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Abstract. A short-chain analogue of galactosylcer- 
amide (6-NBD-amino-hexanoyl-galactosylceramide, 
C6-NBD-GalCer) was inserted into the apical or the ba- 
solateral surface of MDCK cells and transcytosis was 
monitored by depleting the opposite cell surface of the 
analogue with serum albumin. In MDCK I cells 32% of 
the analogue from the apical surface and 9% of the an- 
alogue from the basolateral surface transcytosed to the 
opposite surface per hour. These numbers were very 
similar to the flow of membrane as calculated from 
published data on the rate of fluid-phase transcytosis in 
these cells, demonstrating that C6-NBD-GalCer acted 
as a marker  of bulk membrane flow. It was calculated 
that in MDC K I cells 155 lxm 2 of membrane  transcy- 
tosed per cell per hour in each direction. The fourfold 
higher percentage transported from the apical surface 
is explained by the apical to basolateral surface area ra- 
tio of 1:4. In MDCK II cells, with an apical to basolat- 
eral surface ratio of 1:1, transcytosis of C6-NBD-Gal- 

Cer was 25 % per hour in both directions. Similar 
numbers were obtained from measuring the fraction of 
endocytosed C6-NBD-GalCer that subsequently trans- 
cytosed. Under  these conditions lipid leakage across 
the tight junction could be excluded, and the vesicular 
nature of lipid transcytosis was confirmed by the obser- 
vation that the process was blocked at 17°C. After  in- 
sertion into one surface of MDCK II cells, the gluco- 
sylceramide analogue C6-NBD-GlcCer randomly 
equilibrated over the two surfaces in 8 h. C6-NBD-Gal- 
Cer and -GlcCer transcytosed with identical kinetics. 
Thus no lipid selectivity in transcytosis was observed. 
Whereas the mechanism by which MDCK cells main- 
tain the different lipid compositions of the two surface 
domains in the absence of lipid sorting along the 
transcytotic pathway is unclear, newly synthesized C6- 
NBD-GIcCer was preferentially delivered to the apical 
surface of MD CK  II cells as compared with C6-NBD- 
GalCer. 

PITHELIAL cells form tight monolayers. These mono- 
layers are sealed by the tight junctions, a continu- 
ous zone of cell to cell contacts surrounding the 

apex of each cell. The tight junctions divide the plasma 
membrane of differentiated epithelial cells into an apical 
and a basolateral domain that differ in protein and lipid 
composition (Simons and van Meer, 1988; Rodriguez- 
Boulan and Nelson, 1989), and they prevent random diffu- 
sion of molecules between the underlying tissue and the 
external milieu. Nevertheless, many different molecules 
must pass across epithelial cell monolayers. This transport 
is often mediated by receptors and occurs via membrane 
vesicles by a process termed transcytosis. 

Transcytosis from the basolateral to the apical domain 
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appears also to be required for generating the cell-surface 
polarity of apical glycoproteins in some cells like hepato- 
cytes and intestinal cells (Hubbard et al., 1989). Kidney- 
derived MDCK cells, however, sort most newly synthe- 
sized plasma membrane proteins before they reach the 
surface. Still, even in MDCK cells a subset of plasma 
membrane proteins transcytoses bidirectionally between 
the two surface domains (Br/andli et al., 1990). So, at each 
surface, epithelial cells face the task of sorting molecules 
destined for transcytosis from resident molecules. Studies 
on transcytosis of endogenous and transfected transmem- 
brane receptors have provided insight in the sorting steps 
and the required sorting signals (for reviews see Mellman 
et al., 1993; Mostov and Cardone, 1995). The first step in 
transcytosis is endocytosis. Endocytosed apical membrane 
reaches endosomes underlying the apical membrane. Ba- 
solateral endocytotic vesicles fuse into a separate set of ba- 
solateral endosomes. Although endocytosis provides a 
first sorting step at the cell surface, actual sorting between 
molecules to be retained and molecules to be transcytosed 
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occurs in the endosomes. In the simplest case, sorting 
could involve the same signals to discriminate apical from 
basolateral molecules in apical and basolateral endosomes 
and even in the TGN along the exocytotic pathway (Mat- 
ter et al., 1993; Aroeti and Mostov, 1994). By modifying 
the signal after arrival at the plasma membrane, a mole- 
cule could be directed to one domain during exocytosis 
and transcytosed to the opposite domain when the need 
arises (Song et al., 1994). Recent evidence, however, has 
suggested that the hierarchy of these signals in the TGN 
may be different from that in the endosomes implying that 
the sorting machineries of TGN and endosomes are re- 
lated but not identical (Aroeti et al., 1993). 

Clearly, the rates of endocytosis and recycling that have 
been measured for transmembrane glycoproteins depend 
on signals and do not reflect rates of bulk membrane flow. 
As targeting information may be present in the cytoplas- 
mic, transmembrane, and exoplasmic domain of the pro- 
tein, even proteins lacking a cytoplasmic tail cannot be 
considered signal-free. In contrast to fluid-phase markers, 
markers of membrane flow have not yet been reported for 
the transcytotic transport route. Therefore, absolute effi- 
ciencies of sorting, i.e., enrichment of a membrane compo- 
nent as compared with membrane flux (van Genderen and 
van Meer, 1993) remain to be established for transcytosis. 

Like proteins, the various lipid classes are distributed 
unequally over the two surfaces of epithelial cells (see Si- 
mons and van Meer, 1988). Based on the presence of a 
barrier to lipid diffusion in the exoplasmic but not in the 
cytoplasmic leaflet of the plasma membrane bilayer, it has 
been concluded that the differences in lipid composition 
reside in the exoplasmic leaflet. The cytoplasmic leaflet of 
the two domains is thought to possess an identical lipid 
composition (Simons and van Meer, 1988). A series of 
studies has demonstrated that newly synthesized ana- 
logues of the sphingolipids sphingomyelin (SM) 1 and glu- 
cosylceramide (GlcCer) reach the epithelial cell surface 
with a different apical/basolateral polarity (van Meer et 
al., 1987; van Meer and van't Hof, 1993) that accurately re- 
flected the surface polarity of the endogenous SM and 
GlcCer found in intestinal cells (van't Hof and van Meer, 
1990; van't Hof et al., 1992). It was expected that to main- 
tain the different lipid compositions of their two surface 
domains, cells should sort lipids along the transcytotic 
pathway as well. 

The rationale behind the present study was to measure 
transcytosis of lipid molecules that have a different surface 
polarity in epithelial cells. GlcCer displays a twofold higher 
apical/basolateral polarity than galactosylceramide (Gal- 
Cer) in MDCK cells (Nichols et al., 1988). By several ex- 
perimental approaches, all using short-chain fluorescent 
(C6-NBD) analogues of GalCer and GlcCer (Lipsky and 
Pagano, 1985), it is shown that these lipids were transcy- 
tosed. Unexpectedly, the lipids followed bulk membrane 
flow, and were not sorted from each other during transcy- 
tosis. Using this property, the transcytotic membrane flux 
could be determined. In contrast to the absence of sorting in 

1. Abbreviat ions used in this paper: C6-NBD-, 6-NBD-amino-hexanoyl-; 
GalCer, galactosylceramide; GlcCer, glucosylceramide; HBSS', HBSS 
without bicarbonate and phenol red with 10 mM Hepes, pH 7.2; HBSS' + 
BSA, HBSS' containing 1% (wt/vol) BSA; SM, sphingomyelin. 

the transcytotic pathway, after synthesis by the cell 6-NBD- 
amino-hexanoyl-glucosylceramide (C6-NBD-GIcCer) was 
enriched on the apical cell surface as compared with (26- 
NBD-GalCer. 

