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Abstract
Objectives To establish a pre-therapy prognostic index model (PIM) of the first-line chemotherapy aiming to achieve accurate
prediction of time to progression (TTP) and overall survival among the patients diagnosed with locally advanced (stage III) or
distant metastasis (stage IV) lung squamous cell carcinoma (LSCC).
Methods Ninety-six LSCC patients treated with first-line chemotherapy were retrospectively enrolled to build the model.
Fourteen epidermal growth factor receptor (EGFR)-mutant LSCC patients treated with first-line EGFR-tyrosine kinase inhibitor
(TKI) therapy were enrolled for validation dataset. From CT images, 56,000 phenotype features were initially computed. PIM
was constructed by integrating a CT phenotype signature selected by the least absolute shrinkage and selection operator and the
significant blood-based biomarkers selected by multivariate Cox regression. PIM was then compared with other four prognostic
models constructed by the CT phenotype signature, clinical factors, post-therapy tumor response, and Glasgow Prognostic Score.
Results The signature includes eight optimal features extracted from co-occurrence, run length, and Gabor features. By using
PIM, chemotherapy efficacy of patients categorized in the low-risk, intermediate-risk, and high-risk progression subgroups
(median TTP = 7.2 months, 3.4 months, and 1.8 months, respectively) was significantly different (p < 0.0001, log-rank test).
Chemotherapy efficacy of the low-risk progression subgroup was comparable with EGFR-TKI therapy (p = 0.835, log-rank test).
Prognostic prediction of chemotherapy efficacy by PIM was significantly higher than other models (p < 0.05, z test).
Conclusion The study demonstrated that the PIM yielded significantly higher performance to identify individual stage III–IV
LSCC patients who can potentially benefit most from first-line chemotherapy, and predict the risk of failure from chemotherapy
for individual patients.

Jiangdian Song and Mingfang Zhao contributed equally to this work.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00330-018-5912-2) contains supplementary
material, which is available to authorized users.

* Yunpeng Liu
ypliu@cmu.edu.cn

* Mingfang Zhao
mfzhao@cmu.edu.cn

1 School of Medical Informatics, China Medical University,
Shenyang, Liaoning, China

2 Department of Medical Oncology, The First Hospital of China
Medical University, Shenyang 110001, Liaoning, China

3 CASKey Laboratory ofMolecular Imaging, Institute of Automation,
Chinese Academy of Sciences, Beijing, China

4 College of Engineering, University of Texas, El Paso, TX, USA

5 Sino-Dutch Biomedical Engineering School, Northeastern
University, Shenyang, Liaoning, China

6 Medicine and Biological Information Engineering, University of
Oklahoma, Norman, OK, USA

7 Department of Radiology, The First Hospital of China Medical
University, Shenyang, Liaoning, China

8 Department interventional therapy, The First Hospital of China
Medical University, Shenyang, Liaoning, China

9 Artificial Intelligence in Medicine and Imaging (AIMI) Center,
Department of Radiology, Stanford University, San Francisco, CA,
USA

European Radiology (2019) 29:2388–2398
https://doi.org/10.1007/s00330-018-5912-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s00330-018-5912-2&domain=pdf
https://doi.org/10.1007/s00330-018-5912-2
mailto:ypliu@cmu.edu.cn
mailto:mfzhao@cmu.edu.cn


Key Points
• TTP and OS of first-line chemotherapy in individual stage III–IV LSCC patients could be predicted by pre-therapy blood-based
biomarkers and image-based signatures.

• Risk status of pre-therapy indicators affected the efficacy of first-line chemotherapy in stage III–IV LSCC patients.
• Those stage III–IV LSCC patients who were able to achieve similar efficacy to EGFR-TKI therapy through chemotherapy were
identified.
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Abbreviations
ALT Alanine aminotransferase
AST Aspartate aminotransferase
CEA Carcinoembryonic antigen
C-index Harrell’s concordance index
CR Complete response
GPS Glasgow Prognostic Score
HR Hazard ratio
IDI Integrated discrimination improvement
LASSO Least absolute shrinkage and selection operator
LSCC Lung squamous cell carcinoma
NRI Net reclassification improvement
OS Overall survival
PD Progressive disease
PIM Prognostic index model
PR Partial response
SD Stable disease
TTP Time to progression
WBC White blood cell

Introduction

The number of newly increased lung cancer cases per year is
about 1.8 million worldwide [1]. According to official statis-
tics released by the World Health Organization, among those,
approximately 20~30% are lung squamous cell carcinoma
(LSCC) [2]. Although the proportion of LSCC is lower than
lung adenocarcinoma, due to the lack of drugs targeting on-
cogenic drivers, and the contraindication of approved drugs
(bevacizumab and pemetrexed), median overall survival (OS)
of the locally advanced (stage III) and distant metastasis (stage
IV) LSCC patients is less than 1 year [3, 4]. The unsatisfactory
prognosis has now becoming a major challenge in clinical
treatment of stage III–IV LSCC patients. Chemotherapy is still
the preferred treatment of stage III–IV LSCC patients at pres-
ent according to the clinical practice guideline of American
National Comprehensive Cancer Network (NCCN) [5].

