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G protein-coupled receptors (GPCRs) constitute a large family of receptors that sense
molecules outside the cell and activate inside signal transduction pathways and cellular
responses. GPCR are involved in a wide variety of physiological processes, including in the
neuroendocrine system. GPCR are also involved in many diseases and are the target of
30% of marketed medicinal drugs.Whereas the majority of the GPCR-targeting drugs have
proved their therapeutic benefit, some of them were associated with undesired effects.We
develop two examples of used drugs whose therapeutic benefits are tarnished by carcino-
genesis risks.The chronic administration of glucagon-like peptide-1 (GLP-1) analogs widely
used to treat type-2 diabetes was associated with an increased risk of pancreatic or thy-
roid cancers. The long-term treatment with the estrogen antagonist tamoxifen, developed
to target breast cancer overexpressing estrogen receptors ER, presents agonist activity
on the G protein-coupled estrogen receptor which is associated with an increased inci-
dence of endometrial cancer and breast cancer resistance to hormonotherapy. We point
out and discuss the need of pharmacological studies to understand and overcome the
undesired effects associated with the chronic administration of GPCR ligands. In fact, bio-
logical effects triggered by GPCR often result from the activation of multiple intracellular
signaling pathways. Deciphering which signaling networks are engaged following GPCR
activation appears to be primordial to unveil their contribution in the physiological and phy-
siopathological processes.The development of biased agonists to elucidate the role of the
different signaling mechanisms mediated by GPCR activation will allow the generation of
new therapeutic agents with improved efficacy and reduced side effects. In this regard,
the identification of GLP-1R biased ligands promoting insulin secretion without inducing
pro-tumoral effects would offer therapeutic benefit.
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INTRODUCTION
Seven transmembrane receptors, also termed G protein-coupled
receptors (GPCR), form the largest class of the cell surface mem-
brane receptors, involving 850 members in the human genome.
GPCR are generally expressed in several different tissues in the
same individual and involved in numerous physiological processes,
including in the neuroendocrine system by playing a pivotal role in
the control of feeding behavior, reproduction, growth, hydromi-
neral homeostasis and stress response. At the cellular level, biolog-
ical effects triggered by GPCR often result from the activation of
multiple intracellular signaling pathways which are dependent or
independent of G protein coupling (Rajagopal et al., 2010a).

Near 30% of therapeutic agents on the pharmaceutical market
target GPCR (Hopkins and Groom, 2002). Whereas the majority
of the GPCR-targeting drugs have proved their therapeutic bene-
fit, some of them were associated with undesired effects (Table 1).
Around 70% of the drugs which target GPCR are derived from the
natural ligand and the use of agonist mimetics in clinical indication
can act on the different tissues expressing the targeted GPCR and
potentially induce undesired effects. Notably, prolonged treatment

with GPCR-targeting agonist analogs was shown to induce preneo-
plastic and tumoral side effects. Here, we develop two examples of
the use of GPCR-targeting drugs whose therapeutic benefits are
tarnished by carcinogenesis risks. As a first example, glucagon-like
peptide-1 receptor (GLP-1R) agonists used as anti-diabetic treat-
ment were shown to induce preneoplastic lesions and/or cancers
in the pancreas and the thyroid. The second example of ligands
that we chose to develop does not initially target a GPCR, but the
unexpected undesired effect is associated with a new GPCR target.
Indeed, nuclear estrogen receptor antagonists such as tamoxifen
are a breakthrough in the therapy and the prevention of breast
cancer; however, long-term treatment was shown to be associ-
ated with an increased risk in endometrial cancer which was
explained by the tamoxifen-induced activation of a GPCR, named
G protein-coupled estrogen receptor (GPER).

We point out and discuss the need of more pharmacolo-
gical studies to understand and overcome the undesired effects
associated with the chronic administration of ligands which
target GPCR. Deciphering the signaling networks engaged fol-
lowing GPCR activation appears to be primordial to unveil
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Table 1 | Examples of ligands used for clinical indication in endocrinology with undesired side effect.

Receptor Ligand Clinical indication Undesired side effects Reference

Dopamine-R Antagonist Schizophrenia/bipolar disorder

(Central nervous system)

Diabetes (Pancreatic β-cells:serotonin,

histamine, muscarinic antagonism)

Nasrallah (2008), Medved et al.

