the 2 negatively biased trees
is less than the magnitude of the bias observed for the
single positively biased tree (Supplementary Table S1,
http:/ /www.sysbio.oxfordjournals.org).

One possible factor that could lead to the difference
between the ML and the Bayesian results (Fig. 2a,b) is
the fact that branch lengths may be collapsed to poly-
tomies in the ML analyses but not in the Bayesian anal-
yses. Branch lengths are not collapsed in the Bayesian
analyses because the prior on topologies gives a 1/3
probability to each of the 3 possible (resolved) topolo-
gies. This prior places a zero probability on a branch
length of 0 (i.e., a polytomy), which can lead to the
star tree problem (Suzuki et al. 2002; Cummings et
al. 2003; Lewis et al. 2005; Yang and Rannala 2005;
Kolaczkowski and Thornton 2006; Steel and Matsen
2007; Yang 2007). Thus, branch lengths are forced to
take small but nonzero values. To investigate whether
the ability to collapse polytomies could be responsible
for the difference between the ML and the Bayesian re-
sults, we conducted ML analyses with branch lengths
constrained to small but nonzero values. Our results
show that this factor indeed drives the misleading pos-
terior probabilities in the Bayesian framework (Fig. 2c).
As in the Bayesian case, support for the true topology
changes with the length of Gene B, and the direc-
tion of the change depends on the distribution of am-
biguous characters. Note that neither the ambiguous
characters nor the prior alone produces substantial
bias in topological support. Instead, it is the inter-
action between ambiguous characters and the prior
that produces the bias. In the Supplemental Material
(http://www.oxfordjournals.org/our_journals/sysbio/),
we present a mathematical argument suggesting that
when polytomies are given a zero prior probability
(only nonzero branch lengths are allowed), topological
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—@— sister taxa
non-sister taxa
0.75 none
o
o .
= Maximum
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o 0000000000
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b) 1.00
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'_
g 0.50 Bayesian
= MM‘
o
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C) 0.0010
0.0005
&)
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FIGURE 2. The effect of ambiguous characters on topological sup-
port when both genes are effectively invariable (rate = 0.000015 sub-
stitutions per site per My). On each graph, we plot the support for
the true tree as a function of the length of Gene B. Each point rep-
resents the mean across 100 replicate data sets. In an ML framework
(@), ambiguous characters do not affect topological support (Pr: calcu-
lated as the proportion of 100 replicates in which the true tree was cho-
sen, with a value of 1/3 given to replicates with equal support across
topologies) when branch lengths can be collapsed to polytomies. In a
Bayesian framework (b), topological support (PP) changes as a func-
tion of the length of Gene B and whether Gene B is ambiguous for
sister (black) or nonsister (dark gray) taxa. When Gene B is unam-
biguous (light gray), topological support is unaffected by the length
of Gene B. When branch lengths are forced to take a small but nonzero
value (1070 substitutions/site) in an ML framework (c), ambiguous
characters bias topological support (measured as the ratio of likeli-
hood scores for the true to one of the false trees) in the manner seen
in the Bayesian framework. Note that in a Bayesian framework, the
flat prior on bifurcating topologies requires branch lengths to take a
nonzero value. PP = posterior probability; Pr = probability.
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support may be biased. Additional studies are needed
to determine how efficiently a nonzero prior on poly-
tomies would reduce or eliminate the bias.