Gemcitabine-cisplatin (or carboplatin), paclitaxel-cisplatin
(or carboplatin), and docetaxel-cisplatin (or carboplatin) are
the proven effective chemotherapy regimens to LSCC patients
in current clinical practice [3, 5, 6]. It is noteworthy that al-
though there are various chemotherapy regimens, some

patients are still unable to benefit from chemotherapy, and
tumor progression could be soon detected by imaging-based
examination [7, 8]. On the other hand, although stage III–IV
LSCC patients were pathologically consistent, distinct tumor
heterogeneity of these patients with the same pathological
subtype potentially herald disparate long-term clinical out-
come [9, 10]. However, how to assess and quantify the pre-
therapy tumor heterogeneity in these patients in a less traumat-
ic or non-invasive way, so as to predict the risk of disease
progression, and evaluate the tumor response to chemotherapy
in the individual patient and estimate the long-term survival
difference in different tumor heterogeneity groups, is still
unexplored.

Recently, as a new emerging technology in medical imag-
ing informatics, quantitative analysis method proposes to ex-
tract high-throughput imaging features from the medical im-
ages of tumors and subsequently construct a predictive model
for the clinical purpose of auxiliary diagnosis or prognosis
prediction [11–13]. With advanced image feature analysis,
heterogeneity of tumor on medical images is converted into
mineable high-dimensional data [14, 15]. Studies have shown
that intra-tumor heterogeneity had higher impact on individu-
alized treatment outcome. The patients with homologous tu-
mor manifestations trend to express similar clinical outcomes
[9, 16, 17], while the patients diagnosed with distinct tumor
heterogeneity, potentially driven by different biological pro-
cesses, ultimately result in varied clinical outcome [18, 19].
The quantitative high-dimensional features provide rich infor-
mation on the tumor phenotype and can potentially be used to
evaluate the prognosis of chemotherapy in LSCC patients.
Previous studies of CT data have achieved promising perfor-
mance in predicting the clinical outcome of LSCC patients
[11, 20], indicating the potential of applying quantitative het-
erogeneity analysis to the efficacy evaluation and prognosis of
chemotherapy in stage III–IV LSCC patients.

Previous studies have confirmed that the blood-based bio-
markers were the key factors for cancer prognosis [21–25]. In
this study, we hypothesized that the integration of blood-based
biomarkers and pre-therapy CT image-based heterogeneity
might provide more potential valuable prognostic information
to stage III–IV LSCC patients treated with first-line chemo-
therapy. In order to validate this hypothesis, we analyzed the
potential relationship between high-throughput pre-therapy
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CT phenotype features and time to progression (TTP) in stage
III–IV LSCC patients. Specifically, we integrated the CT phe-
notype features and blood-based biomarker into a prognostic
index model (PIM) to predict the risk of progression for indi-
vidual stage III–IV LSCC patient. The effectiveness of PIM
was validated by a cohort of stage III–IV epidermal growth
factor receptor (EGFR)-mutant LSCC patients who only re-
ceived first-line EGFR-tyrosine kinase inhibitor (TKI) thera-
py. To show the potential advantages of PIM, its performance
was compared with other four prognostic prediction models,
and the feasibility of applying the PIM to OS prognosis in
stage III–IV LSCC patients was also explored.

Materials and methods

Patients

Eligibility criteria for this study were the following: diagnosed
with stage III–IV LSCC from January 2013 to December
2017, age older than 20 years, received first-line chemothera-
py or first-line EGFR-TKI therapy according to the criteria
established by the clinical guidelines, with pre-therapy blood
test and biochemical results, pre-therapy contrast-enhanced
CT images were acquired in 2 weeks before chemotherapy,
tumor response was evaluated by chest CT examination ac-
cording to the RECIST1.1 standard at the end of every 2 cycles
of admission of chemotherapy, with ECOG performance sta-
tus (PS) score of 0 to 2, with normal organ function, and with
no surgery resection history. Finally, 96 stage III–IV LSCC
patients received first-line chemotherapy, and 14 stage III–IV
LSCC patients with confirmed EGFR-positive mutation who
received first-line EGFR-TKI were eligible in this study.
Detailed information of patients and treatment regimen is pre-
sented in Tables 1 and 2.