(2009)

EstrogenR/

GPER

Tamoxifen Breast cancer/osteoporosis Endometrial cancer/uterine sarcoma/ovarian

cancer

Du et al. (2012a), Ignatov et al.

(2010a), He et al. (2012)

Tamoxifen breast cancer resistance Wei et al. (2012)

GLP-1R GLP-1

analogs

Diabetes (pancreatic β cell ) Preneoplasia/pancreatitis (Pancretic duct cell )

Medullary thyroid cancer (Thyroid C-cell )

Nachnani et al. (2010), Gier et al.

(2012a), Elashoff et al. (2011)

Bjerre Knudsen et al. (2010),

Madsen et al. (2012), Victoza

(Liraglutide) Injection (2012)

GnRH-R Agonist Prostate cancer (anterior pituitary ) Diabetes Kintzel et al. (2008), Saylor and

Smith (2009)

NPY-R Eating disorders (Brain) Neuroblastoma Lu et al. (2010)

PTH-R Agonist Osteoporosis (Osteoblast ) Osteosarcoma (Mesenchymal stem cell ) Subbiah et al. (2010), Hodsman

et al. (2005)

Serotonin

5HT4R

Agonist Gastrointestinal disorder (enteric

nervous system in GI tract )

Cardiovascular disease Tack et al. (2012)

SST-R Somatostatin

analogs

Acromegaly (Pituitary: suppress

GH/IGF-1 secretion)

Carcinoid tumors/Vipomas

Hypo/hyperglycemia

Hypothyroidism (Pituitary: suppress secretion

TSH)

Endocrine tumor Pancreatitis

The cells or organs targeted by the drug in the clinical indication or in the adverse effects are given in parenthesis.

their contribution in the physiological and physiopathological
processes.

THE GLUCAGON-LIKE PEPTIDE-1 RECEPTOR
One of the main physiological roles of GLP-1 is to enhance
insulin secretion in a glucose-dependent manner. Thus, GLP-
1 is an incretin hormone released after meals by L cells in the
intestine (Figure 1) (Mojsov et al., 1987). GLP-1 exerts its physi-
ological effects through binding to its specific G protein-coupled
receptor, GLP-1R, which is primarily and positively coupled to
adenylate cyclase, through Gαs-containing heterotrimeric G pro-
teins, leading to the activation of second messenger pathways such
as protein kinase A (PKA) and cAMP-regulated guanine nucleotide
exchange factor II (cAMP-GEFII, also known as Epac2) signaling
pathways (Figure 2) (Thorens, 1992; Kashima et al., 2001; Mayo
et al., 2003; Holz, 2004; Seino and Shibasaki, 2005; Doyle and
Egan, 2007; Holst, 2007). In addition to its stimulatory effect on
insulin secretion, GLP-1 suppresses the secretion of glucagon, a
counter-hormone to insulin, thus maintaining glucose homeosta-
sis following a meal (Nauck et al., 1993). GLP-1 plays also a key
role in the homeostasis of β-cell mass by inducing β-cell prolifer-
ation and protecting against apoptosis which favor an expansion
of β-cell mass (Figure 2) (Doyle and Egan, 2007). These functions
are mediated via the activation of the cAMP/PKA/CREB (cAMP-
responsive element binding protein) and the transactivation of
the EGF-R (epidermal growth factor receptor) leading to the

activation of phosphatidylinositol-3 kinase (PI3K), Protein Kinase
Cζ (PKCζ), Akt-protein kinase B, Extracellular Regulated Kinase
(ERK1/2) signaling pathways and to the up-regulation of the
expression of the cell cycle regulator cyclin D1 (Buteau et al.,
2003; Drucker, 2003; Trumper et al., 2005; Park et al., 2006; Doyle
and Egan, 2007). The antiapoptotic effect of GLP-1 in β-cells also
involves β-arrestin1 recruitment by GLP-1R which mediates the
ERK1/2 activation leading to the phosphorylation and inactiva-
tion of the pro-apoptotic protein Bad (Quoyer et al., 2010). The
properties of GLP-1 on insulin secretion and β-cell proliferation
make GLP-1 one of the most promising therapeutic agent to treat
type-2 diabetes. Moreover, GLP-1 analogs offer the advantage of
improved glycemic control of type-2 diabetic patients, without
inducing severe hypoglycemia (Phillips and Prins, 2011).