Variable data.—Here, we describe the results of analyses
of simulated data in which the rate of evolution was
sufficient to produce variable sites but remained the
same for ambiguous and unambiguous sites. Again,
the JC model is assumed (no rate heterogeneity). Re-
call that the rate of Gene A determines the baseline
level of support for the true topology. Gene B should
not provide topological information when present in
just 2 taxa. If ambiguous characters have no effect on
topological support, then we expect support for the
true topology to vary systematically with the rate of
evolution but not with the length of Gene B. This expec-
tation is met in the ML framework (Fig. 3a). Although
some stochastic error is present when the sequences
have evolved under very high rates, this error would
disappear if the number of replicates was increased.
In contrast, this expectation is not met in the Bayesian
framework (Fig. 3b), where topological support changes
as a function of the length of Gene B, the distribution
of ambiguous characters, and the rate of evolution. The
observed bias is highest when the rate of evolution pro-
duces either effectively invariable or saturated data and
lowest when the rate of evolution is intermediate. No
bias is observed when Gene A provides strong sup-
port for the true topology (Fig. 3, center 2 columns).
Interestingly, the direction of bias is opposite for low
and high rates of evolution. When the rate is low, sup-
port for the true topology is positively biased when
sister taxa have ambiguous characters. Conversely,
when the rate is high, support for the true topology
is negatively biased when sister taxa have ambiguous
characters.

One factor that could lead to bias in the Bayesian
framework when the rate of evolution is high is the
branch-length prior. Recall that an exponential branch-
length prior (with mean equal to 0.1) was assumed in
the Bayesian analyses presented in Figure 3b. Under
this prior, the density decreases as the length of the
branch increases, thus favoring short branches over
long branches. If the exponential branch-length prior
does not contribute to the bias in topological support,
we expect the posterior probability of the true tree to
be the same when a different prior is assumed. To de-
termine whether this expectation is met, we estimated
the posterior distributions assuming a uniform (flat)
prior (0,100) on branch lengths. As expected, the bias
disappears under a flat branch-length prior (Fig. 3c),
suggesting that the combination of the exponential
branch-length prior and the ambiguous characters pro-
duces the bias. Note that changing the prior has no effect
on the bias observed for data sets that evolved under
low rates of evolution because zero length branches are
currently not allowed under any branch-length prior (as
described above).

We also computed the likelihood of the saturated data
assuming each of the 3 possible topologies with branch

lengths fixed at an arbitrary value that is large (1.0
substitutions/site) but still smaller than the true value
(15.0 substitutions/site). This has the effect of mimick-
ing the Bayesian exponential prior, which negatively
biases the branch-length estimates. As in the Bayesian
analyses, support for the true topology decreases with
the length of Gene B when sister taxa have ambiguous
characters but increases with the length of Gene B when
nonsister taxa have ambiguous characters (Fig. 3d). As
expected, no bias is present when Gene B is ambigu-
ous for none of the taxa. This result demonstrates that
constraining branch lengths to values lower than their
optimum in an ML setting has the same effect as as-
suming a prior that favors short branches in a Bayesian
setting.

Ambiguous Characters, Rate Priors, and Model
Misspecification

Here, we describe results from the analyses in which
the rate of evolution is different for ambiguous and un-
ambiguous sites. In this case, the correct model of evolu-
tion is the JC model with separate rates for the 2 genes.
We used this model by partitioning the data set by gene
(i.e., with known boundary) in both ML and Bayesian
analyses. In the Bayesian analysis, the rate prior was set
to dirichlet(1,1).

The magnitude and direction of bias in topological
support are a function of the relative rates of the am-
biguous and unambiguous sites in Bayesian (Fig. 4)
but not in ML (Supplementary Fig. S1) analyses. For
the Bayesian analyses, substantial bias is observed
when the rate of evolution of Gene A is low (Fig. 4,
left columns) or when the rates of evolution at both
genes are high (Fig. 4, lower right corner). This suggests
that weakly supported bipartitions are more sensitive
to the effects of ambiguous characters. The rate of evo-
lution of Gene B can affect support for the true topol-
ogy when the baseline support (from Gene A) is weak.
Support for the true topology is strongly biased when
Gene B is evolving faster than Gene A. When Gene A
is evolving faster, a much smaller bias is typically
observed.