Patients underwent contrast-enhanced chest CT using a
Siemens SOMATOM Definition Flash 64-row dual-source
CT machine. Patient took a supine position and raised his
arms, and lung was scanned at the end of inhalation.
Parameters were as follows: tube voltage of 100 kV or
140 kV, tube current of Care Dose 4D, scanning layer thick-
ness of 2 mm, reconstructed layer thickness of 2 mm, recon-
structed layer spacing of 2 mm, matrix of 512 × 512, and FOV
of 350mm× 350 mm. The enhanced scan was performed by a
double-barrel high-pressure syringe to inject 70 ml to 90 ml of
the non-ionic contrast agent iopromide intravenously into the
cubital vein. The injection speed is 2.5 ml/s to 3.0 ml/s, and
arterial phase images are obtained after 30 s to 40 s of
injection.

TTP was the primary endpoint, and OS was the secondary
endpoint in this study. Patients with chemotherapy were
reviewed every 3 weeks, and the follow-up interval was 2–
6 weeks in patients with EGFR-TKI therapy. TTP was

considered the time from the initiation of therapy to the date
of confirmed disease progression or death. OS was considered
the time from the initiation of therapy to the date of death.
Median follow-up of chemotherapy was 11.1 months in this
study. Patients were censored if they were alive at the last
follow-up or were lost to follow-up. This study was approved
by the institutional review board and ethics committee of the
First Affiliated Hospital of China Medical University and car-
ried out in accordance with the Declaration of Helsinki.

Image-based prognostic signature building

CT scans, clinical demographics, and blood-based informa-
tion for all patients were collected together for unified record
and standardized storage in this study. The region of interest
(ROI) of primary tumor of the chemotherapy patients on CT
images was manually segmented by two radiologists with
more than 10 years of experience in thoracic radiology. All
radiologists have received thoracic training, and any disagree-
ments were resolved in a consensus meeting with other radi-
ologists and oncologists. For each patient, 356 three-
dimensional phenotypic features and 236 two-dimensional
phenotypic features were automatically extracted on the tumor
ROI by C++ program. Based on the feature matrix consisted
of a total of 56,000 CT phenotype features which were ex-
tracted from the 96 chemotherapy patients, the features were
evaluated by the following two steps: first, the prognostic
value of all the features for TTP was evaluated by univariate
Cox analysis. Then, the features identified as significant

Table 1 Demographic information of the enrolled patients in this study

Variables Chemotherapy patients EGFR-TKI patients

Age

< 65 86 8

≥ 65 10 6

Gender

Male 82 3

Female 14 11

Smoking

Yes 78 2

No 18 12

Family of history

Yes 11 1

No 85 13

Clinical stage

IIIA~IIIB 55 3

IV 41 11

ECOG PS score

< 2 40 8

= 2 56 6

ECOG PS Eastern Cooperative Oncology Group performance status
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(p < 0.05) in univariate Cox analysis were subsequently fed
into the least absolute shrinkage and selection operator
(LASSO) Cox regression to build an image-based prog-
nostic signature. Patients with different signature scores
would be classified into different groups according to
the optimal cut-off value by X-tile, which was a widely
recognized tool for calculating optimal cut-off values
(Yale University School of Medicine) [26]. For details,
please see supplementary part 1.

PIM construction and validation

PIM was constructed by the significant clinical prognostica-
tors and the image-based phenotypic signature, as described
by the following steps: first, in order to select the significant
prognostic clinical variables, 24 clinical variables were evalu-
ated by univariate Cox regression analysis, including seven
demographics features (namely the sex, age, ECOG, number
of smoke, smoke status, history of disease, family history),
three clinical features (T, N, M stage), and 14 blood-based
variables, as described in Table 3 and supplementary
Table S1. Cut-off values of the variables of demographic,
clinical, and blood indicators were determined according to
previous studies [27] or current clinical practice in order to
transform them into normal status or risk status for univariate
Cox regression analysis and PIM construction.