On the other hand, GLP-1 receptor activation directly pro-
motes cell proliferation and enhances cell survival in several tissues
including neurons, fibroblasts, and cardiomyocytes (Brubaker and
Drucker, 2004).

COULD ANTI-DIABETIC TREATMENT WITH GLP-1 ANALOGS INDUCE
CANCERS?
Two GLP-1 mimetic drugs are now widely used to treat type-2
diabetes, exendin-4/exenatide and liraglutide, because of their
optimal glucose lowering capacity with low risk of hypoglycemia
(Chia and Egan, 2008; Buse et al., 2009; Nauck et al., 2009). Pre-
clinical and clinical studies indicated that exenatide and liraglutide
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FIGURE 1 | Actions of GLP-1 in peripheral tissues. Most of the effects of
GLP-1 are mediated by direct interaction with GLP-1R on specific tissues.
However, the actions of GLP-1 in liver, fat, and muscle most likely occur

through indirect mechanisms. GLP-1 induces the proliferation of pancreatic
duct cells and thyroid C-cells. Reprinted from Gastroenterology (Baggio and
Drucker, 2007).

exert a positive effect on insulin secretion, β-cell proliferation, and
survival (Goke et al., 1993; Chang et al., 2003; Drucker, 2006; Vils-
boll et al., 2007, 2008; Pratley and Gilbert, 2008; Madsbad, 2009;
Vilsboll, 2009). On the other hand, recent studies showed that the
use of these GLP-1R agonists in anti-diabetic treatment can be
associated with an increase of cancer risk. The main organs where
concerns exist about the trophic effects of GLP-1 analogs and their
potential carcinogenic propensity are the pancreas and the thyroid,
both organs expressing GLP-1R.

The pancreas
Recent studies reported that both treatments with exenatide and
liraglutide are associated with an increased risk of pancreatitis
in humans, a disease which represents a known risk factor for
pancreatic cancer (Denker and Dimarco, 2006; Cure et al., 2008;
Tripathy et al., 2008; Greer and Whitcomb, 2009). The chronic
administration of GLP-1 agonists was also shown to be associ-
ated with increased serum lipase and amylase in many patients
with type-2 diabetes, suggesting pancreatic damage and inflam-
mation (Lando et al., 2012). Evaluation of the U.S. Food and Drug
Administration (FDA) adverse events database by Elashoff et al.
(2011), showed 10- and 3-fold increases in the incidence of pan-
creatitis and pancreatic cancer, respectively, in diabetic patients
treated with exenatide as compared to other therapies (rosigli-
tazone, nateglinide, repaglinide, and glipizide) (Elashoff et al.,
2011).

Undesired effects were also observed on different animal mod-
els. Indeed, chronic administration of exenatide during 12 weeks
increased pancreatic acinar inflammation, sensitized to pan-
creatitis, and promoted pancreatic duct hyperplasia in rats or
in the LSL-KrasG12D/+/Pdx1-Cre± murine model of pancreatic
carcinogenesis (Nachnani et al., 2010; Gier et al., 2012a). The

authors of this study related these adverse effects to the expression
of GLP-1R in duct cells of the exocrine pancreatic tissue (Gier
et al., 2012a). Whereas GLP-1R expression is clearly established
in normal β-cells, its expression in the exocrine pancreas raises
questions as it could be detected or not in the ductal or acinar
cells according to the study (Horsch et al., 1997; Xu et al., 1999;
Korner et al., 2007; Tornehave et al., 2008; Gier et al., 2012a).
Importantly, inflammation and/or tissue damage can promote
neoplasia by altering the fate of acinar and endocrine differ-
entiated cells which can transdifferentiate to ductal cells, thus
leading to ductal cell proliferation and preneoplastic lesion for-
mation eventually progressing to pancreatic cancer (Jura et al.,
2005; Means et al., 2005; Hernandez-Munoz et al., 2008; Gidekel
Friedlander et al., 2009; Logsdon and Ji, 2009; Rebours et al.,
2009; Perez-Mancera et al., 2012). Other studies carried on normal
and diabetic mice and rats treated with exenatide or liraglu-
tide with or without induction of experimental pancreatic injury
did not find any relationship between incretin therapy and the
development of pancreatic disease such as pancreatitis and pan-
creatic tumor (Koehler and Drucker, 2006; Koehler et al., 2009;
Tatarkiewicz et al., 2010). But, in these last studies, GLP-1 ago-
nists administration did not exceed 6 days or 4 weeks. Neverthe-
less, exenatide treatment upregulated PAP/Reg3b (pancreatitis-
associated protein) expression as already observed in the course
of pancreatic carcinogenesis and pancreatitis (Graf et al., 2006;
Gigoux et al., 2008; Koehler et al., 2009; Tatarkiewicz et al.,
2010). At last, Nyborg et al. (2012) did not observe pancreatitis
in non-diabetic mice, rats, or monkeys after 2 years of liraglu-
tide treatment at exposure levels up to 60 times higher than in
humans.