Materials and Methods 

Materials 
BSA fraction V was purchased from Sigma Chemical Co. (St. Louis, MO). 
Randomly labeled L-[3H]serine (22 Ci/mmol) was from New England Nu- 
clear (Boston, MA). Cell culture plastics and filters were from Costar 
Corp. (Cambridge, MA). Chemicals, silica TLC plates, and solvents were 
of analytical grade and obtained from Riedel-de Hahn (Seelze, FRG). 

Cell Culture 
The MDCK cell clones strain I (Fuller et al., 1984) and strain H (Louvard, 
1980) were obtained from K. Simons, European Molecular Biology Labo- 
ratory, Heidelberg, FRG. Cells were cultured on 24.5-mm-diam polycar- 
bonate filters glued to the base of a plastic ring, the filter holder (Trans- 
well, Costar Corp.), as described (van Genderen et al., 1991). The ring 
separates the apical medium on top of the filter inside the ring, from the 
basal medium underneath the filter and outside the ring. Confluent mono- 
layers were used for experiments three or four days after seeding. Under 
these conditions, one filter contained 3.8 x 106 MDCK I cells (Parton et 
al., 1989) and (4.7-5) × 106 MDCK II cells (van Genderen et al., 1991; 
van't Hof et al., 1992). The cells were free of mycoplasma in an assay using 
Hoechst DNA stain 33258 (Sigma Chemical Co.). 

Lipid Preparation and Analysis 
C6-NBD-ceramide was obtained from Molecular Probes (Eugene, OR). 
C6-NBD-GaICer, C6-NBD-GlcCer, and C6-NBD-SM were synthesized 
from NBD-hexanoic acid (Molecular Probes) and psyehosine, glucopsy- 
chosine, and sphingosylphosphorylcholine (Sigma Chemical Co.), respec- 
tively, as before (van Meer et al., 1987). Products were purified by TLC 
in chloroform/acetone/methanol/acetic acid/water (50:20:10:10:5, vol/vol), 
where NBD-hexanoic acid runs to the front and the products lag behind. 
Retention factor (Rf) values for C6-NBD-GalCer, -Glc, and -SM were 0.5, 
0.5, and 0.1. The identity of the products was further confirmed by sensi- 
tivity to 13-galactosidase but not a-galactosidase (C6-NBD-GaICer) and 
sphingomyelinase. C6-NBD-GlcCer was positively identified by colocal- 
ization with the NBD product that was synthesized from NBD-ceramide 
in a strictly UDP-glucose-dependent reaction by a membrane pellet of 
CHO cells, which do not have the ability to synthesize C6-NBD-GaICer. 

For analysis, lipids were extracted from media and cells into chloro- 
form/methanol (Bligh and Dyer, 1959; van't Hof and van Meer, 1990). 
Products were identified by a TLC procedure devised to separate GalCer 
from both GlcCer and SM. 10 × 10 cm 2 TLC plates were dipped in 2.5% 
borate (wt/vol) in methanol (Kean, 1966) and dried. The lipid extract was 
applied and the plates were first developed in chloroform/methanol/25% 
(wt/vol) ammonia/water (65:35:4:4, vol/vol), followed by chloroform/ace- 
tone/methanol/acetic acid/water (50:20:10:10:5, vol/vol) for the second di- 
rection. Rf values for C~-NBD-GalCer, -Glc, and -SM were 0.3, 0.5, and 
0.3 in the first direction, 0.5, 0.5 and 0.1 in the second direction. Fluores- 
cent spots were quantified in a fluorimeter after scraping the fluorescent 
spots from the plate and extracting the lipids from the silica as described 
(van't Hof and van Meer, 1990). 

Radiolabeled spots were detected by fluorography after dipping the 
TLC plates in 0.4% 2, 5 diphenyloxazol PPO in 2-methylnaphthalene with 
10% xylene. Preflashed film (X-Omat S; Eastman Kodak Co., France) 
was exposed to the TLC plates for 3 d at -80°C. Radioactive spots repre- 
senting SM, GlcCer and GalCer were identified by iodine staining of stan- 
dards that had been added to the extract before TLC. They were scraped 
from the plates and the radioactivity was quantified by liquid scintillation 
counting in 0.3 ml Solulyte (J. T. Baker Chemicals, Deventer, The Nether- 
lands) and 3 ml of Ultima Gold (Packard Instruments, Downers Grove, 
IL). A blank spot on the experimental TLC plate contained 13 Bq. 

Liposomes (26 nmol NBD-lipid/ml) or NBD-lipid/BSA complexes (5 
tzM lipid, 5 p,M BSA [0.03% wt/vol]) were prepared in HBSS without bi- 
carbonate and phenol red buffered with 10 mM Hepes, pH 7.2 (HBSS') as 
before (van Meer et al., 1987; van't Hof and van Meet, 1990). 
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Assays for Delivery of NBD Lipids to the Cell Surface 
Unidirectional Transcytosis of Exogenous C6-NBD-GalCer and C6-NBD- 
GIcCer (Fig. I A). Cells were washed with HBSS' and incubated at 10°C 
for 30 rain in a 6-well cluster dish with on one surface C6-NBD-GaICer 
and C6-NBD-GIcCer, simultaneously (2.5 izM each) or separately (5 ixM), 
complexed to BSA (Fig. 1 A1). Standard vols were 1 ml apically and 1.5 
ml basolaterally. After removal of the NBD lipid, the cells were incubated 
at 37°C with HBSS' on the side of insertion and with a 1% (wt/vol) solu- 
tion of BSA (HBSS' + BSA) on the opposite side to extract NBD lipid 
into the medium immediately upon its arrival (Fig. 1 A2). After varying 
time intervals the NBD lipid remaining on the surface of insertion was re- 
covered by BSA extractions (BSA washes) for 20 min at 10°C in HBSS' + 
BSA (Fig. I A3). Including the 37°C BSA extraction, two BSA extractions 
were performed for the apical and three for the basal side. NBD lipids 
from the combined apical media, the combined basal media, and the cells 
were extracted into chloroform/methanol, analyzed by two-dimensional 
TLC, and quantitated. 

Incorporation of each NBD lipid into the apical and basal surface was 
~40 and 120 pmol for MDCK I, and 80 and 160 pmol for MDCK II per fil- 
ter, which for some reason does not exactly correspond with the relative 
surface areas of the two cell lines. With a surface area of 90/~2 for a phos- 
pholipid-cholesterol pair (Demel and de Kruijff, 1976), the apical and the 
basolateral surface of an MDCK II monolayer (1,165 ixm2/cell, 3.5 x 106 
cells/filter; Butor and Davoust, 1992) contain 10 nmol phospholipid-cho- 
lesterol equivalents each. Thus, the inserted NBD lipid would represent 
1-2% of the polar lipids on each surface. In MDCK I this would be <1%. 