Next, the significant variables in univariate Cox regression
analysis and the image-based prognostic signature in the pre-
vious section were fed into multivariable Cox regression anal-
ysis. The independent significant variables in multivariable
Cox regression were then identified and used as PIM indices
for model construction. For each patient, if all the PIM indices
were at normal status, his/her PIM score was assigned a value
of 0; if only one PIM index was at risk status, the patient’s
PIM score was assigned a value of 1; if two PIM indices were
at risk status, the patient’s PIM score was assigned a value of
2, and so on. Finally, the PIM we built in this study stratified
all the chemotherapy patients into three progression risk sub-
groups: low-risk (PIM score = 0), intermediate-risk (PIM
score = 1), and high-risk (PIM score ≥ 2).

After the PIM was trained and built using the data
acquired from 96 patients, data acquired from other 14
EGFR-mutant stage III–IV LSCC patients who received
first-line EGFR-TKI therapy were included to further val-
idate the accuracy of chemotherapy efficacy prediction by
the PIM.

Accuracy comparison of the TTP prediction

In this section, the significant clinical and blood-based
variables in univariate Cox regression model were used
to perform multivariable Cox regression analysis and
build a clinical model to compare with the proposed
PIM model. In accordance with the same stratification
standard, the chemotherapy patients were stratified into
three risk subgroups by the clinical model (risk factor =
0, or 1, or ≥ 2). Besides, patients with both records of C-
reactive protein (cut-off value 10 mg/L) and albumin (cut-
off value 35 g/L) were used to build the Glasgow
Prognostic Score (GPS) [28]. Another model based on
the proposed pre-therapy signature was built to divide
the chemotherapy patients into three risk subgroups by
X-tile. In addition, a model based on the tumor response
measured after chemotherapy (complete response (CR),
partial response (PR), stable disease (SD), and progressive
disease (PD)) was built for chemotherapy efficacy predic-
tion. All the four methods mentioned above were
employed for progression risk prediction, and the accura-
cy was compared with the PIM in this study.

OS prognostication by the PIM

To further explore the survival prognostic utility of the PIM,
we applied it to OS prognostication. Themodel-built details in
this experiment were consistent with those described in the
previous two sections.

Additionally, an ad hoc analysis was performed to test the
prognostic efficacy of clinical and blood-based variables for
the endpoint of OS by Cox regression analysis.

Table 2 Treatment regimens and
corresponding time to progression
(TTP) of the enrolled patients in
this study

Regimen Dosage Number Median TTP (months)

GP Gemcitabine (1.0 g/m2) plus cisplatin (75 mg/m2) 46 3.7

TC Docetaxel (75 mg/m2) plus carboplatin (5 × (CCr + 25)) 12 1.9

TP Paclitaxel (135 mg/m2) plus cisplatin (75 mg/m2) 10 3.2

DP Docetaxel (75 mg/m2) plus cisplatin (75 mg/m2) 11 3.2

Other – 17 4.7

Gefitinib 250 mg/qd 14 5.2

GP gemcitabine-cisplatin, TP paclitaxel-cisplatin, TC docetaxel-carboplatin, DP docetaxel-cisplatin, CCr creat-
inine clearance rate
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Statistical data analysis

Statistical analysis was conducted using R software (version
3.2.3). Parameters of the packages in R used in this study are
described in supplementary part 3. The Kruskal-Wallis test
was used to evaluate the difference of demographics variables
in the three risk subgroups. The reported statistical signifi-
cance levels were all two-sided, and p values < 0.05 were
considered to indicate significance.

For different subgroups stratified by the models, hazard
ratio (HR) was used to compare the difference of TTP among
subgroups. The Kaplan-Meier survival curves (log-rank test)
were used to calculate the survival curve rate and evaluate the
statistical significance of differences.

Harrell’s concordance index (C-index) [29] was used
for quantifying the prognosis accuracy of the models.

Nomogram of the models was also established to eval-
uate their prognosis performance [30]. Decision curve
analysis was performed for comparing the net benefits
at different threshold probabilities given by the models
[31]. The net reclassification improvement (NRI) and
the integrated discrimination improvement (IDI) were
also quantified for evaluating the prognostic benefit im-
provement of the PIM.

Results

The flow chart of this study is shown in Fig. 1. Among the 110
stage III–IV LSCC patients enrolled in this retrospective
study, seven patients with unqualified segmentation results
and four patients with segmentation data unable to recognize
were required to re-segment after the blind review, until qual-
ified. Figure 2 describes the manual segmentation by using
ITK-SNAP [32].