The magnitude of the bias caused by ambiguous char-
acters also differs depending on the assumed model of
among-site rate variation. This is shown in Figure 5,
which presents results from Bayesian analyses of data
sets in which Gene A is variable and Gene B is effectively
invariable. If rate priors do not interact with ambigu-
ous characters to produce biased topological estimates,
then we expect the posterior probability estimates not to
vary with the assumed model of rate variation, as long
as that model matches the simulation conditions. To test
this expectation, we compared results for 3 models of
rate variation (Fig. 5): discrete gamma (I'), invariable
sites (I), and partitioned with variable rate prior (P). In
principle, the latter 2 models should match the simu-
lation conditions. The direction and magnitude of bias
are similar for the discrete gamma and invariable sites
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FIGURE 3. The effect of ambiguous characters on topological support when both genes are evolving at the same rate. Axes and shades
of gray are the same as in Figure 2. Note that the graphs in the left column of (a), (b), and (d) are identical to those presented in Figure 2.
In an ML framework (a), ambiguous characters do not lead to a systematic bias in topological support, regardless of the rate of evolution

(increasing from left to right columns). In a Bayesian framework (b),

however, the magnitude and direction of the bias are a function of the

rate of evolution. This bias is strongest when the rate of evolution is low or high and weakest when the rate of evolution is intermediate (e.g.,
when Gene A provides strong support for the true tree). When the rate of evolution is high, the bias exists when an exponential branch-length
prior is assumed (b) but is absent when a uniform branch-length prior is assumed (c). The type of bias seen in the Bayesian framework can be
demonstrated in the ML framework (d) if branch lengths are fixed at an arbitrarily low value (results for 10~° substitutions per site per My are
shown in the lower left graph) or a very high value (results for 1.0 substitutions per site per My shown in the lower right graph) data set. Note
that in the Bayesian framework, the flat topological prior prohibits zero-length branches and the exponential branch-length prior penalizes long

branches.

models. Surprisingly, the bias is much more substantial
for the partitioned model when the rate of Gene A is
low but much less substantial when the rate of Gene A
is high. Results from the ML analyses largely support
these conclusions (Supplementary Fig. S2), although
systematic bias was only observed when Gene A was
evolving at a high rate.

In order to study the effect of the priors on the rate
variation parameters, we performed additional analyses
in which we used strong priors to effectively fix parame-
ters at their true values for the invariable sites and parti-
tioned models. The prior on the proportion of invariable
sites (uniform from 0 to 1) has a small effect on the bias
(compare second and third rows of Fig. 5), despite the

fact that the proportion of invariable sites is only accu-
rately estimated when Gene B is ambiguous for none of
the taxa (Supplementary Table S2). In contrast, the prior
on the relative rates in the partitioned model appears to
have a substantial effect (compare the fourth and fifth
rows of the left column in Fig. 5). When the prior is set
such that strong weight is placed on the true values (i.e.,
dirichlet(10 000, 10 000)), the bias for effectively invari-
able data sets (left column) approximates the bias seen
when the JC model was assumed (Fig. 2). Because the ra-
tio of rates of evolution is infinity when Gene A is vari-
able and Gene B is effectively invariable, the rate prior
could not be fixed at the true values for some of the rate
condjitions.
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FIGURE 4. The effect of ambiguous characters on Bayesian posterior probabilities when rates differ between unambiguous (A) and ambigu-
ous (B) genes. In each graph, the average posterior probability of the true tree (y-axis) is plotted as a function of the length of Gene B (x-axis),
pattern of ambiguous characters (shade of gray), rate of Gene A (column), and rate of Gene B (row). Graphs show results from analyses in which
rate variation was modeled in a partitioned analysis (partitioned by gene) with a dirichlet(1,1) rate prior. Therefore, the model of evolution is
overparameterized along the diagonal (equal rates; analogous to Figure 3b) and correctly parameterized off the diagonal. Note that the magni-
tude and direction of bias are a function of the relative rates of the ambiguous and unambiguous genes. Also note that in some cases, the bias is

strongest when the number of ambiguous sites is low.