Transcytosis of Exogenous C6-NBD-GaICer after Endocytosis (Fig. 1 B). 
C6-NBD-Ga]Cer was inserted at 10°C as above (Fig. 1 B1). Cells were 
rinsed three times with cold HBSS' and incubated at 37°C in HBSS' to al- 
low endocytosis (Fig. 1 B2). After 10 min, C6-NBD-GalCer remaining on 
the cell surface was removed by two (apical) or three (basal) BSA washes 
for 20 min at 10°C (Fig. 1 B3). At this stage, one set of filters was used for 
lipid analysis to quantitate endocytosis. A second set of filters was further 
incubated for 0.5 or 1 h at 37°C in HBSS' + BSA, to assay for reappear- 
ance of intracellular C~-NBD-GaICer on either cell surface (Fig. 1 B4). 
These incubations were followed by a 10°C BSA wash, after which the 
NBD lipids from the combined apical media, basal media, and the cells 
were extracted into chloroform/methanol, analyzed by TLC, and quanti- 
tated. The percentage of C6-NBD-GalCer transcytosed per hour was cal- 
culated as (percent endocytosis per hour) x (the fraction of intracellular 
C6-NBD-GalCer that was transcytosed). Endocytosis (intracellular plus 

transcytosed after 10 min) was somewhat underestimated because recy- 
cling of C6-NBD-GalCer to the membrane of insertion during the endocy- 
tosis incubation (Fig. 1 B2) could not be measured. On the other hand, it 
was overestimated because transcytosis during this incubation was not 
corrected for leakage. 

Equilibration of Exogenous C6-NBD-GIcCer (Fig. 1 C). Cells were incu- 
bated for 30 min at 10°C with 5 ttM C6-NBD-GlcCer, complexed to BSA, 
in either the apical or basal HBSS' (Fig. 1 C1). Ceils were then rinsed with 
cold HBSS' three times, and incubated in the CO2 incubator at 37°C in a 
chemically defined, serum-free medium (Fuller et al., 1984) without BSA 
containing 50 ~M conduritol B-epoxide as an inhibitor of lysosomal gluco- 
cerebrosidase (Fig. 1 C2). After 8-16 h the incubations were stopped by 
cooling the ceils, after which the C6-NBD-GlcCer residing on each surface 
was assayed by BSA washes for 20 min at 10°C, two for the apical, and 
three for the basal side (Fig. 1 C3). 

Delivery of Newly Synthesized Sphingolipids to the Cell Surface (Fig. 1 
E). Cells were incubated at 37°C with 5 FM NBD-ceramide/BSA com- 
plexes in both apical and basal media (Fig. 1 El). After 15 min, BSA in 
HBSS' was added to both media to yield HBSS' + BSA, 1.5 ml apical, 2 
ml basal (Fig. 1 E2). At 90 min after the start of the 37°C incubation the 
media were collected. Two additional BSA washes were performed on 
both sides for 30 min at 10°C. Lipids from the combined apical media, the 
combined basal media, and from the cells were then extracted into chloro- 
form/methanol. For each lipid the apical/basolateral polarity of transport 
to the cell surface was calculated by dividing the amount of that lipid in 
the apical media by the amount in the basal media. The relative polarity 
for two lipids was calculated as the quotient of their apical/basolateral po- 
larities, and is proportional to the apical enrichment of the one lipid as 
compared to the other (van 't Hof and van Meer, 1990). 

To study the temperature dependence of transport, NBD-ceramide (5 
~M) in 1 ml HBSS' + BSA was added apically for 2 h at 10°C, followed by 
a second incubation in HBSS' + BSA without ceramide for 1 h at 10°C. 
The subsequent transport incubation was carried out in HBSS' + BSA. It 
was followed by a 30 min 10°C BSA-wash. Two time points (separate fil- 
ters, in duplicate) were selected for each temperature to ascertain that the 
transport rate was measured in the linear range of the assay: 1 and 2 h at 
10, 15, and 20°C; 0.5 and 1 h at 25 and 30°C; 20 and 40 min at 37°C. Data 
were calculated from the earliest time point and are expressed as trans- 
port per 30 min. 

Equilibration of Endogenously Synthesized C6-NBD-GIcCer and C6-NBD- 
SM(Fig. 1F). Equilibration of newly synthesized C6-NBD-GlcCer and 
-SM over the two cell surfaces, measured at 37°C in media without BSA, 
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Unidirectional Transcytosis of 
Exogenous C6-NBD-GaICer 
To assay for lipid transcytosis we inserted a fluorescent 
lipid analogue into the apical surface of M D C K  cells and 
monitored appearance on the opposite cell surface (Fig. 1 
A). For this, we used an analogue of  GalCer, an endoge- 
nous lipid in M D C K  cells (Br~indli et al., 1988; Nichols et 
al., 1988), carrying an NBD hexanoic acid (C6-NBD-Gal- 
Cer). Such C6-NBD lipids can be efficiently inserted into 
the outer leaflet of the plasma membrane at low tempera- 
ture (10°C) and can be extracted from the surface by the 
addition of an excess of BSA (1% wt/vol) to the medium 
(Lipsky and Pagano, 1985; van Meer et al., 1987). After  in- 
sertion of C6-NBD-GalCer into the apical plasma mem- 
brane at 10°C and removal of excess C6-NBD-GalCer (Fig. 
1 A1), the cells were warmed to 37°C with BSA in the me- 
dium on the opposite side to trap any C6-NBD-GalCer ap- 

pearing on the basolateral surface (Fig. 1 A2). After  cool- 
ing to 10°C, BSA was added to the apical side to extract 
C6-NBD-GalCer present on the apical surface after the 
37°C incubation and to the basolateral side as a BSA wash 
(Fig. 1 A3). As shown in Fig. 2, C6-NBD-GalCer was 
transcytosed to the basolateral surface of M D C K  I and II 
cells at a rate of 32 and 25% per hour, respectively. Trans- 
cytosis in the opposite direction was also observed. Re- 
markably, transcytosis of C6-NBD-GalCer in M D C K  I was 
much slower from basolateral to apical, while in M D C K  II 
transcytosis was similar in both directions. 

M D C K  I cells grown on polycarbonate filters display a 
ratio between apical and basolateral surface area of 1:4 
(Parton et al., 1989; Butor  and Davoust,  1992). In a conflu- 
ent monolayer  of epithelial cells the absolute amount  of 
membrane transported in both directions must be equal 
(as has been documented for fluid phase; von Bonsdorff  et 
al., 1985; Bomsel et al., 1989). When expressed as percent- 
age of the membrane of origin, in M D C K  I this would re- 
quire transcytosis of a fourfold higher percentage from the 
apical surface than from the basolateral surface. This was 
typically observed for the transcytosis of  C6-NBD-GalCer 
(Fig. 2). After  an initial lag, basolateral to apical transcyto- 
sis of C6-NBD-GalCer reached a maximum rate of 8.6% 
per hour. The maximal (initial) rate of transcytosis from 
the apical surface was about four times higher, 32.2% per 
hour. So, in M D C K  I cells, C6-NBD-GalCer was transcy- 
tosed with the relative rates of bulk membrane flow. 