The median TTP and OS of the chemotherapy patients
were 3.60 and 11.50 months, respectively. The median TTP
of the EGFR-TKI patients was 5.20 months. A significant
difference of demographics variables was not found in the
subgroups classified by the signature and the PIM (p > 0.05).
All the chemotherapy patients had a detailed follow-up of OS
(in 19 censored cases, three patients were lost during the OS
follow-up and 16 patients were still alive at the last follow-up
in this study), and 67 patients had a confirmed document of
disease progression after chemotherapy (no censored data).
Patients in our study were classified into CR (n = 0), PR
(n = 27), SD (n = 56), and PD (n = 13) according to the
RECIST1.1.

Eight phenotypic features, which include co-occurrence,
run length, and Gabor features, and their corresponding
weights are displayed in Eq. 1 (for a detailed description,
please see supplementary). Cut-off value of the signature
was − 1.117. In patients with a score lower than the cut-off
value, his/her TTP benefit tended to be better (median
TTP = 6.7 months), and these patients had higher scores indi-
cating faster progression (median TTP = 3.2 months) in this
study (HR = 2.45, 95% CI = 1.44–4.23, p < 0.0001), as pre-
sented in Fig. 3a.

Signature ¼ 5:65412e−11� Value of cluster shade of co

−occurrence 0; 1½ �−2:726245e−04� Value of variance of first

−order feature 1½ �−1:980131eþ 01� Value of low gray−level run

emphasis of run length 3; 4½ �−3:909510e−03
� Value of GMTR variance of GW feature 8½ �−1:039332e−17
� Value of GMTR variance of GW feature 12½ �−1:021795e−05
� Value of GMTR variance of GW feature 24½ � þ 6:648282e−02

� Value of GPT rentropy of GW feature 26½ �−5:733282e−11
� Value of GMTR variance of GW feature 28½ �

ð1Þ

Table 3 Univariate Cox regression of the 24 clinical and blood-based
biomarkers according to the primary endpoint of time to progression

Factors β Wald HR 95% CI p value

Gender 0.20 0.35 1.22 0.63–2.34 0.56

Age − 0.02 0.004 0.98 0.58–1.73 0.95

EOCG 0.11 0.05 1.11 0.45–2.73 0.82

Number of smoke − 0.25 1.01 0.78 0.47–1.27 0.31

Smoke status 0.12 0.13 1.13 0.60–2.11 0.72

History of lung cancer 0.16 0.35 1.17 0.70–1.95 0.55

Family history 0.92 3.57 2.50 0.97–6.45 0.06

WBC 0.35 1.40 1.42 0.79–2.55 0.24

NE − 0.02 0.003 0.98 0.56–1.72 0.95

LY − 0.26 0.66 0.77 0.42–1.44 0.42

MONO − 0.19 0.57 0.83 0.51–1.35 0.45

EO 0.21 0.29 1.23 0.58–2.59 0.59

HB 0.0001 0.001 1.00 0.56–1.79 0.99

PLT 0.32 0.79 1.38 0.68–2.82 0.37

ALT 0.73 3.98 2.08 1.01–4.26 0.03*

TBIL − 0.46 0.59 0.63 0.20–2.04 0.44

ALB − 0.05 0.02 0.95 0.49–1.85 0.89

AST 1.17 13.14 3.22 1.71–6.04 < 0.0001*

FG 0.11 0.120 1.11 0.60–2.06 0.73

TP − 0.22 0.67 0.81 0.48–1.35 0.41

CEA 0.76 6.21 2.13 1.18–3.85 0.01*

T stage − 0.01 0.002 0.99 0.56–1.74 0.96

N stage 0.26 0.53 1.30 0.64–2.65 0.47

M stage 0.02 0.007 1.02 0.63–1.67 0.93

Themedian of the number of smoke (9600 cigarettes) was used as the cut-
off value. TNM stage was divided into three variables for analysis

WBC white blood cell, NE neutrophil, LY lymphocyte, MONO mono-
cytes, EO eosinophils, HB hemoglobin, PLT platelet, ALT alanine ami-
notransferase, TBIL total bilirubin, ALB albumin, AST aspartate amino-
transferase, FG fibrinogen, TP total protein, CEA carcinoembryonic
antigen

*The factor is significantly associated with time to progression
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Univariate Cox regression analysis based on the chemo-
therapy patients indicated that the variables age, sex, ECOG,
smoking, etc., were not prognostic significantly, except for
aspartate aminotransferase (AST), alanine aminotransferase
(ALT), and carcinoembryonic antigen (CEA) (p < 0.05), as
presented in Table 3.