Ambiguous Characters and the Molecular Clock biguous sites. Our analyses demonstrate that this is not

If ambiguous characters have no effect on branch- the case: Ambiguous characters can substantially in-
length estimates, then we would expect estimated trees ﬂqte the Type I error rate for the molecular CIPCk test
to be ultrametric and the Type I error rate for a molec-  (Fig. 6). In some cases, the Type I error rate can increase
ular clock test to be independent of the number of am-  rapidly (from 5% to 100%) with the addition of very
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parameter. Note that in each case, the light gray lines show the results from analyses of data sets in which both Genes A and B were completely
unambiguous (i.e., the control). Under the (incorrect) gamma model of rate heterogeneity, the posterior probabilities were slightly biased even

for the unambiguous data sets.

few ambiguous sites (e.g., 50). Inflation of the Type I
error rate is greatest when Genes A and B are evolving
at very different rates. Note, however, that when the 2
genes are evolving under the same rate (graphs along
the diagonal in Fig. 6) or when Gene B is unambigu-
ous for all taxa (light gray lines in Fig. 6), the Type I
error rate is independent of the length of Gene B. These

results suggest that the interaction between ambiguous
characters and rate variation among sites can lead to
estimates of trees that are significantly nonultrametric.
Also note that we are assuming the JC model of evo-
lution (no rate heterogeneity), so the results displayed
in the off-diagonal cells of Figure 6 are, in fact, under-
parameterized. Thus, we cannot say whether the bias
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framework. The proportion of 100 replicates in which the clock model was rejected in a x? test (df = 2; y-axis) is plotted against the length of
Gene B (x-axis), distribution of ambiguous characters (shade of gray), the rate of Gene A (columns), and the rate of Gene B (rows). Because rate
heterogeneity was not accommodated in these analyses (see text), the model of evolution was underparameterized in analyses presented off the
diagonal. Note that substantial inflation of Type I error requires both rate variation (off diagonal) and ambiguous characters (black or dark gray

points).

would disappear if rate heterogeneity were properly characters for only 2 of the 8 taxa, so topological sup-
modeled (though we expect the bias would disappear).  port should remain the same as sites are appended if
ambiguous characters have no effect. Our results clearly

. . demonstrate, however, that ambiguous characters in

Manipulated Empirical Data empirical data sets can strongly bias estimates of topo-

Recall that in both schemes (sister variable and distant  logical support and branch lengths (Fig. 7). In particular,
invariable), the appended sites contained unambiguous when variable sites are added (Fig. 7a), sister taxa are
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FIGURE 7. The effect of ambiguous characters on estimates of an empirical phylogeny estimated in a Bayesian framework. In (a), we present
results based on an empirical data set with up to 1000 variable sites appended. The character state at each appended site was unambiguous
but different for the sister taxa Hydromantes brunus (Hb) and Hydromantes italicus (Hi) and was ambiguous (“?”) for the other 6 taxa: Aneides
flavipunctatus (Af), Aneides hardii (Ah), Desmognathus fucus (Df), Desmognathus wrighti (Dw), Ensatina eschscholtzii (Ee), and Phaeognathus hubrichti
(Ph). The number of appended sites is given above each phylogeny, and the bipartition posterior probability estimate is given at each internal
branch. In (b), we present results based on the same empirical data set but with up to 1000 invariable sites appended. Here, the character state
at each appended site was identical for the distant taxa Df and Ee and was ambiguous for the other 6 taxa: Af, Ah, Dw, Hb, Hi, and Ph. Note
that when variable sites are added, taxa with unambiguous characters are pushed apart on the phylogeny, whereas when invariable sites are
added, taxa with unambiguous characters are pulled together. Topologies estimated in an ML framework matched those estimated in a Bayesian

framework.
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pushed apart on the phylogeny. For example, when
the data set contains no ambiguous sites, H. brunus and
H. italicus are sister taxa supported by a posterior proba-
bility of 1.0. When the data set contains 1000 ambiguous
sites, however, these 2 taxa are on opposite sides of the
phylogeny (the branches separating them are supported
by posterior probabilities of 0.67, 0.84, and 0.94). Con-
versely, when invariable sites are added (Fig. 7b), distant
taxa are pulled together. For example, when the data set
contains no ambiguous sites, D. fucus and E. eschscholtzii
are separated by 3 branches with posterior probabilities
equal to 1.0, 0.86, and 0.49. When the data set contains
1000 ambiguous sites, however, these 2 taxa are only
separated by 1 internal branch. In both cases, the result
is strong support for bipartitions that do not appear
in the topology estimated without the ambiguous sites.
Trees inferred using the ML criterion produced the same
pattern of bias.