Interestingly, in M D C K  II cells grown on polycarbonate 
filters the ratio of apical to basolateral surface area has 
been reported to be 1:1 (van Genderen et al., 1991; Butor  
and Davoust,  1992). With equal absolute amounts of 
membrane being transported in both directions, in M D C K  
II cells the same percentage of the apical membrane area 
must be transcytosed per hour as the percentage of the ba- 
solateral surface area that is transcytosed per hour. This 
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was compared with their first arrival on the cell surface measured in media 
containing BSA, as described (van't Hof and van Meer, 1990). Monolay- 
ers of MDCK II cells were incubated with NBD-ceramide in liposomes 
apically for 30 min at 10°C (Fig. 1 F1). During the subsequent incubation 
for 1 h at 37°C, NBD products appearing on the apical and basolateral cell 
surface were either trapped by extraction into HBSS' + BSA as in Fig. 1 
E2, or, alternatively, allowed to endocytose and transcytose in the absence 
of BSA (Fig. 1 F2). In the latter case, the resulting surface polarity for 
each lipid was assayed by two subsequent BSA washes at 10°C (Fig. 1 F3). 
While in the experiment with BSA the 37°C media contained 71 ± 6% 
and the 10°C media contained 11 _ 3% of the C6-NBD-GIcCer plus -SM, 
the 37°C medium without BSA contained 5 _+ 1%, and the subsequent 
10°C BSA wash contained 60 ± 5% in four experiments (n = 8). Synthesis 
of both C6-NBD-GlcCer and -SM was roughly six times less than in Table 
Ill. Two filters were combined for each analysis. The amount of C6-NBD- 
GalCer in this type of experiment was below the detection limit (<1 pmol/ 
2 filters). 

l ¢ ~ ~ - ' " ' ~  . . . . . . . . . . . . .  -A ~ 

5£ 

0-  
2 4 6 

Q 

I I I 

0 2 4 6 

T i m e  (h) 

apical to 
basolateral 

basolateral 
to apical 

Figure 2. Transcy tos i s  of  C6- 
NBD-GalCer in MDCK I 
(left) and MDCK II cells 
(right). After insertion of Cr- 
NBD-GalCer into the apical 
surface (top) or the basolat- 
eral surface (bottom) at 10°C, 
cells were incubated at 37°C 
with BSA in the opposite 
medium. After the indicated 
time intervals, the medium 
was collected and BSA 
washes were performed at 
IO°C. Lipids from cells (A), 
the combined apical media 
(0), and the combined basal 
media (Vq) were quantified. 
Data are the mean of the av- 
erage values in three to five 
experiments. Error bars, SD. 
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was indeed found (Fig. 2). C6-NBD-GalCer thus followed 
bulk flow also in MDCK II cells. 

Transcytosis of  Exogenous C6-NBD-GaICer 
After Endocytosis 

As an independent assay for the rate of lipid transcytosis, 
we followed the fate of endocytosed C6-NBD-GalCer. 
From measuring (a) the percentage of inserted C6-NBD- 
GalCer that was endocytosed per hour and (b) the fraction 
of the endocytosed C6-NBD-GalCer that reached the op- 
posite surface, the percentage of inserted C6-NBD-GaICer 
that reached the opposite surface per hour could be calcu- 
lated. For this, exogenous C6-NBD-GalCer was inserted 
into one cell surface at 10°C (Fig. 1 B1) and endocytosis 
was allowed in the absence of BSA for 10 min at 37°C (Fig. 
1 B2). Subsequently, endocytosis was determined in one 
set of filters by BSA extraction of C6-NBD-GalCer in the 
cold from each cell surface and quantitation of fluores- 
cence in the media and in the cells (Fig. 1 B3). A second 
set of filters was warmed to 37°C for 1 h with BSA present 
in both apical and basal medium, and reappearance of en- 
docytosed lipid on the two cell surfaces was measured. 
Typical experiments for MDCK I and II are shown in Ta- 
ble I. In MDCK I, endocytosis from the apical surface, 
scored as the sum of intracellular C6-NBD-GalCer plus 
C6-NBD-GalCer present on the basolateral surface, was 
19.7% in 10 min. 28.8% of the cellular C6-NBD-GalCer 
was transported to the basolateral side during the subse- 
quent hour. From these numbers, 34% of the C6-NBD- 
GalCer inserted into the apical surface was transcytosed 
per hour. Endocytosis from basolateral was 24.9% in 10 
min, and 7.1% of the cellular C6-NBD-GalCer was trans- 
ported to the apical side, resulting in basolateral to apical 

Table L Endocytosis of C6-NBD-GalCer after Apical or 
Basolateral Insertion and Reappearance at the Two Surface 
Domains * 

Compartment 

Subsequent 
C6-NBD-GalCer redistribution of 
distribution after cellular C6-NBD- 

endocytosis (10 min GalCer (1 hr 37°C) in 
37°C) HBSS' + BSA 

(Percentage of (Percentage of  
inserted) total) 

M C D K  I II M D C K  I II 
After  apical  insertion 

Cells 14.1 11.6 16.6 14.4 

Apical  med ium 80.3 82.6 54.7 49.4 
Basola tera l  med ium 5.6 5.8 28.8 36.2 

Total (pmoL,filter) 25 74 5 7 
After  basolateral  insertion 

Cells 23.6 28.4 12.6 8.1 
Apical  med ium 1.3 8.5 7.1 15.0 
Basolateral  med ium 75.1 63.1 80.3 76.9 

Total (pmol/filter) 111 99 30 30 

*C6-NBD-GalCer was inserted into one surface of MDCK cells at 10~C as described 
in Materials and Methods (Fig. 1 B1). Endocytosis was then allowed to occur for 10 
min at 37°C (Fig. 1 B2). Subsequently, the C6-NBD-GalCer was extracted from the 
apical and basolateral surfaces at 10°C by BSA (Fig. 1 B3), and endocytosed C~-NBD- 
GalCer was calculated as percentage of total C6-NBD-GalCer inserted. In a parallel in- 
cubation, the cells were further incubated in HBSS' + BSA for 1 h at 37°C (Fig. 1 B4) 
to allow reappearance of the internalized C6-NBD-GalCer at the cell surface. This was 
followed by a 10°C BSA wash, after which media and cells were analyzed for C6- 
NBD-GalCer. Data represent the mean of typical experiments in duplicate with a 
range ~<5% for MDCK I and ~< 10% for MDCK II. 

transcytosis of 11% per hour. The kinetics are in good 
agreement with those measured in the direct transcytosis 
assay (see Fig. 2). 

Similar data were obtained in three experiments where 
transcytosis of endocytosed C6-NBD-GalCer was measured 
in MDCK II  cells. Endocytosis from the apical surface was 
17% after 10 min. 33 --- 7% of endocytosed C6-NBD-Gal- 
Cer was transported to the basolateral side. Endocytosis 
from basolateral was 37% in 10 min, and 13 _+ 2% of the 
endocytosed C6-NBD-GalCer was transported to the api- 
cal side. From these numbers, 33 +- 7% of the C6-NBD- 
GalCer inserted into the apical surface was transcytosed 
per hour to the basolateral surface (n = 4). In the opposite 
direction this was 32 - 2% per hour (n = 4). These kinet- 
ics are again similar to those measured in the direct trans- 
cytosis assay. 

The ratio of transcytosis toward the opposite surface 
versus recycling back to the membrane of insertion could 
be calculated from the measurements of reappearance on 
the cell surface. For MDCK I this ratio was 1:2 after apical 
insertion, 1:10 after basolateral insertion. For MDCK II 
these numbers were 1:1 and 1:5, respectively. The extent 
of reappearance in MDCK II was assayed by incubating 
filters for 0.5 and 1 h at 37°C. After 30 min, a total of 78% 
of apically and 85% of basolaterally endocytosed C6- 
NBD-GalCer had reappeared on the cell surface, which 
increased to 88% and 93% after 1 h: very little C6-NBD- 
GalCer remained in the cells. 