There are very few data on GLP-1R-induced proliferative sig-
naling in pancreatic duct cells. Gier et al. (2012a) showed that
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FIGURE 2 | Intracellular signaling pathways of GLP-1R in the
pancreatic β-cell. One of the main physiological roles of GLP-1 is to
enhance insulin secretion in a glucose-dependent manner. To stimulate
insulin secretion and biosynthesis (green), GLP-1R coupled to adenylyl
cyclase leading to the activation of cAMP-regulated guanine nucleotide
exchange factor II (cAMP-GEFII, also known as Epac2) signaling pathway.
GLP-1 plays also a key role in the homeostasis of β-cell mass by inducing
β-cell proliferation (blue) and protecting against apoptosis (red). These
functions are mediated via the activation of the cAMP/PKA/CREB
(cAMP-responsive element binding protein) and the transactivation of the
epidermal growth factor receptor (EGF-R) leading to the activation of

phosphatidylinositol-3 kinase (PI3K), Protein Kinase Cζ (PKCζ), Akt-protein
kinase B, ERK1/2 (Extracellular Regulated Kinase, named also MAPK,
Mitogen-Activated Protein Kinase) signaling pathways, and to the
up-regulation of the expression of the cell cycle regulator cyclin D1.
GLP-1R agonists also improve β-cell function and survival during
endoplasmic reticulum stress (purple) by enhancing of ATF-4 translation in
a cAMP- and PKA-dependent manner, promoting the up-regulation of the
endoplasmic reticulum stress markers CHOP and GADD34 expression and
the dephosphorylation of eIF2α. Of note, there is considerable overlap
between pathways induced by the GLP-1R activation. Reprinted from
Gastroenterology (Baggio and Drucker, 2007).

exenatide induced proliferative signaling pathways in human pan-
creatic duct cell line by increasing CREB and ERK1/2 phosphory-
lation and cyclin D1 expression. ERK1/2 phosphorylation induced
by exenatide is dependent of EGF-R activation (Buteau et al., 2003;
MacDonald et al., 2003). Koehler and Drucker (2006) also showed
that exenatide increased cAMP or induced ERK1/2 activation in
some pancreatic cancer cell lines although the proliferation of
these cell lines was not modulated.

The thyroid
Elashoff et al. (2011) showed a 4.7-fold increase in the incidence of
thyroid cancer in diabetic patients treated with exenatide as com-
pared to other therapies (rosiglitazone, nateglinide, repaglinide,
and glipizide), by analyzing the U.S. FDA’s database of reported
adverse events. In contrast, Hegedus et al. (2011) reported no
significant risk for the activation or growth of C-cell cancer in
response to liraglutide over a 2-year period. Nevertheless, GLP-
1R expression was found in thyroid glands of 20, 91, and 100%

of patients with papillary carcinoma, medullary thyroid cancer
(MTC), and C-Cell hyperplasia, respectively (Gier et al., 2012b).
GLP-1R could be also detected in human normal thyroids (Bjerre
Knudsen et al., 2010; Gier et al., 2012b). Therefore, GLP-1 analogs
might increase the risk of thyroid C-cell pathology, but this awaits
confirmation in humans.