DISCUSSION

Ambiguous characters can strongly bias estimates
of topology and branch lengths in ML and Bayesian
phylogenetic inference. Gaps due to insertions or dele-
tions will have the same effect unless explicitly modeled
(note that most software, including MrBayes, treat gaps
as ambiguous characters because explicit models of in-
dels are rarely implemented). We have shown that the
magnitude and direction of the bias vary as a function
of the number of ambiguous characters, the topologi-
cal position of ambiguous sequences, the relative rates
of evolution for ambiguous and unambiguous sites,
and the model of sequence evolution assumed. Further-
more, topological bias is likely to be most pronounced
in a Bayesian framework due to the additional interac-
tion between the ambiguous characters and the priors.
Even so, estimates of branch length and topology can be
biased in an ML framework when rate variation across
sites is not properly modeled. These results are in sharp
contrast to recent opinions that the effects of ambigu-
ous characters are overstated in the literature (e.g., de
Queiroz and Gatesy 2007).

Bipartitions that are strongly supported by unam-
biguous sites are likely to remain strongly supported
with the inclusion of ambiguous sites (e.g., Fig. 4,
columns 3 and 4). False bipartitions that would oth-
erwise be weakly supported, however, may become
strongly supported with the inclusion of even a few
ambiguous sites. In practice, therefore, it may be dif-
ficult to distinguish between true bipartitions that are
strongly supported by real signal and false bipartitions
that are strongly supported because of the effects of
ambiguous characters. Note that although we focused
our analyses on the 4-taxon case, we expect our con-
clusions to hold for weakly supported bipartitions in
larger phylogenies, although the effects are expected to
be more complex due to the interactions with additional
bipartitions.

In contrast to several previous simulation studies that
attributed a reduced phylogenetic accuracy to a lack

of information in the ambiguous sites (leading to low
resolution; Wiens 1998, 2003a), our study clearly shows
that ambiguous characters actively produce misleading
estimates of phylogeny through interaction with 2 other
factors: Bayesian priors and model misspecification. In-
teraction with Bayesian priors can be understood by
considering a Bayesian analysis of an invariable 4-taxon
data set. Priors on topology (uniform over strictly bi-
furcating topologies) and branch lengths (typically uni-
form or exponential) result in sampled branch lengths
that are small but nonzero. For a particular site in the
data set, the conditional likelihood score is equal to 1.0
for any subtree containing only taxa with ambiguous
character states (i.e., “?”). In effect, these portions of the
tree are pruned out (ignored). Thus, the site likelihood
is calculated only along branches connecting the se-
quences that are unambiguous for that site. For sites in
which 2 of the sequences have unambiguous character
states, this score is not identical across the 3 topologies.
One of the topologies groups these 2 unambiguous taxa
as sister, whereas the other 2 topologies position them
in a nonsister arrangement. Two branches separate sis-
ter taxa, whereas 3 branches separate nonsister taxa.
Given that branch lengths are nonzero and the site is
invariable (i.e., both taxa with unambiguous characters
have the same state), the likelihood under the topol-
ogy placing the 2 unambiguous taxa as sister is greater
than that under the topologies placing them as non-
sister (the likelihood is greater when fewer branches
separate taxa with the same character state). The priors
ensure that only nonzero branch lengths are sampled
and thus that the posterior probability of placing the
2 unambiguous taxa as sister is greater than 1/3. This
posterior probability increases with an increasing num-
ber of such sites. A similar line of reasoning will lead
to the opposite conclusion for saturated data sets. This
explanation predicts the pattern of topological error
seen in our analyses (Fig. 3b—d) and is confirmed by
the mathematical argument shown in the Supplemental
Material.