Equilibration of  Exogenous C6-NBD-GIcCer 

As an independent assay for studying whether or not a gly- 
colipid followed bulk membrane flow during transcytosis, 
we inserted an NBD lipid into one cell surface, allowed 
equilibration over the two surface domains at 37°C in the 
absence of BSA, and measured the resulting distribution 
over the two surfaces by a BSA extraction in the cold (Fig. 
1 C). When C6-NBD-GalCer was used, a high percentage 
was hydrolyzed by the cells during the 8-16 h time course 
of these experiments. Hydrolysis after 16 h as estimated 
from the amount of C6-NBD-SM at the end of the experi- 
ment was 30-40% (NBD-ceramide, the immediate product 
of C6-NBD-GalCer hydrolysis, was efficiently metabolized 
to C6-NBD-SM). Therefore, we used C6-NBD-GlcCer in 
the presence of conduritol B-epoxide, a specific and irre- 
versible inhibitor of lysosomal glucocerebrosidase (van 
Weely et al., 1993). Conduritol B-epoxide reduced the 
amount of C6-NBD-SM formed to 6% at the end of the in- 
cubation. Unfortunately, conduritol B-epoxide did not ad- 
equately prevent C6-NBD-GIcCer degradation in MDCK 
I, where 30% C6-NBD-SM was found after 16 h. 

After 8-16 h, 30% of the C6-NBD-GlcCer was found on 
both the apical and the basolateral surface of MDCK II 
cells with 40% inside the cell (Table II). The equilibrium 
distribution reached after insertion of C6-NBD-GlcCer 
into the apical cell surface was the same as after basolat- 
eral insertion. In both cases the final apical/basolateral po- 
larity was 1, which equals the ratio of apical to basolateral 
surface area in these MDCK II cells (see above). So exog- 
enous C6-NBD-GlcCer assumed the distribution of bulk 
membrane. No selectivity was observed during transcyto- 
sis of this lipid either. 
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Table II. Steady State Distribution of C6-NBD-GIcCer after 
Apical or Basolateral Insertion in MDCK H Cells* 

Percentage of total C6-NBD-GIcCer 
Surface polarity 

Side of insertion Cellular Apical Basolateral (apical/basolateral) 

Apical* 41.4 -+ 5.9 29.7 -+ 2.0 28.9 +- 4.4 1.04 -+ 0.11 

Basolateral 42.2 _+ 10.l 28.2 _ 2.8 29.6 _+ 7.6 0.98 _+ 0.14 

* Ct-NBD-GIcCer was inserted into either the apical or basolateral surface of MDCK 
II cells at 10°C as described in Materials and Methods (Fig 1 CI). Cells were then in- 
cubated in semm-free medium without BSA in the CO2 incubator at 37°C (Fig. 1 C2). 
After 8-16 h, the NBD lipids were extracted from the apical and basolateral surfaces 
by BSA at 10°C (Fig. 1 C3), and quantitatively analyzed. Data are the mean _+ SD of 
five experiments with varying incubation times: 8 h (3 exp.), 10 h, and 16 h. 
:~ After insertion into the apical surface ~15% of the NBD lipid was found to be stick- 
ing to the inside of the filter holder in an experiment where the filter was cut from the 
holder after the 8-16 h incubation and the holder extracted with BSA separately. The 
apical signal was corrected for this. If the same correction would apply to the experi- 
ments shown in Figs. 2 and 3, and Table I (which represent raw data), apical to bast- 
lateral transcytosis has been underestimated by a factor 1.2. 

Unidirectional Transcytosis of  Exogenous 
Ct-NBD-GaICer versus Ct-NBD-GlcCer 

For a direct comparison of the rates of transcytosis for Ct- 
NBD-GalCer and -GlcCer, exogenous Ct-NBD-GalCer 
and -GlcCer were inserted simultaneously into the apical 
cell surface at 10°C, after which transcytosis was moni- 
tored at 37°C as described above (Fig. 1 A). The same ex- 
periment was performed in the opposite direction. In 
MDCK II cells, 25% of the C6-NBD-GlcCer that had been 
inserted was transcytosed to the opposite surface in 1 h. 
This was the same in both directions. Moreover, the rates 
were remarkably similar for C6-NBD-GalCer (Fig. 3). The 
same results were obtained when the lipids had been 
added to separate filters, or when NBD-lipid concentra- 
tions were lowered 50 times (data not shown). Also in 
MDCK I cells transcytosis of C6-NBD-GalCer was directly 
compared with that of C6-NBD-GlcCer by simultaneous 
insertion. In two experiments during 2 h, transcytosis was 

identical for C6-NBD-GlcCer and C6-NBD-GalCer in 
both directions and followed the kinetics displayed for C6- 
NBD-GalCer in Fig. 2 (data not shown). 

Differential Ttransport of  Ct-NBD-GalCer and 
C6-NBD-GIcCer after Biosynthesis 

In contrast to C6-NBD-GalCer and -GlcCer, NBD-cer- 
amide inserted into the plasma membrane readily translo- 
cates to the cytosolic leaflet because of the absence of a 
polar head group. From there, it exchanges through the 
cytoplasm to the Golgi complex where it serves as a sub- 
strate for SM synthase and glycosyltransferases (Fig. 1 E1 
and F1). These processes proceed at temperatures down to 
0°C (van Helvoort et al., 1994). When, at higher tempera- 
ture, the resulting NBD-lipid products reach the cell sur- 
face, they can be immediately extracted quantitatively into 
the incubation medium by BSA (van Meer et al., 1987; Fig. 
1 E2). Alternatively, in the absence of BSA they will equil- 
ibrate with the endocytic membranes and with the oppo- 
site cell surface (Fig. 1 F2). Subsequently, NBD lipids on 
the cell surface can be extracted at low temperature with a 
BSA-containing medium (Fig. 1 F3). 

When MDCK II cells were incubated with NBD-cer- 
amide on both sides at 37°C, C6-NBD-GlcCer and -SM 
were synthesized in amounts that were 7.5-fold higher 
than when the ceramide had been added apically at 10°C, 
the former routine procedure (van Meer et al., 1987). 
Under these conditions, C6-NBD-GlcCer reached the cell 
surface with an apical/basolateral polarity of 1.4, and (26- 
NBD-SM with a polarity of 0.7. The relative polarity of C6- 
NBD-GIcCer/C6-NBD-SM, the ratio of the polarities, was 
2.2 (Table III). The apical/basolateral polarity for each 
lipid in the present experiment, where ceramide was sup- 
plied to both cell surfaces, is intermediate between the po- 
larity measured after apical addition alone and the polar- 
ity after basolateral addition alone (discussed in van Meer 
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Figure 3. Transcytosis of Ct- 
NBD-GlcCer (left) and Ct- 
NBD-GalCer (right) in 
MDCK II cells. After simul- 
taneous insertion of the two 
NBD lipids into the apical 
surface (top) or the basolat- 
eral surface (bottom) at 10°C 
as described in the legend to 
Fig. 2, the cells were incu- 
bated at 37°C with BSA in 
the opposite medium. After 
the indicated time intervals, 
the medium was collected 
and BSA washes were per- 
formed at 10°C. Lipids from 
cells (lk), the combined api- 
cal media (@), and the com- 
bined basal media ([~) were 
quantified. Data are the 
mean of four (apical inser- 
tion) or six (basolateral in- 
sertion) measurements in 
two and three experiments. 
Error bars, SD. 
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Table 111. Delivery of Newly Synthesized C6-NBD-lipids to the 
Surface of MDCK II Cells* 