Preclinical studies carried out on rodents treated with liraglu-
tide or exenatide showed a higher incidence of C-cell neoplasia
and tumor formation in the thyroid [European Medicines Agency
(EMA), 2006, 2009, 2011; Bjerre Knudsen et al., 2010; U.S. Food
and Drug Administration, 2011; Bulchandani et al., 2012; Madsen
et al., 2012; Victoza (Liraglutide) Injection, 2012]. Indeed, a con-
tinuous exposure to liraglutide or exenatide was associated with
marked increases in plasma calcitonin and in the incidence of C-
cell hyperplasia. These effects were mediated by the GLP-1R as
they were not seen in GLP-1R knockout mice (Bjerre Knudsen
et al., 2010; Madsen et al., 2012). C-cell hyperplasia is considered
as a preneoplastic lesion that constitutes in situ carcinoma of the
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thyroid C-cells (LiVolsi, 1997) and calcitonin,an hormone secreted
by thyroid C-cells, is regarded as an important clinical biomarker
for C-cell diseases such as MTC and hereditary C-cell hyperplasia
because of its high sensitivity and specificity (Elisei et al., 2004;
Costante et al., 2007; Machens et al., 2009). Neoplasms were not
observed in monkeys after long-term liraglutide administration,
indicating that GLP-1 induced C-cell proliferation in rodents but
not in primates and suggesting that possible species-specific dif-
ferences in GLP-1R expression and activation might occur in the
thyroid (Bjerre Knudsen et al., 2010).

There are very few data on GLP-1R-induced proliferative sig-
naling in thyroid C-cells. Chronic administration of liraglutide
did not modify ERK phosphorylation, but increased ribosomal S6
phosphorylation, a downstream target of mTor and PI3K activa-
tion which plays a role in regulating cell proliferation and survival
by growth factors (Sengupta et al., 2010; Madsen et al., 2012).

In conclusion, results obtained from preclinical and clinical
studies tend to support a pro-tumoral action of GLP-1 in the
pancreas and the thyroid, although few studies contradict this
role. The relatively short time of chronic treatment with GLP-1
analogs in some studies could explain the absence of significative
pro-tumoral effects. Moreover, this raises the question of whether
GLP-1 can induce preneoplastic lesions and cancer alone or enable
pre-existing lesions to progress to cancer. Further studies should
be conducted to determine whether GLP-1 agonists induce or sen-
sitize to pancreatic and thyroid diseases, by comparing chronic
administration of GLP-1 mimetics in rodents presenting or not
previous injury in the pancreas and the thyroid. However, it is
important to note that diabetes is recognized to increase the inci-
dence of pancreatitis and of a variety of cancers, including breast,
pancreas, and colon cancers (Giovannucci et al., 2010; Girman
et al., 2010; Pandey et al., 2011). Of note, GLP-1R is overexpressed
in neuroendocrine pancreatic tumors, more particularly in insuli-
nomas (Korner et al., 2007; Christ et al., 2010). In the current state
of knowledge, GLP-1 agonists remain contra-indicated in patients
with a personal or family history of MTC or multiple endocrine
neoplasia type-2 (Anonymous, 2010; Victoza (Liraglutide) Injec-
tion, 2012). Importantly, Risk Evaluation and Mitigation Strategies
program including a FDA safety warning published recommenda-
tions regarding the risk of thyroid cancer and pancreatitis after
use of liraglutide and after dose increases (U.S. Food and Drug
Administration, 2011).

Very few data are available on the proliferative intracellular
pathways mediated by GLP-1R in pancreatic ductal cells and
thyroid C-cells. Nevertheless, in the current state of knowledge,
GLP-1R induces proliferation of these cells by same intracellu-
lar pathways as in the pancreatic β-cells. The identification of
GLP-1 analogs that promote insulin secretion to treat type-2 dia-
betes without inducing pro-tumoral effects is therefore a timely
challenging issue. Glucose-insulinotropic peptide (GIP) incretin
could be also another alternative in type-2 diabetes treatment,
especially as the GIP receptor (GIP-R) was not expressed in the
normal thyroid and the exocrine pancreas unlike GLP-1R (Ahren,
2009; Waser et al., 2011, 2012). But, these clinical indication of GIP
should be effective only after normalization of patient’s glycemia
which can restore the expression of GIP-R in β-cells (Holst et al.,

1997; Vilsboll et al., 2002; Piteau et al., 2007; Younan and Rashed,
2007).

