
Genome Biology 2003, 4:119

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

Opinion
New methods for finding disease-susceptibility genes: impact and
potential
Mark I McCarthy*, Damian Smedley† and Winston Hide‡

Addresses: *Oxford Centre for Diabetes, Endocrinology and Metabolism, and Wellcome Trust Centre for Human Genetics, Headington,
Oxford OX3 7LJ, UK. †European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ‡South
African National Bioinformatics Institute (SANBI), University of Western Cape, Cape Town, South Africa.

Correspondence: Mark I McCarthy. E-mail: mark.mccarthy@drl.ox.ac.uk

Published: 19 September 2003

Genome Biology 2003, 4:119

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2003/4/10/119

© 2003 BioMed Central Ltd 

Identifying the genes underlying susceptibility to human

disease represents a major objective of current biomedical

research. Increasingly, the focus of such gene-discovery

efforts has shifted from rare, monogenic conditions towards

the common conditions (such as diabetes, asthma, neuro-

psychiatric disorders and cancers) that account for the major-

ity of human illness and mortality. These common conditions

are termed ‘multifactorial’ because, in each case, susceptibil-

ity is attributed to the effects of genetic variation at a number

of different genes and their interaction with relevant environ-

mental exposures. The expectation is that identification and

characterization of the genes that provide the inherited com-

ponent of susceptibility will lead to substantial advances in

our understanding of disease and, in turn, to improvements

in diagnostic accuracy, prognostic precision, and the range

and targeting of available therapeutic options. 

The ‘traditional’ route to gene discovery - for the rarer, mono-

genic, Mendelian diseases at least - has been positional

cloning. Typically, the gene responsible for a trait is first

localized by linkage analysis to a small interval (ideally less

than 1 centiMorgan, cM) by successive rounds of linkage

mapping within families. Next, each of the handful of genes

mapping to the interval so defined is assessed for their poten-

tial functional relevance to the disease and screened for etio-

logical mutations. Well over 1,000 Mendelian diseases have

been mapped using modifications of this procedure [1]. 

To date, the application of similar strategies to the identification

of susceptibility genes underlying common, complex multi-

factorial traits has brought only limited success. The explana-

tion for this pedestrian progress stems from the weak

relationship between genotype - at any given locus - and phe-

notype that characterizes multifactorial traits. Not only does

this mean that the correlation signals that we seek to detect

by linkage analysis or population-based association studies

are that much weaker in the first place, it also limits the

capacity of these tools to provide precise estimates of disease-

gene localization. The regions of interest defined through

complex-trait linkage studies - even when analysis has

involved thousands of families segregating the trait of interest

- regularly exceed 30 cM in size, and contain many hundreds

of genes. Large genomic intervals of interest can also be

defined through the analysis of major chromosomal

rearrangements, duplications and deletions, implicated in the

development of cancers and certain multisystem syndromes. 

Difficulties with the positional cloning approach have led

many investigators to favor a strategy based primarily on

identifying susceptibility variants through direct examina-

tion of biological candidates (‘the candidate gene approach’).

This strategy, too, has proven something of a disappoint-

ment [2], precisely because ignorance about the biology of

complex diseases has typically frustrated efforts to define

biological candidacy with any confidence. 
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Improved techniques for defining disease-gene location and evaluating the biological candidacy of
regional transcripts will hasten disease-gene discovery. 



The key to accelerating the discovery of susceptibility genes for

multifactorial conditions clearly lies in developing improved

strategies for refining both disease-gene location and assess-

ments of biological candidacy (see Figure 1). This article

describes some recent developments, with an emphasis on

their impact on susceptibility-gene identification in man. 

New methods for defining susceptibility-gene
location 
Linkage analysis seeks to provide disease-gene localization

through the direct observation of recombination events

within families. Whilst it has proven an extremely effective

tool for detecting and localizing the rare, penetrant variants

that underlie most monogenic conditions (see above), it is all

too often underpowered when it comes to the search for the

common variants of modest penetrance that are generally

held to influence susceptibility to common traits [3]. 

Association (or more strictly, linkage disequilibrium)

mapping, in contrast, seeks to localize susceptibility variants

through the analysis of allele distributions in populations,

relying on the observed consequences of unobserved recom-

bination events during population history. Provided the sus-

ceptibility variant itself (or a variant highly correlated with it)

is amongst the markers typed, association mapping is, gener-

ally, more powerful than linkage analysis [4]. Furthermore,

because the extent of linkage disequilibrium (LD) within pop-

ulations (typically tens of kilobases) is much less than that of

linkage within families (typically tens of megabases), much

tighter disease gene localization is possible. 