Apicalfoasolateral Relative polarity 
C6-NBD-lipid polarity (polarity/polarity) 

GlcCer 1.43 --- 0.13 C6-NBD-GlcCer/GalCer 2.56 _+ 0.32 

GalCer 0.57 -+ 0.17 C6-NBD-GIcCer/SM 2.24 _+ 0.20 

SM 0.66 +_ 0.16 

*Monolayers of MDCK II cells were incubated with C6-NBD-ceramide on both sides 
for 1,5 h at 37°C (Fig, 1 El). After the first 15 min, 1% BSA was added to both media 
and NBD products appearing on either cell surface were trapped by the BSA in the 
medium (Fig. 1 E2). After two additional BSA washes at 10°C, C6-NBD-GIcCer, -Gal- 
Cer, and -SM in both media and in the cells were quantitatively analyzed, and apical/ 
basolateral polarities of delivery were calculated as described under Materials and 
Methods. Synthesis was 320 pmol C6-NBD-SM, 40 pmol C6-NBD-GIcCer, and 1.3 
pmol C6-NBD-GalCer per filter. Transport amounted to 82 -+ 5% for all three lipids. 
Lipids from six filters were combined to yield reliable data on C6-NBD-GalCer polar- 
ity. Data are the mean of two experiments in duplicate and are followed by the SD. 

and van 't  Hof, 1993). However,  the relative polarity was 
~ 2  in all cases and was independent of  the side of  cer- 
amide addition. 

Under  the present conditions, for the first time also syn- 
thesis of a small amount  of C6-NBD-GalCer could be mea- 
sured. During 1.5 h the relative synthesis of C6-NBD-SM, 
-GlcCer and -GalCer was 100:12:0.4 (Table III). This re- 
flects the rates of synthesis of the endogenous sphingolip- 
ids from [3H]ceramide. When a 6-cm-diam dish with 
M D C K  II cells was incubated in 2 ml complete medium 
containing 4 p, Ci [3H]serine in the COz incubator for 20 h, 
the radioactivity incorporated into SM, GlcCer, and Gal- 
Cer was 3,600, 320, and 20 Bq, respectively, a ratio of 100: 
9:0.5. The low rate of GalCer synthesis is unexpected, as 
GalCer is a major glycosphingolipid in M D C K  II cells (see 
Discussion). C6-NBD-GalCer was delivered to the cell sur- 
face with an apical/basolateral polarity of 0.6, 2.6 times 
lower than that of C6-NBD-GlcCer (Table III). So M D C K  
cells are able to sort these lipids after biosynthesis. 

Equilibration of Endogenously Synthesized 
C6-NBD-GIcCer and C6-NBD-SM 

In the transcytosis experiments, the ratio between exoge- 
nous C6-NBD-GalCer and -GlcCer was very different 
from the ratio with which these lipids are synthesized by 
the cell. To exclude that this, or incorrect insertion, was 
the reason for the absence of sorting during transcytosis, 
we studied the equilibration of NBD lipids over the two 
cell surfaces after insertion in the proper  ratio by the cell 
itself. For  this, the transport assay of newly synthesized 
NBD lipids was adapted. After  arrival on the cell surface, 
the newly synthesized NBD lipids were allowed to parti- 
tion into the endocytotic and transcytotic pathway by 
omission of  the BSA from the 37°C medium (Fig. t F2). In 
this assay, the apical/basolateral polarity of each NBD 
lipid at the end of the incubation was measured by a subse- 
quent BSA extraction in the cold (Fig. 1 F3). The results 
were compared with an experiment with BSA in the 37°C 
medium. 

The polarities of delivery of C6-NBD-GlcCer and -SM 
that were generated after synthesis, as measured in a 1-h 
incubation in the presence of BSA, were 1.7 ± 0.7 and 0.9 
--- 0.1, respectively. When endocytosis and transcytosis had 
occurred, in the absence of  BSA, these numbers changed 

to 1.4 --- 0.3 and 1.1 +- 0.2, repectively; the relative polarity 
decreased from 1.91 ± 0.52 to 1.33 ___ 0.20 (n = 8; P < 
0.005). The relative polarity in the absence of BSA was not 
further reduced during a second hour at 37°C, but inter- 
pretation of this observation is complicated by ongoing hy- 
drolysis and resynthesis of C6-NBD-SM. Transcytosis 
seemed unable to maintain the difference between the api- 
cal/basolateral distribution for the two lipids generated by 
the transport from the sites of synthesis to the cell surface. 

When BSA was left out of  the medium of the 37°C incu- 
bation on one side only, the extent of transcytosis could be 
assayed by measuring how much extra product was ex- 
tracted by BSA from the opposite surface, as compared 
with a control transport assay with BSA in both media 
(van 't  Hof  and van Meer, 1990). During 1 h at 37°C, ~ 2 0 %  
(21 --- 7%; n = 14) of the C6-NBD-GIcCer and -SM that 
reached one surface after synthesis, as measured in the 
control experiment, transcytosed to the opposite surface in 
M D C K  II. This was true for both products and in both di- 
rections (data not shown) and was in the same range as the 
rates measured in the direct assays. 

Temperature Dependence of Lipid Transcytosis 

In M D C K  II cells, 25% of the inserted C6-NBD-GalCer 
reached the opposite cell surface in 1 h at 37°C (Fig. 4), 
which decreased to ~ 3 - 5 % / h  at 17°C. In M D C K  I cells 
apical to basolateral transcytosis was 40% per hour at 
37°C versus 3% at 17°C (n = 6). The temperature depen- 
dence of  the process was compared with that of transport 
of newly synthesized C6-NBD-SM from the Golgi complex 
to the cell surface. For this, C6-NBD-SM synthesis was re- 
stricted to a preincubation at 10°C by applying a pulse-  
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Figure 4. Temperature dependence of transport of newly synthe- 
sized C6-NBD-SM to the cell surface and of transcytosis of 
C6-NBD-GalCer. (Left) MDCK II cells were incubated with 
NBD-ceramide at 10°C before delivery of new C6-NBD-SM to 
the apical (O) and to the basolateral (0) surface was measured at 
the various temperatures by extraction into HBSS' + BSA as de- 
scribed under Materials and Methods. (Right) After apical or ba- 
solateral insertion of C6-NBD-GalCer at 10°C, transcytosis was 
measured by extraction of transcytosed C6-NBD-GalCer by the 
BSA in the opposite medium; in the apical to basolateral direc- 
tion (O) and, in parallel experiments, in the basolateral to apical 
direction (O). After additonal BSA washes at 10°C, transcytosis 
was determined. Transcytosis was measured during 1 and 2 h. At 
or below 20°C the 2-h time point was used for calculations. The 
0°C experiment was completely performed on ice. Data represent 
the mean of two (left) and four (right) measurements. Error bars, 
range and SD. 
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chase protocol (Materials and Methods). C6-NBD-SM that 
was synthesized on the cell surface was removed by the 
BSA in the preincubation medium before the start of the 
transport incubation (van Helvoort et al., 1994). The simi- 
larity between the temperature dependence of transcytosis 
and the transport of newly synthesized C6-NBD-SM (Fig. 
4) supported the notion that lipid transcytosis occurred by 
a vesicular pathway (see Discussion). 