THE ESTROGEN RECEPTORS ER/GPER
Estrogen hormone regulates the growth and the differentiation
of many tissues playing a critical role in the development of
the reproductive system but also in the nervous, immune, vas-
cular, muscular, skeletal, and endocrine systems. The binding of
17β-estradiol, the natural endogenous estrogen, to the estrogen
receptors ERα and ERβ (ER) is the main mechanism respon-
sible for the diverse biological effects of the hormone (Pedram
et al., 2006; Meyer and Barton, 2009; Meyer et al., 2009). These
highly homologous receptors can shuttle between the cytoplasm
and the nucleus and function as ligand-activated nuclear tran-
scription factors that bind cis-acting estrogen response elements
in the promoter and enhancer regions of hormonally regulated
genes (genomic effects of estrogen) (Figure 3) (Ring and Dowsett,
2004; Edwards, 2005; Carroll and Brown, 2006). Estrogen also
induces some rapid biochemical responses to estrogen stimula-
tion which occur in seconds to minutes, such as the increase in
intracellular free calcium and the activation of multiple intracel-
lular kinases including ERK, PI3K, PKA, and PKC (non-genomic
effects of estrogen) (Chen et al., 2008).

Estrogen is the one of the risk factors for breast tumors, which
accounts for 40% of cancer among the women and approximately
50% of all breast cancers demonstrated elevated levels of ER
expression (Pike et al., 2004). Consequently, anti-estrogen therapy
has been extended such as the gold standard tamoxifen (Figure 3)
(Deroo and Korach, 2006; Lorand et al., 2010). Unfortunately,
long-term treatment with tamoxifen is associated with adverse
effects such as an increased incidence of endometrial cancer and
with breast cancer resistance to hormonotherapy. Moreover, these
events were shown to be associated with G protein signaling-
or growth factor-mediated pathways which were not blocked by
tamoxifen antagonist, leading to the prediction that an alterna-
tive membrane-bound estrogen receptor exists (Wehling, 1997;
Hammes and Levin, 2007; Meyer and Barton, 2009). In fact, an
orphan GPCR was identified as an estrogen-binding membrane
GPCR from vascular and cancer cells and is now included in
the official GPCR nomenclature and was designated GPER or
GPR30 by the International Union of Pharmacology (Revankar
et al., 2005; Thomas et al., 2005; Prossnitz et al., 2008a; Alexander
et al., 2011). Its localization seems to be predominantly intracel-
lular due to the constitutive internalization of plasma membrane
GPER (Figure 3) (Revankar et al., 2005; Otto et al., 2008; Cheng
et al., 2011; Sanden et al., 2011). GPER is widely expressed in cancer
cell lines and primary tumors of the breast (Carmeci et al., 1997;
Filardo et al., 2000; Revankar et al., 2005; Albanito et al., 2008a),
endometrium (Vivacqua et al., 2006a; Leblanc et al., 2007; He et al.,
2009), ovaries (Albanito et al., 2007, 2008b; Henic et al., 2009), thy-
roid (Vivacqua et al., 2006b), lung (Siegfried et al., 2009), prostate
(Chan et al., 2010), and testicular germ cells (Franco et al., 2011).
GPER does not only bind estrogens but also other substances
such as tamoxifen which displays estrogenic agonist activity on
GPER notably in the reproductive systems (Figure 3) (McDonnell,
1999; Filardo et al., 2000; Thomas and Dong, 2006; Jordan, 2007;
Albanito et al., 2008b; Orlando et al., 2010; Chevalier et al., 2012).
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FIGURE 3 | Cellular signaling mechanisms of GPER and classic
nuclear estrogen receptors ERs (↓ activate; ⊥ inhibit). ERs are widely
accepted as mainly mediating gene transcriptional regulation. Tamoxifen is
an ER antagonist in some tissue, such as breast cancer, while has
agonistic effects in other tissues, such as endometrium. GPER was found

predominantly in the endoplasmic reticulum; estrogen and tamoxifen can
bind GPER, and then activate multiple cellular effectors, such as ERK,
PI3K, and PLC, and other rapid cellular processes. Most of them are
mediated by transactivation of EGF-R. Reprinted from Endocrinology
(Wang et al., 2010).

Indeed, tamoxifen stimulates the cell proliferation and growth
of cell lines of thyroid, ovarian, endometrial, and breast can-
cers (Filardo et al., 2000; Thomas et al., 2005; Vivacqua et al.,
2006a; Albanito et al., 2007; Prossnitz et al., 2008b; Pandey et al.,
2009). The discovery of GPER-selective agents and the elabora-
tion of GPER knockout mice helped to examine GPER signaling
pathways and strongly supported that GPER is associated with
cancer proliferation, migration, invasion, metastasis, differentia-
tion, prognosis, and drug resistance (Prossnitz et al., 2008b; Wang
et al., 2010).