According to multivariable Cox regression analysis, the
PIM was constructed by the following factors: the intra-
tumor heterogeneity prognostic signature and AST, as shown
in Table 4. According to the PIM, patients in the low-risk
progression subgroup could be benefited most from first-line
chemotherapy (median TTP = 7.2 months). However, when
patients were classified into the intermediate-risk progression
subgroup (median TTP = 3.4 months), the median TTP was
reduced by nearly 120 days (p < 0.0001, HR = 2.57, 95%
CI = 1.53–4.32). Furthermore, in patients classified into the
high-risk progression subgroup (median TTP = 1.8 months),
the median TTP was reduced by nearly 50 days compared
with the intermediate-risk progression subgroup patients
(p < 0.0001, compared with the other two subgroups), as
shown in Fig. 3b.

In the ad hoc analysis, AST and white blood cell (WBC)
were the significant prognostic factors for the endpoint of OS
by univariate Cox regression analysis, as presented in supple-
mentary Table S2. Besides, the result of multivariate Cox re-
gression analysis indicated that AST (HR = 1.79, 95%
CI = 1.06–3.03, p = 0.02) was the only significant prognostic
factor for OS in this experiment.

Significant TTP difference was not found between the
stage III–IV EGFR-mutant LSCC patients treated with first-
line EGFR-TKI therapy and the stage III–IV LSCC patients in

the low-risk progression chemotherapy subgroup (p = 0.835,
HR = 1.01, 95% CI = 0.60–1.72). But, the difference was
significant when compared with that in the intermediate-risk
or high-risk progression subgroups (p = 0.0025 and p =
0.0002, respectively), as described in Fig. 3c.

According to the model based on the post-treatment tumor
response, results indicated that a significant difference of TTP
was found between the PD and disease control (PR and SD)
patients (p < 0.0001, in both comparisons) but not found be-
tween the SD and PD patients (p = 0.40, HR = 1.25, 95%
CI = 0.73–2.14), as presented in Fig. 3d. AST and CEAwere
indicated as the independent prognostic factors to construct
the clinical factor-based model (p < 0.05). The difference of
TTP in the three subgroups stratified by the clinical model was
significant (see supplementary Fig. S1). However, the accura-
cy comparison of TTP prediction of the first-line chemother-
apy indicated that the PIM outperformed that of all the other
models (p < 0.05), as presented in Table 5. Decision curve
analysis indicated that the prognostic performance of the
PIM was significantly stronger than others (Fig. 4).
According to the clinical impact curve of the PIM (Fig. 4c),
when the probability of patient progression was greater than
10%, the prediction results of PIM were getting closer to ac-
tual situation.

OS prognostication by the PIM was performed on the 96
stage III–IV LSCC patients with first-line chemotherapy.
Based on the same construction standard, OS of the low-risk
progression subgroup strat if ied by PIM (median
OS = 16.3 months) showed a substantial clear survival benefit
comparedwith other patients (median OS = 9.6months, HR =
0.58, 95% CI = 0.37–0.91, p = 0.02). The difference of OS

Fig. 1 Flowchart of this study. The first step was model construction, and
based on the constructed model, model validation and comparison were
performed. LSCC, lung squamous cell carcinoma; TTP, time to

progression; OS, overall survival. NRI net reclassification
improvement, IDI integrated discrimination improvement
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was not statistically significant between the intermediate-risk
and high-risk progression subgroups (p = 0.397), as shown in
Fig. 5.

Discussion

In this study, we proposed a pre-therapy non-invasive model
for efficacy evaluation and long-term prognosis prediction of
first-line chemotherapy in stage III–IV LSCC patients by the
integration of blood test biomarkers and quantitative intra-
tumor heterogeneity. Those individual stage III–IV LSCC pa-
tients who potentially benefited most from first-line chemo-
therapy, and the risk of failure from this therapy for individual
stage III–IV LSCC patients were quantitatively evaluated.

Quantitative decoding of tumor heterogeneity on pre-
therapy images could excavate potential tumor progression
and prognostic information to aid clinical decision making

[33, 34]. In this study, the progression risk of first-line chemo-
therapy in stage III–IV LSCC patients was accurately predict-
ed according to the intra-tumor heterogeneity signature. This
finding indicated that the critical chemotherapy-resistant in-
formation potentially hid in the high-dimensional tumor phe-
notype. An in-depth study of the phenotypic descriptors which
express complex tumor heterogeneity might be more helpful
to understand the mechanism of tumor progression [13].