Less clear results were obtained when the effect of en- 
ergy depletion was tested. In MDCK II cells, the presence 
of 50 mM deoxyglucose and 5 mM Na-azide (with or with- 
out preincubation with the energy poisons for 30 min at 
37°C) reduced apical to basolateral transcytosis of C6- 
NBD-GalCer from 25 _ 3% to 16 ± 4% per hour, with 
10% inside the cell after 1 h at 37°C (n = 4). In MDCK I, 
transcytosis was lowered from 39 ± 2% to 18 - 3% per 
hour (n = 4). However, 44 ± 2% was found in the cell af- 
ter 1 h at 37°C vs. 21 ± 1% in the control. So here endocy- 
tosis seems less sensitive to energy depletion than transcy- 
tosis (and recycling). Unfortunately, under more stringent 
conditions the tight junctions opened as evidenced by the 
appearance of an NBD-lipid signal in the apical medium 
indicative of leakage of BSA from the basal medium. 

Discussion 

Transcytotic Membrane Flux 

Two short-chain fluorescent glycolipid analogues, C6- 
NBD-GalCer and C6-NBD-GlcCer, were efficiently trans- 
ported across a monolayer of MDCK cells at 37°C (Figs. 
2-4). Leakage across the tight junctions appeared not to 
play a major role at 37°C, as similar rates of transepithelial 
transport were measured in an approach where the en- 
docytosis and transcytosis steps were studied separately, 
and where all C6-NBD-GalCer had necessarily passed 
through the cell (Table I). In its temperature dependence 
(Fig. 4) the process was very similar to endocytosis of vari- 
ous fluid-phase and membrane markers (Oka and Weigel, 
1989; Tomoda et al., 1989), protein transcytosis (Hunziker 
et al., 1990; van Deurs et al., 1990; Barroso and Sztul, 
1994), and exocytotic transport of C6-NBD-SM (Fig. 4), 
which has to be vesicular as C6-NBD-SM is synthesized in 
the Golgi lumen and does not flip across the Golgi mem- 
brane (see Koval and Pagano, 1991). These properties ar- 
gue that transepithelial transport of the C6-NBD lipids oc- 
curred by transcytosis. 

C6-NBD-GalCer and C6-NBD-GlcCer displayed no 
specificity during transcytosis in MDCK cells. First of all, 
the relative transcytosis of C6-NBD-GalCer and -GlcCer 
in the two directions, the percentage of the analogue on 
each surface transcytosed per hour as calculated from two 
different approaches (Fig. 2; Table I), closely correlated 
with the transcytotic flux of membrane predicted from sur- 
face area considerations in MDCK I and II cells. Second, 
equilibration of C6-NBD-GlcCer in MDCK II cells re- 
sulted in a distribution that accurately reflected the rela- 
tive surface area of the two domains (Table II). Under the 
latter conditions transport of newly synthesized NBD lip- 
ids was still selective: when after 16 h in serum-flee me- 
dium without BSA NBD-ceramide was added to the cells, 
biosynthesis, transport, and apical/basolateral polarities 

were identical to those in Table III  (not shown). In conclu- 
sion, the NBD sphingolipids behaved as bulk membrane 
markers, although so far it could not be excluded that they 
were transported faster (or slower) than the bulk mem- 
brane, but to the same extent in each direction. 

To address this issue, the flow of membrane during tran- 
scytosis was calculated independently from literature data 
on the transcytosis of fluid-phase and the size of transcy- 
totic vesicles. In MDCK I cells fluid-phase transcytosis was 
2.7-3.1 x 10 -8 nl per cell per minute, as measured by HRP 
and FITC-dextran (von Bonsdorff et al., 1985; Bomsel et 
al., 1989; Prydz et al., 1992). The diameter of transcytotic 
vesicles immunoisolated from rat liver has been estimated 
to be 80 nm (Sztul et al., 1991), in agreement with the 50- 
100-nm profiles labeled during transcytosis in MDCK I 
(von Bonsdorff et al., 1985). From these numbers the 
transcytotic membrane flux is 122-140 txm 2 per hour per 
cell. With an apical surface area in MDCK I under the 
present growth conditions of 423-478 ~xm 2 and a basolat- 
eral surface area of 1,785-1,798 txm 2 (Parton et al., 1989; 
Butor and Davoust, 1992), 29 -+ 3% of the apical mem- 
brane area and 7 _ 1% of the basolateral surface area 
transcytose per hour. These numbers are very similar to 
the transcytosis of C6-NBD-GalCer (Fig. 2) and demon- 
strate that this analogue acted as a true marker of bulk 
membrane flow. 

MDCK II cells display apical and basolateral surface ar- 
eas of 1,189 and 1,141 pom 2 (Butor and Davoust, 1992), a 
ratio similar to, for example, that for the proximal neph- 
ron in vivo (Welling and Welling, 1975). Using C6-NBD- 
GalCer as a marker (Figs. 2 and 3), ~300 ixm 2 of mem- 
brane was transcytosed per MDCK II cell per hour in each 
direction, two times more than in MDCK I. 

For dimeric IgA, the ligand of the polymeric Ig receptor 
(Mostov and Deitcher, 1986), and for a mutant polymeric 
Ig receptor (Casanova et al., 1990) a half-time of basolat- 
eral to apical transcytosis was measured of 30 rain in 
MDCK. This is much shorter than the half-time of transcy- 
tosis of membrane which is on the order of 6 and 3 h in 
MDCK I and II, respectively (Fig. 2). A different mutant 
polymeric Ig receptor was found to be preferentially recy- 
cled which resulted in a half-time of transcytosis of >10 h 
(Casanova et al., 1990). Clearly, proteins can be actively 
concentrated into the transcytotic pathway or into the re- 
cycling pathway, which can now be directly measured by 
applying the present methodology. 

Membrane Endocytosis and Recycling 

C6-NBD-SM behaved as a bulk flow marker in endocyto- 
sis and recycling in CHO cells on a time scale of <20 min 
as it displayed the same kinetics as transferrin recycling 
(Mayor et al., 1993; Presley et al., 1993). Endocytosis and 
recycling of C6-NBD-SM have been quantitatively charac- 
terized in flbroblasts (see Koval and Pagano, 1991) and 
under a fluorescence microscope C6-NBD-SM and C6- 
NBD-GlcCer followed the endocytotic recycling pathway 
in differentiated HT29 epithelial cells (Kok et al., 1991). In 
these studies very little of the marker was delivered to the 
lysosomes. Also in MDCK, 85-90% of endocytosed 
marker reappeared on the cell surface in 1 h (Table I). In 
striking contrast, it has been observed in MDCK I that af- 
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ter basolateral endocytosis 73 % of fluid-phase marker was 
transported to later endocytotic compartments (Bomsel et 
al., 1989). 