Ambiguous characters can also interact with model
misspecification to produce misleading estimates of
phylogeny. In order to understand this interaction, con-
sider a 4-taxon data set in which Gene A is evolving at
a slower rate than Gene B (refer to Fig. 8). Suppose that
a pair of sister sequences contain ambiguous characters
for all sites in Gene B. Under this scenario, the lengths of
the branches connecting this sister pair will be estimated
based only on the sites in Gene A, whereas the lengths
of the branches connecting the other sister pair will be
estimated based on all the sites (both genes). If among-
site rate variation is not properly modeled, the branches
connecting the sister pair with ambiguous characters in
Gene B will be shorter than those connecting the other
sister pair because Gene A is evolving at a slower rate
than the average rate across all sites (both genes). As
a result of this interaction, rate variation across sites is
manifested as rate variation across branches, resulting in
biased branch-length estimates (in fact, variation across
sites in any model parameter could be manifested as
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FIGURE 8. Ambiguous characters interact with model misspecifi-
cation to produce misleading branch-length estimates. A data set is
simulated using an ultrametric tree. Some sites evolve under a slow
rate, whereas others evolve under a fast rate. Ambiguous charac-
ters are introduced nonrandomly with respect to rate and taxon. If
rate variation is correctly modeled, the estimated tree is ultrametric.
If rate variation is not correctly modeled, the estimated tree is non-
ultrametric. The interaction between ambiguous characters and model
misspecification causes among-site rate variation to be manifested as
among-branch rate variation. Note that the pattern of branch lengths
inferred depend on the taxonomic distribution of the ambiguous
characters, even though the ambiguous sites contain no topological
information.

parameter variation across branches through the same
process). Bayesian priors introduce additional factors
that may then interact to bias topological support.

The accuracy of many analyses may be jeopardized
by the effects of ambiguous characters on branch-length
estimates. For example, we have shown that ambiguous
characters may increase the propensity to incorrectly
reject a molecular clock (Fig. 6). Other branch length-
dependent analyses that may be affected include diver-
gence time estimation, ancestral state reconstruction,
tree-dependent comparative methods, rate variation
analysis, phylogenetic hypothesis testing, and phylo-
geographic analysis. Future studies are needed to deter-
mine the indirect effects of ambiguous characters on the
accuracy of each type of analysis.

hybridization, horizontal gene transfer, or incomplete
lineage sorting), when in fact all support for alterna-
tive topologies is due to the presence of ambiguous
characters. One of us (K.S.-H.) has come across such an
example of discordance among gene trees in empirical
data from North American fireflies. Once ambiguous
sites were excluded from the analysis, gene tree congru-
ence increased substantially (Stanger-Hall et al. 2007).
Last, statistical approaches to phylogenetic hypothesis
testing (e.g., Bayesian posterior probabilities and ML
bootstrap proportions) may also be rendered inaccurate
by this bias. Hypothesis testing is of particular concern
because changes in posterior probabilities or bootstrap
proportions of only a few percent can alter conclusions
of significance, even when the bias is not strong enough
to alter the preferred topology.

The results of this study carry serious implications for
the practice of combining data when inferring phylo-
genies, particularly when rates of evolution vary across
data sets. For instance, consider the situation in which
data are gathered from a large number of species for
2 genes: 1 slower-evolving nuclear gene is included to
resolve deep relationships and 1 faster-evolving mito-
chondrial gene is included to resolve shallow relation-
ships (note that this approach is increasingly common).
Due to monetary or time constraints, not all species are
sequenced for both genes. Our 4-taxon simulations sug-
gest that the ambiguous characters will cause the taxa
sequenced for only the fast gene to be pushed apart on
the phylogeny, whereas the taxa sequenced for only the
slow gene will be pulled together. Analyses of simu-
lated 8-taxon data sets (Supplementary Fig. S3), as well
as a manipulated empirical data set (Fig. 7), confirm
these predictions. Supermatrix-style approaches that do
not have nearly complete overlap in taxon sampling
across data sets will be particularly prone to this type of
error.