One promising positional-cloning strategy for complex

traits, therefore, starts with a preliminary linkage analysis to

identify regions of interest. Following replication in other

datasets, the strongest regions are then selected for LD

mapping to refine susceptibility-gene location. Unless there

is extensive allelic and locus heterogeneity, the association

signal within such linked regions should be appreciable and,

in principle, readily detected provided that a sufficiently

dense set of markers is typed [5]. The markers that are used

are increasingly likely to be single-nucleotide polymor-

phisms (SNPs). Although there have been several notable

successes from this approach [6-8], widespread implemen-

tation has been stifled by the daunting scale associated with

any exhaustive LD screen across a large genomic interval.

Several ongoing developments can be expected to facilitate

such large-scale ‘brute force’ LD mapping efforts in the

years to come. First, an increasingly comprehensive catalog

of common variants [9] is providing the reagents for future

LD studies. Second, a growing appreciation of the high-res-

olution structure of LD in human populations [10] indicates

that most common variation within a region can be ‘cap-

tured’ by typing only a subset of the available variants (so-

called ‘haplotype-tagging’ or htSNPs) [11]. The HapMap

project is currently characterizing the haplotype structure

of the genome in major ethnic groups, thereby defining

htSNPs for use in future positional cloning endeavors.

Third, improved genotyping platforms and strategies, using

extensive multiplexing [12] and/or pooled DNA samples

[13], promise to provide significant improvements in

throughput combined with necessary reductions in cost and

DNA consumption. 

Significant issues remain unresolved, however. The density

of SNPs required to provide a comprehensive survey of

common disease variation remains unclear. On current evi-

dence - except in population isolates, in which LD may be

more extensive - a mean density exceeding one (haplotype-

tagging) variant every five kilobases looks to be necessary,

and considerably more in regions of high haplotypic diver-

sity [14]. The relative importance of common versus rare

variants in complex-trait susceptibility remains a con-

tentious issue with enormous practical implications: a strat-

egy based on common htSNPs will be poor at detecting rare

penetrant mutations, and substantial allelic heterogeneity

may seriously compromise the power of LD-mapping

approaches [15]. The pros and cons of focusing the survey of

a region on gene-related sequence [16] as opposed to an

indiscriminate ‘gene-blind’ set of markers remain to be

established. Finally, there remain significant analytical

issues as to how best to analyze the large amounts of data

that will arise. High-density LD surveys of several large

genomic regions are now underway for a range of diseases.

Whether successful or not in terms of disease-gene discov-

ery, these ‘pilot’ studies, each generating several million

genotypes, will help to address various unresolved issues,

and inform future efforts. 

Several groups have elected to bypass the linkage step and

proceed directly to genome-wide LD analyses. Many of

these efforts have been rather optimistic in terms of the

density of markers typed, although interesting data have

emerged from studies of population isolates [17]. In such

populations - such as French Canadians and Finns - which

have often grown from a limited number of recent founder

individuals, LD may extend much further than in non-

isolate populations, reducing the number of markers that

need to be typed to obtain genome-wide coverage. Recently,

a study of over 90,000 gene-based variants provided a valu-

able proof-of-principle by detecting a strong association

between a variant in the LTA gene and myocardial infarc-

tion in Japanese [16]. 

These early studies indicate that it will be increasingly possi-

ble to translate the success of positional cloning (in the strict

sense of the term, using positional mapping alone without

reference to function) from rare, monogenic syndromes to

common multifactorial traits. At the moment, the main

obstacle remains the prodigious costs of implementing these

strategies on the scale that is necessary. 
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New approaches for defining susceptibility-gene
biological candidacy
The candidate-gene approach relies on matching known or

presumed gene functions to the known or presumed biology

of the disease or phenotype under investigation. The aim is

to identify genes with a strong prior claim to involvement in

disease susceptibility and to prioritize these for analyses

seeking evidence of disease-associated variation. Sadly,

however, the history of candidate-gene studies, particularly

for complex traits, has been characterized by a swathe of

unsubstantiated, unreplicated claims and relatively few

proven associations [1,2]. Amongst the many methodological

and cultural reasons for this failure [18], two concern us

here. First, because in general we know so little about the

mechanisms responsible for complex diseases, any test of

biological candidacy is necessarily speculative. Second, it is

worth remembering that significant susceptibility effects are

only likely to be found in a small minority of the set of genes

whose products are directly involved in disease pathogenesis

[19]. As a result, for most complex traits there are - even for

genes with apparently robust biological credentials - rela-

tively low prior odds (that is, odds estimated prior to the

start of any genotyping) that variants within that gene play a

major role in disease susceptibility. These low prior odds

need to be borne in mind when interpreting the results of

association studies [18]. 