COULD ESTROGEN ANTAGONISTS USED IN BREAST CANCER
TREATMENT INDUCE CANCER IN OTHER TISSUES?
An increased incidence of uterine malignancies in association with
tamoxifen treatment has been reported. The incidence and seve-
rity of endometrial cancer increased by 4- to 6.9-fold in women

with 5 years of exposure to tamoxifen (van Leeuwen et al., 1994;
Bernstein et al., 1999; Bergman et al., 2000; Goldstein, 2001). Uter-
ine sarcoma has been also reported to occur more frequently
among long-term users (≥2 years) of tamoxifen than non-users
(Wickerham et al., 2002). In support to these data, tamoxifen
has been shown to stimulate the proliferation and the invasion
of uterine cells in vivo and of human endometrial carcinoma cell
lines and these effects were mediated by GPER (Gottardis et al.,
1988; Jamil et al., 1991; Schwartz et al., 1997; Du et al., 2012a).
Indeed, tamoxifen promoted cell proliferation and invasion of the
human endometrial cancer cell lines ISHIKAWA and KLE, while
the down-regulation of GPER partly or completely prevented
these effects (Du et al., 2012a). GPER is widely expressed in pri-
mary tumors of endometrium including ER-negative endometrial
carcinomas (He et al., 2009). High levels of GPER expression cor-
relate with an increased incidence of endometrial cancer and with
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tamoxifen-induced uterine pathology and predict poor survival
in endometrial cancer (Smith et al., 2007; Ignatov et al., 2010a).
All together, these data strongly support that tamoxifen treatment
might have a cancer-promoting effect through GPER.

G protein-coupled estrogen receptor promotes carcinogene-
sis by endometrial cancer cells as down-regulation of GPER led
to reduce growth and invasion by RL95 endometrial cancer cells
treated with 17β-estradiol and to decrease tumorigenesis in vivo
(He et al., 2009, 2012). GPER mediates the proliferative effects of
estrogen and tamoxifen in endometrial cancer cells through EGF-R
transactivation leading to the activation of ERKs and PI3K path-
ways (Vivacqua et al., 2006a; Prossnitz et al., 2008b; He et al., 2009,
2012; Du et al., 2012a; Lappano et al., 2012; Wei et al., 2012). GPER
also mediates invasion by endometrial cancer cells through the
stimulation of ERK pathway, as well as the increase of interleukin-
6 secretion, leading to the production and activation of matrix
metalloproteinases MMP-2 and MMP-9 known to degrade extra-
cellular matrix components and to be involved in cancer invasion
and metastasis (He et al., 2009, 2012; Du et al., 2012a).

COULD GPER BE INVOLVED IN BREAST CANCER RESISTANCE TO
HORMONOTHERAPY?
The majority of breast cancers is ER-positive and depends on estro-
gen for growth. Therefore, blocking estrogen signaling remains
the strategy of choice for the treatment and the prevention of
breast cancer. Tamoxifen is the prototypical drug that targets ER.
It presents potent anti-estrogenic properties and has been used
extensively for the past 40 years to treat and prevent breast cancer
(Jordan and Morrow, 1999). Tamoxifen treatment is very effec-
tive in tumors expressing ER receptors and significantly reduces
the mortality of breast cancer patients (Jordan and Morrow, 1999;
Powles et al., 2007). Many patients with ER-positive breast cancer
have benefited from anti-hormonal treatment, but unfortunately,
almost 30–50% of patients with advanced disease did not respond
to first-line treatment with tamoxifen. Furthermore, long-term
tamoxifen therapy causes the development of acquired resistance
(Early Breast Cancer Trialists’ Collaborative Group (EBCTCG),
2005). Indeed, development of resistance is very frequent and
tamoxifen is not effective for more than 5 years (Saphner et al.,
1996; Clarke et al., 2001; Early Breast Cancer Trialists’ Collabora-
tive Group (EBCTCG), 2005; Barron et al., 2007; Brewster et al.,
2008).