Although we expect no systematic error if the ef-
fects of priors are weak and rate variation across sites
is correctly modeled, ensuring these 2 properties may
be difficult in practice. For example, the branch-length
prior is expected to have strong effects on any branch
for which no substitutions have been observed, regard-
less of the dimensions of the data set. Correct modeling
of rate variation across sites may be even more difficult.
Ambiguous characters may appear in an alignment
for a variety of reasons, such as monetary constraints,
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desire to publish quickly, poor alignments, or tech-
nical difficulties with sequencing. Given these vari-
ous causes for the inclusion of ambiguous characters,
rates of evolution are unlikely to be discretely different
between ambiguous and unambiguous sites. Deter-
mining a proper method for modeling rate variation is
likely to be extremely difficult, especially as the pro-
portion of ambiguous characters at each site increases.
Heterotachy (changes in rates of evolution within a site
across the tree), which has already proven problematic
with complete data sets (Kolaczkawski and Thornton
2004; Philippe et al. 2005; Spencer et al. 2005; Steel 2005;
Lockhart et al. 2006; Matsen and Steel 2007), may also
interact with ambiguous characters to produce effects
that may be difficult to avoid. One possible effect, for ex-
ample, is for heterotachy to be manifested as among-site
rate variation, thereby biasing estimates of among-site
rate heterogeneity parameters.

We have not investigated the effectiveness of particu-
lar methods for correcting for the ambiguous character
bias, although we suggest several here. The first (and
most obvious) solution is to use only completely un-
ambiguous data matrices when inferring phylogenies.
To do so, either ambiguous characters should be filled
in (through additional sequencing) or ambiguous sites
should be removed from the alignment. A second po-
tential solution is to use a technique known as statistical
imputation (Kalton and Kish 1981; Ford 1983; David
et al. 1986; Little and Rubin 2002; Marker et al. 2002).
To impute data, each ambiguous site is filled in us-
ing characters from a randomly selected unambiguous
site that has the same site pattern as the ambiguous
site. when cells containing ambiguous characters are
ignored. Drawbacks of this approach include the need
to account for the uncertainty associated with the filled
data and the fact that imputing some sites may be im-
possible (due to lack of a matching unambiguous site),
especially when the matrix contains a large number of
sequences or a small number of sites. The third potential
solution is to evaluate the effects of ambiguous charac-
ters on a data set-specific basis to see if a correction is
needed. One approach is to analyze the data set with
and without ambiguous sites and look for variation
in the results. Note that in many cases, this approach
may yield an unclear conclusion because the ambigu-
ous sites could also contain true phylogenetic signal;
this is the reason the ambiguous character problem
is difficult to study using empirical data. The fourth
and final solution we offer is to estimate the ambiguous
character states as free parameters. In an ML frame-
work, this would entail identifying the state for each
ambiguous character that maximizes the likelihood of
observing the unambiguous characters. In a Bayesian
framework, a prior would be placed on the distribu-
tion of character states and the posterior distribution
of character states for each ambiguous character would
be estimated. The difficulty with this approach is that
the number of parameters that would need to be es-
timated would be quite large for data sets containing
a large number of ambiguous characters. This list of

solutions is certainly not exhaustive; we look to fu-
ture studies to identify the relative merits of various
solutions.

We have demonstrated the potential for ambiguous
characters to positively mislead ML and Bayesian phy-
logenetic inference. However, we have not investigated
all possible variables that affect the magnitude of this
bias (e.g., tree shape), and we leave such analyses for
future studies. Much additional work is also needed
to identify powerful and robust diagnostics for assess-
ing when ambiguous characters may affect a particular
data set as well to determine priors and models that
minimize their effect. Until the costs of including am-
biguous characters in empirical data sets can be more
fully elucidated and methods for eliminating their ef-
fects can be developed, extreme caution should be taken
when including ambiguous characters or indels in ML
or Bayesian phylogenetic analyses.

SUPPLEMENTARY MATERIAL

Supplementary material can be found at http:/ /www.
sysbio.oxfordjournals.org.
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