The expectation is that application of the growing range of

massively parallel genome-wide ‘-omics’ technologies - from

transcriptional profiling to metabonomics and beyond - will

provide a basis for refining assessments of biological candi-

dacy and identifying candidates with better prior odds. A

growing number of examples attest to the potential of these

strategies. Most to date have featured the use of expression

data, with lists of promising candidates generated on the

basis of both expression state (tissue expression profiles)

and studies of differential expression. For some tissues,

restricted or preferential tissue expression patterns have

provided valuable clues to biological candidacy: for example,

almost half of the 51 genes underlying monogenic retinal

phenotypes are specifically or preferentially expressed in the

retina [20]. For many complex traits, however, multisystem

involvement and uncertainties over the most appropriate

choice of tissues for study have limited the value of this

approach. Even when the choice of target tissue is clear,

sparse expression-state data in public repositories (for

example, for the adipocyte) and/or inaccessibility of the

tissues of interest (such as the pancreatic � cell) have often

compromised progress. 

Genome-wide studies of differential expression - whether

undertaken by differential display, representational differ-

ence analysis or microarrays - have obvious potential to
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Figure 1
Candidate-gene identification past and present. In the past, the emphasis was on using linkage analysis to direct positional-cloning efforts, and on the
application of our limited understanding of disease pathogenesis to select biologically relevant candidate genes. Now, additional techniques are providing
new routes to the identification of disease-susceptibility genes. See text for further details. 
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provide valuable clues to disease-associated pathways,

thereby identifying candidates for genetic studies. Work on

rodent models has predominated in this area; limitations on

tissue accessibility, uncertainties over tissue selection, and

concerns about the ‘noise’ arising from studies of ‘free-range’

subjects, have impeded equivalent studies in humans. But

recent studies demonstrating that insulin resistance and

type 2 diabetes are consistently and reproducibly associated

with downregulation, in human skeletal muscle, of a coregu-

lated set of oxidative phosphorylation genes [21,22] are reas-

suring and confirm the capacity to highlight candidates with

key regulatory roles, in this case, PGC1-�/PPARGC1. Associ-

ation studies of this gene have already generated positive,

though as yet inconsistent, findings [23].

As with any transcript-profiling study, design is all-impor-

tant. Comparisons between ‘diseased’ and ‘control’ tissue

will favor direct detection of variants involved in gene regu-

lation or mRNA stability, but not those that modify protein

sequence (with some notable exceptions [24]). Where possi-

ble, there is considerable merit in complementing such

‘disease versus control’ candidate-mining efforts with addi-

tional transcriptional comparisons designed to detect genes

regulated by environmental or pharmacological interven-

tions pertinent to the disease phenotype. For example, in a

study of the levels of high-density lipoprotein (HDL) choles-

terol in baboons, transcript levels were studied in relation to

both HDL levels and response to high-fat diet [25]. It is

important to remember that candidacy mining using expres-

sion-profiling methods will perform poorly where trait sus-

ceptibility is governed by variation within genes with

low-level and/or restricted expression (for example, limited

to tight temporal and/or developmental windows).

Other genome-wide (-omics) technologies should, in time,

provide equivalent power for defining novel etiological path-

ways and putative candidates. Studies aiming to define the

protein markers of disease have often been limited by the

scalability of conventional proteomic technologies [26], but

recent advances (for example, the identification of putative

plasma protein biomarkers for ovarian cancer [27]) should,

as the relevant biomarkers are characterized, provide valu-

able biological insights and new candidates. The same is true

of metabonomics-based analyses [28]. 