To the best of our knowledge, this is the first study to
integrate the pre-therapy tumor heterogeneity and blood-
based biomarkers into an available tool for both TTP and
OS prognosis for first-line chemotherapy in stage III–IV
LSCC patients. According to the proposed PIM, our study
identified the kind of stage III–IV LSCC patients who most
likely to benefit from chemotherapy: outcomes of the low-risk
progression subgroup patients (with low signature score and
normal AST status) were significantly better than those of the
other patients. The risk of progression in the low-risk

Fig. 2 The diagram of manual segmentation by using ITK-SNAP. The
subgraph in the upper left corner indicates that the manually segmented
region of interest (ROI) by the radiologist from cross section. The sub-
graphs in the upper right and lower right corners represent the manual
segmentation result of the tumor which is displayed from the sagittal and

coronal planes, respectively. The tumor is then reconstructed in a view of
three dimensions, which is represented in the subgraph in the lower left
corner. Each of the subgraphs could be scaled to ensure accurate
segmentation
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progression subgroup patients was only 0.39 and 0.14 com-
pared to that of the other two subgroup patients, and indeed
112% and 299% more TTP benefit than that of the two sub-
group patients, respectively. Furthermore, OS of the low-risk
progression subgroup patients was also significantly better
than that of the other patients (p = 0.02). All of these findings
consistently suggested that for stage III–IV LSCC patients,
first-line chemotherapy was strongly recommended to those
with a low risk of progression according to the PIM. In addi-
tion, by the comparison of the stage III–IV EGFR-mutant
LSCC patients treated with first-line EGFR-TKI therapy,
TTP of the low-risk progression subgroup was almost

identical to that of the EGFR-TKI patients (p = 0.835). This
finding was confirmed with previous studies that chemother-
apy could achieve similar clinical efficacy as EGFR-TKI ther-
apy for non-small cell lung cancer (NSCLC) patients [35–37].
As the observed incidence of EGFRmutations was only 2.7%
in patients with LSCC, EGFR mutations were not applicable
to routine testing of all LSCC tumor specimens [5]. Thus,
early identification of the low-risk progression patient would
be significantly vital for directing personalized therapeutic
regimen administration, as well as achieving an optimized
economic cost-to-benefit ratio for these patients.

According to our experiments, the clinical variables of sex,
age, smoking status, and ECOG performance status were not
significant prognosticators. Although these factors were wide-
ly concerned in the studies of NSCLC, we found that in pre-
vious reports, their prognostic performance was inconsistent
in different NSCLC populations [35, 38–42]. Our finding was
also suggested that current evidence was still inadequate to
determine that particular types of NSCLC patient defined by
age, sex, performance status, histology, or clinical stage could
be benefited from chemotherapy [43]. On the other hand,
studies to explore whether those factors could be used as in-
dependent prognostic factors of chemotherapy in advanced-
stage LSCC patients are still rare. In addition, there are no

Fig. 3 Results of progression risk
prediction. a The Kaplan-Meier
curves of groups classified by the
signature, and all patients were
stratified into good time to
progression (TTP) group and
poor TTP group according to the
signature. b, c The progression
risk prediction of the prognostic
index model (PIM). b The result
of low-risk (yellow line),
intermediate-risk (blue line), and
high-risk (pink line) progression
subgroups by the PIM. c The
comparison between the stage
III–IV EGFR-mutant LSCC
patients treated with first-line
EGFR-TKI therapy (red line) and
the different risk subgroups of
chemotherapy patients stratified
by the PIM. d The Kaplan-Meier
curves of the patients with partial
response (PR), stable disease
(SD), and progressive disease
(PD)

Table 4 The results of the multivariable Cox regression analysis.
Significant variables (p < 0.05) are used as prognostic indices to
construct the prognostic index model

Variables HR (95% CI) β p value

Signature 3.50 (1.88, 6.50) 1.25 < 0.0001

AST 3.66 (1.81, 7.39) 1.30 0.0003

ALT 1.69 (0.76, 3.78) 0.52 0.20

CEA 1.08 (0.55, 2.11) 0.07 0.82

AST aspartate aminotransferase, ALT alanine aminotransferase, CEA
carcinoembryonic antigen
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preferred chemotherapy regimens for smoking LSCC patients
for now [44]. More evidence is still needed to determine the
prognostic value of the traditional clinical variables for stage
III–IV LSCC patients.