In both MDCK lines, endocytosis of lipid per surface 
area (percentage endocytosis, Table I) was higher from 
the basolateral surface. In contrast, fluid-phase endocyto- 
sis per surface area was similar from both surfaces (von 
Bonsdorff et al., 1985; Bomsel et al., 1989). The two obser- 
vations can only be true if basolateral endocytotic vesicles 
are smaller than apical ones, with a higher membrane to 
volume ratio. A similar discrepancy was observed in the 
ratio of transcytosis versus recycling from the basolateral 
endosomes. While 5-10 times more of the membrane 
marker recycled than transcytosed (Table I), the amounts 
of fluid phase in the two pathways were similar (Bomsel et 
al., 1989). Again this can only be true if recycling vesicles 
are smaller than transcytotic vesicles. The discrepancy was 
less for apical endosomes. While transcytosis was about 
0.7 times recycling for the membrane marker (Table I), it 
was similar for fluid phase (Bomsel et al., 1989), arguing 
that apical recycling vesicles are not much smaller than 
transcytotic vesicles. The size of transcytotic vesicles in 
both directions must be the same because they transport 
the same amounts of membrane and fluid phase. So, like 
endocytotic vesicles, recycling vesicles on the basolateral 
side are smaller than apical ones. 

In addition to higher rates of membrane endocytosis 
and recycling, the amount of C6-NBD-GalCer in the cell 
(percentage intracellular, Fig. 2) was higher during trans- 
port from the basolateral than from the apical surface over 
a 6-h period. This indicates that the surface area of the en- 
dosomes as compared with the surface is greater on the 
basolateral side. In summary, the evidence suggests that 
membrane endocytosis and recycling are faster on the ba- 
solateral side, are mediated by smaller vesicles and involve 
larger endosomes. 

Recently, it has been observed that material transcy- 
tosed from the basolateral surface after leaving the baso- 
lateral endosomes passes through an apically located recy- 
cling compartment before reaching the apical surface 
(Barroso and Sztul, 1994; see Mostov and Cardone, 1995). 
This would imply that membrane and fluid phase from the 
basolateral surface are recycled to that surface from two 
locations, the basolateral and apical endosomes. C6-NBD- 
GalCer transcytosis in these MDCK If ceils, from the 
same origin as ours but transfected with the polymeric Ig 
receptor (Mostov and Deitcher, 1986), was identical to 
that in the parental MDCK II (not shown). 

Sphingolipid Sorting After Biosynthesis 
After intracellular synthesis C6-NBD-GlcCer, -SM, and 
-GalCer reached the surface of MDCK cells with different 
apical/basolateral polarities. As compared with the two 
other lipids, C6-NBD-GlcCer was enriched twofold on the 
apical surface (Table III). As endogenous GlcCer in 
MDCK displayed a surface polarity 2.3 times higher than 
that of GalCer (Nichols et al., 1988), the selectivity in the 
transport of newly synthesized C6-NBD-GIcCer and -GaP 
Cer appears sufficient to establish the different distribu- 
tion of the native lipids at steady state. This has also been 
observed for C6-NBD-GIcCer and -SM in intestinal cells 

(van 't Hof and van Meer, 1990; van't Hof et al., 1992). 
Only trace amounts of C6-NBD-GalCer were synthesized. 
Similar relative rates of synthesis were observed for en- 
dogenous sphingolipids. Still, GalCer is a major glycolipid 
in MDCK II cells, constituting 15% of the glycolipids in 
these cells, about half as much as GlcCer (Br/indli et al., 
1988). Its low rate of synthesis suggests that GalCer is met- 
abolically much more stable than GlcCer. More recently, 
synthesis of a major amount of short-chain GalCer (plus 
SM and GlcCer) was accomplished by applying a ceramide 
containing a hydroxy fatty acid. The polarity data in those 
experiments support the present data (van der Bijl, P., M. 
Lopes-Cardozo, and G. van Meer, manuscript submitted 
for publication). 

Absence of Lipid Sorting During Transcytosis? 
In contrast to the differential targeting of newly synthe- 
sized short-chain lipids, C6-NBD-GlcCer was not sorted 
from C6-NBD-SM during subsequent transcytosis, nor was 
it sorted from C6-NBD-GaICer after insertion of the two 
lipids into either cell surface. The lack of sorting of NBD 
lipids in the transcytotic pathway could reflect a general 
lack of lipid sorting along this pathway. If so, differences in 
surface polarity between native lipids generated by the 
exocytotic transport would be dissipated by the transcy- 
totic route. In that case, the exocytotic sorting of endoge- 
nous lipids must be more efficient than that of the 
C6-NBD-analogues: in the absence of transcytotic lipid 
sorting the relative polarity of 2.6 between C6-NBD- 
GlcCer and -GalCer, that had been generated after bio- 
synthesis (cf. Table III), seems insufficient to maintain the 
relative polarity of 2.3 observed for endogenous GlcCer 
and GalCer in MDCK II (Nichols et al., 1988). Alterna- 
tively, the lack of sorting of NBD lipids could be an arti- 
fact of the C6-NBD chain. In a confluent cell monolayer 
transcytosis probably contributes more to the equilibrium 
surface polarity of each lipid than transport of newly syn- 
thesized lipid. In equilibrium (Table II), transcytosis will 
transport 7% of the total cellular C6-NBD-GlcCer per 
hour in each direction, while, if transport of newly synthe- 
sized lipid would only replace hydrolyzed lipid (2-4% of 
C6-NBD-GlcCer per hour), it would deliver only 1-2% of 
the total C6-NBD-GlcCer per hour to each cell surface. 
While new assays will have to be developed to address this 
issue, the NBD-lipid experiments show that lipid transport 
after cellular synthesis and lipid transcytosis do not pos- 
sess the same sorting characteristics. 

In one model for the mechanism by which newly synthe- 
sized lipids are targeted to the two epithelial cell surfaces 
with different apical/basolateral polarities (van Meer et 
al., 1987; Simons and van Meet, 1988), the lipids to be 
sorted pass through the lumenal leaflet of the membrane 
of the TGN. There they would be laterally segregated into 
(micro)domains that would subsequently bud into trans- 
port vesicles destined for either the apical or basolateral 
cell surface. If the model is correct, the absence of the sort- 
ing of NBD lipids during transcytosis implies that most 
transcytotic traffic does not involve the TGN or Golgi 
complex. Transport of short-chain GlcCer from the cell 
surface to the Golgi complex has been observed in nonepi- 
thelial cells (Martin and Pagano, 1994) and in undifferenti- 
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ated but not in differentiated HT29 epithelial cells (Kok et 
al., 1991). In the present study, we observed a punctate 
pattern of NBD fluorescence that did not resemble a Golgi 
pattern (van Meer et al., 1987; van 't Hof  and van Meer, 
1990) at any stage of the experiments (not shown). 

Independent of whether the C6-NBD lipids truly reflect 
the behavior of the endogenous lipids, the absolute values 
of membrane flux during transcytosis calculated here can 
be used to assess whether a specific protein is sorted or fol- 
lows bulk flow. In addition, the influence of various condi- 
tions on the membrane fluxes along the transcytotic path- 
way can be studied, and it can be tested whether a change 
in transcytotic rate of a protein is specific for that protein 
or reflects a change in the size of the transcytotic pathway 
in general. Data generated by these approaches will con- 
tribute to our understanding of the principles of protein 
sorting in transcytotic organelles. 
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