Whilst considerable advances will arise from each platform in

isolation, the key to a robust and comprehensive understand-

ing of etiological pathways, and to a full description of disease

pathogenesis that will maximally inform candidate selection,

will be data integration. By synthesizing and modeling the

changes that occur at the level of the genome, message,

protein, post-translational modification, metabonome and

physiome, such integration should lead to construction of a

‘biological atlas’ of each disease or phenotype of interest

[29]. Within such a framework, data from ‘distal’ modalities,

such as metabonomics and intermediate physiology, which

more closely reflect the visible phenotype of interest, can

inform the interpretation of ‘proximal’ modalities, such as

expression data. This should help to distinguish, for

example, those transcriptional changes that are directly

related to disease etiology from those that are secondary or

epiphenomenal. As an example, two large consortia - the

UK-based Biological Atlas of Insulin Resistance (BAIR) [30]

and the US-based Diabetes Genome Anatomy Project - have

established complementary programs to reconstruct the

development of type 2 diabetes and obesity, through coordi-

nated transcriptional, proteomic, metabonomic, biochemical

and physiological analyses in multiple tissue samples taken

from rodent models at various stages of trait progression.

One outcome of these studies will be an improved frame-

work for the selection of functional candidates for genetic

studies in man. 

Integrating location and function
Despite the undoubted power of the approaches described

above, we believe that the strongest routes to robust candi-

date identification will come from integrating the positional

and functional routes to candidacy. Broadly speaking, there

are two main ways by which this integration is being

achieved. The first involves the use of functional genomic

readouts - expression levels, protein levels, metabolite

spectra, and so on - as ‘endophenotypes’ to be subjected to

the same genome-wide quantitative trait linkage (and LD)

strategies as have been traditionally performed on disease

phenotypes. In the most comprehensive study published to

date [31], genome-wide expression profiling on liver tissue

from 111 F2 mice segregating obesity-related traits identified

the only two transcripts that jointly met the following three

criteria: first, physical location within a region on murine

chromosome 2 harboring a locus for fat-pad mass, one of the

obesity phenotypes of interest; second, linkage mapping of

the variation in their expression levels to the same genomic

location (indicating cis-acting expression effects); and third,

transcriptional differences related to fat-pad mass trait

values. Preliminary studies in human pedigrees have con-

firmed that familial aggregation of expression phenotypes

remains detectable even under the less controlled circum-

stances inevitable in human studies [31,32], setting the stage

for future linkage studies to map the loci that influence these

expression levels, be they acting in cis (promoter variation

within the genes themselves, for example) or in trans (via

transcription factors).

The second way that integration is being achieved represents

an updating of the ‘positional candidate’ strategy [33] to take

account of contemporary informatics and functional

genomics, and represents the intersection of positional

cloning and functional candidate-selection approaches. As

described above, the region of interest defined by a genome-

wide linkage scan is generally around 30-40 megabases

(about 1% of the genome) and contains several hundred
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genes. Given the costs currently associated with a compre-

hensive LD-based survey of such large regions, there is

obvious interest in the use of biological candidacy as a

means for evaluating and prioritizing regional transcripts for

detailed mutation detection and association analysis.

Looked at from another angle, one can view the genomic

localization afforded by linkage studies (or physical mapping

efforts) as providing a powerful basis for filtering the output

of what tend to be relatively non-specific functional assess-

ments of candidacy (such as descriptions of expression state

and analyses of genome-wide differential expression).

It is of course, nowadays, an entirely straightforward matter

to download the identities of all known genes mapping to a

region of interest, and to skim through the list looking for

obvious biological candidates. On occasion, this has proven

extremely successful: inspection of the list highlights a single

strong candidate, subsequently confirmed as the etiological

locus [7]. In such circumstances, defining the overlap of func-

tion and location is a trivial matter. In general, however, a

respectable prima facie case for disease involvement can be

made for a substantial proportion of the genes mapping to

the interval, making further prioritization essential if the list

of genes to be studied is to be brought to manageable levels. 

The challenge then lies in bringing together as many lines of

evidence as possible about the biology of the genes mapping to

the interval, and to relate these data to the biology of the

disease or phenotype of interest. This is most definitely a non-

trivial exercise, not least because it implies the need for an

intimate dialogue between bioinformaticians on the one hand

- as the people best placed to assemble information on gene

biology - and biologists and clinicians on the other - as the

people with expertise in the biology of the disease. The

number of parameters that could potentially inform posi-

tional-candidate prioritization is substantial (see Table 1). For

many of these, however, the datasets currently available are

too sparse to offer much in the way of discriminant power, and

expression data has been most widely used to date. 