GPSmay not be suitable for the prognosis of chemotherapy
in stage III–IV LSCC patients according to our results. The
comparison of the PIMwith the four prognostic methods dem-
onstrated that the integration of pre-therapy intra-tumor het-
erogeneity signature and blood-based biomarkers could be
more valuable in clinical practice. As a cancer-specific prog-
nostic indicator, the prognostic value of AST has long been
concerned [21–23]. As in clinical practice, unusual level of the
AST often indicates abnormal liver function, and it was also
the significant indicator of poor prognosis of first-line chemo-
therapy in stage III–IV LSCC patients according to this study.
Actually, previous studies have demonstrated that the progno-
sis of advanced lung cancer patients with liver metastasis was
the worst [45, 46]. Thus, we suspected that the abnormality in

AST in patients with stage III–IV LSCC potentially indicated
liver metastasis. The clinical factor-based prognostic model
built in this study indicated that CEAwas significantly related
to prognosis of stage III–IV LSCC patients, but it was exclud-
ed in the PIM. We considered that the prognostic performance
of CEA still should be further validated as also reported in
studies [24, 25].

According to the PIM, the OS probability of the chemother-
apy patients in the high-risk progression subgroupwas poor than
other patients (medianOS = 8.7months versus 11.7months). As
the high-risk progression subgroup patients benefited least from
first-line chemotherapy (the worst TTP and OS), indicating that
patients in this subgroup may not be suitable for first-line che-
motherapy, and other alternative therapies should be considered.

Our study was limited by retrospective and lacks of prospec-
tive validation. The indistinguishable OS between the
intermediate-risk and the high-risk progression subgroups may
be due to the existence of censored data (see Fig. 5), and

Table 5 The comparison of the
prognostic accuracy between the
PIM and other four prognostic
models (z test was used to
calculate the p values by using the
R package of BsurvIDINRI^)

Models C-index (95% CI) IDI (p value) NRI (p value)

PIM 0.682 (0.649–0.715) Ref Ref

Clinical model 0.629 (0.600–0.658) − 0.095 (0.013) − 0.644 (0.013)

GPS 0.480 (0.433–0.527) – –

Signature 0.631 (0.600–0.662) − 0.101 (< 0.001) − 0.559 (< 0.001)

Tumor response 0.648 (0.613–0.683) − 0.169 (0.020) − 0.428 (0.027)

The IDI and NRI between PIM and GPS were blank as the patient population is different

PIM prognostic index model, GPS Glasgow Prognostic Score, NRI net reclassification improvement, IDI inte-
grated discrimination improvement

Fig. 4 The comparison of themodels. a The plots depict the calibration of
the model in terms of the agreement between predicted and observed TTP
(time.inc = 6 months). Performances of the models are shown on the plots
relative to the 45° line, which represents perfect prediction. b Decision
curve analysis of the PIM (red line), clinical factor-based model (green
line), post-treatment tumor response-based model (cyan line), and the
intra-tumor heterogeneity signature-based model (blue line). The orange
line represents the assumption that all patients were treated. The black line
represents the assumption that no patient was treated. The x-axis
represents the risk of progression (Pt). The y-axis measures the net
benefit. The net benefit was calculated by subtracting the proportion of

all patients who are false positive from the proportion who are true
positive, weighting by (Pt/(1 − Pt)). The decision curve showed that if
the threshold probability of a patient or doctor is > 26%, using the PIM to
predict progression risk adds more benefit than the treat-all-patients
scheme or the treat-none scheme, or other prognostic models. c The
clinical impact curve of the PIM; the red line (number of high risk)
represents the patients with a high risk of progression predicted by the
PIM at each threshold (with 95% CI), and the green line (number of high
risk with outcome) represents the patients with actual progression at each
threshold (with 95% CI)
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validation on larger dataset would be more convincing. Besides,
EGFR-TKI therapy was the only comparative treatment in this
study, and other treatments were not considered. Since the low
incidence of the stage IIII–IV LSCC patients (only 20~30% in
NSCLC) and the natural characteristics of EGFR mutation in
this kind of population (only 2.7% in LSCC), the small number
of patients in the validation dataset is another limitation.
Multicenter validation trials in the future will narrow the bias
caused by the patient population. The prognostic signature and
the PIM will be further validated in future studies and analyzed
the regularity of prognosis revealed by tumor heterogeneity,
transforming the current studies of Bexploration of relationship^
in imaging heterogeneity to the studies of Brecognition of
regularity^ for aiding clinical practice.

In conclusion, the proposed prognostic strategy can
achieve accurate efficacy evaluation and prognosis prediction
of first-line chemotherapy in individual stage III–IV LSCC
patients, which holds promise to pre-therapy personalized
therapeutic assistance for these patients.
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