Expression state has proven particularly useful in defining

positional candidates for retinal [20,34,35] and cochlear

[36] diseases; and de novo serial analysis of gene expression

(SAGE) of the substantia nigra transcriptome was used as a

tool for prioritizing positional candidates for Parkinson’s

disease [37]. Clearly, these types of data will be most valu-

able in circumstances where, as with Parkinson’s, there are

strong grounds for implicating specific tissues in disease

pathogenesis. 

Application of expression-state data is not limited to selec-

tion on the basis of predicted tissue distribution, but can be

extended to incorporate knowledge regarding subcellular

localization [38]. Prior linkage analysis in families with the

French-Canadian subtype of Leigh syndrome had mapped

the gene responsible to chromosome 2p, and the biology of

the disease strongly implicated genes involved in mitochon-

drial function. Publicly available mRNA expression data

were used to identify which of the regional transcripts had

mRNA expression patterns resembling those of known mito-

chondrial genes. This analysis, together with data emerging

from a proteomic survey of isolated mitochondria, pin-

pointed a single transcript, LRPPRC, which was confirmed

as the disease gene by mutation screening in pedigrees seg-

regating the disorder [38]. 

The most productive strategy to date, in animal models at

least, has been the integration of information from posi-

tional localization with that from differential expression

analysis. To identify genes underlying lipid phenotypes in

baboons, a chromosomal-region-specific expression array -

covering a region of interest defined by prior linkage - was

used to detect regional transcripts with expression levels

correlated with HDL-cholesterol levels and with the

response to a high-fat diet [25]. In the NOD mouse model of

autoimmune diabetes, Eaves and colleagues [39] used

genome-wide transcriptional comparisons between NOD,

NOD-derived congenic, and control strains to relate differ-

ential expression patterns to the locations of known suscep-

tibility loci, and thereby to prioritize candidates. A similar

congenic-based approach has been used successfully in rat

models of hypertension [24,40]. The human homologs of

these regional transcripts represent strong disease-suscepti-

bility candidates. Issues of tissue availability will mean that,

for many diseases, rodent models are likely to provide a

more reliable source of such candidates than equivalent

studies on human tissues. 

For most of the studies described above, the expression data

used were generated de novo, in part because of the patchy

and disorganized nature of publicly available expression

data. Certainly, expression-state data for many critical

human tissues remain limited, and there is a clear need for a

concerted effort to generate comprehensive transcript lists

for a broad range of human tissues and cell types [41]. Such

information, coupled with recent developments in setting

standards for expression data [42,43] and the predicted

expansion in usable, publicly available expression-profiling

data [44], will hopefully reduce the need for costly de novo

work and make expression-related data increasingly relevant

to the evaluation of disease-gene candidacy. 

As the breadth and depth of data available concerning each

gene grows, two major challenges will need to be met, if these

data are to be used optimally for assessments of disease-gene

candidacy. The first challenge lies in displaying all these dis-

parate data types - and related text-based information from

the literature - to the user in such a way as to inform and

assist decisions about positional-candidate prioritization.

Through the EnsMart [45] component of the Ensembl data-

base, it is already possible to combine information on

genomic location, expression state (defined by a controlled
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expression vocabulary [42]), and the various functional

attributes encoded by Gene Ontology terms [46,47]. The

GeneSeeker program allows users to query on the basis of

position, expression state and some phenotypic attributes

[48]. Key to continued progress in this area is the construc-

tion of suitable controlled vocabularies or ontologies that

permit uniform comparison of data from differing platforms,

databases and species. These will allow additional attributes

(see Table 1) to become increasingly accessible to the candi-

date-prioritization process. 

The second challenge will be the development of, and valida-

tion of, heuristics for candidate-gene prioritization that take

account of the range of data available and the domain exper-

tise of the biologist as regards the disease or phenotype of

interest. One interesting approach will be to consider the

topography of expression, regulatory and protein-protein

interaction networks; proteins that are known to be hubs of

such networks show higher degrees of conservation [49] and

may therefore be more likely disease candidates. Other

current efforts have used Gene Ontology terms to group genes

with similar properties, identifying potential candidates on the

basis of potential functional overlap with known disease genes

previously implicated in related diseases [50,51]. 

In conclusion, we have outlined some of the approaches

currently being developed and applied to aid the identification

of the genes that influence susceptibility to the major dis-

eases that afflict mankind. These approaches are increas-

ingly contingent on the integration of information from

diverse data sources, and success will be dependent on over-

coming the significant cultural and technical challenges that

this imposes. 
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