The tumor resistance to tamoxifen treatment is associated to
a decrease or a loss of ER expression and to an increase of GPER
expression. GPER protein is expressed in ∼50% of all breast can-
cers including half of ER-negative tumors and correlates with
increased tumor size and metastasis (Filardo et al., 2006; Igna-
tov et al., 2011). Moreover, GPER protein expression is increased
in breast tumors of patients treated only with tamoxifen and in
tamoxifen resistant tumor tissues correlating with a poor relapse-
free survival in patients treated with tamoxifen (Filardo et al.,
2006; Ignatov et al., 2011). In vitro prolonged tamoxifen treat-
ment leads to an increased cell surface expression of GPER and
also to clonal selection of GPER-positive MCF-7 breast cancer
cells (Ignatov et al., 2010b). Thus, GPER expression is associated
with an increased risk of resistance to tamoxifen and patients with
breast cancer who have high GPER protein expression should not
be treated with tamoxifen alone.

G protein-coupled estrogen receptor mediates the proliferative
and tamoxifen-resistance effects through EGF-R transactivation
leading to the phosphorylation of ERK and Akt (Filardo et al.,
2000; Prossnitz et al., 2008b; Ignatov et al., 2010a,b). Thus, ERK
and Akt can further stimulate transcription of different genes (even
ER), leading to cell proliferation, and interfere with the activa-
tion of Smad proteins, known effectors of the TGF-β signaling,
an important intracellular pathway involved in the inhibition of
tumor progression (Clarke et al., 2001; Kleuser et al., 2008; Yoo
et al., 2008; Ignatov et al., 2010b).

In conclusion, tamoxifen has been the only available hormonal
option for the systemic treatment for breast cancer from 1973 to
2000. Despite the clinical success of tamoxifen, the development of
drug resistance and endometrial cancers leads to the requirement
of alternative hormonal therapy. In this regard, the knowledge of
the contribution of GPER-mediated signaling in the undesired
effects of estrogenic antagonist uses for breast cancer treatment
should allow the future development of new molecules. Moreover,
further researches are required to define the role of GPER signa-
ling in estrogen undesired physiological effects and to elucidate
the role of non-selective estrogen receptor ligands in health and
disease.

NEW HOPES TO OVERCOME UNDESIRED EFFECTS
G protein-coupled receptors are generally expressed in several dif-
ferent tissues and involved in numerous physiological processes.
Many natural ligands can bind and activate several subtypes of
GPCR. This is illustrated, for example, with cholecystokinin and
somatostatin receptors (Guillermet-Guibert et al., 2005; Dufresne
et al., 2006). Ligands can also activate different classes of recep-
tors as illustrated before with estrogen (Prossnitz et al., 2008a).
Such a diversity of receptors activation following agonist admi-
nistration can engage multiple intracellular signaling pathways
and be responsible for adverse effects in treated patients. Fur-
thermore, biological effects triggered by the same GPCR result
from the activation of G protein-dependent and -independent
intracellular signaling pathways. Recently, signaling engaged after
GPCR recruitment of β-arrestin proteins have emerged as new
G protein-independent intracellular signaling pathways (Luttrell
and Gesty-Palmer, 2010; Rajagopal et al., 2010a). To increase
the complexity, a single GPCR has pleiotropic signaling prop-
erties and each signal can crosstalk at different levels with the
transactivation of cell surface receptor having tyrosine kinase acti-
vity (EGF-R, PDGF-R, FGF-R, for examples) or serine/threonine
kinase activity (TGF-β, for example) or with the formation of
multimers, thus potentially influencing the signaling pathways
of the different receptors (Burch et al., 2012; Wang and Lewis,
2013). Indeed, numerous biochemical and biophysical studies
supports that GPCRs can form physiologically relevant homo-,
hetero-, or oligo-mers (Angers et al., 2002). Homodimerization
of the GLP-1R was shown to be critical for selective coupling
of the receptor to physiologically relevant signaling pathways
(Harikumar et al., 2012). Indeed, disruption of GLP-1R homod-
imerization completely abrogated the intracellular calcium mobi-
lization response whereas it slightly reduced cAMP formation
and phosphorylation of ERK. Furthermore, GLP-1R dimeriza-
tion can discriminate between peptide and non-peptide-mediated
receptor activation. In the chemokine receptors family, antibodies
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against the CCR2b promoted the receptor dimerization and
second messenger production (Rodriguez-Frade et al., 1999),
whereas an antibody directed against CCR5, that induces recep-
tor dimerization, inhibits its function (Vila-Coro et al., 2000).
Many studies was also conducted to analyze the role of GPCR
heterodimerization and supported that heterodimerization could
be the source of additional pharmacological properties which
are different from those of the individual receptors. As a first
example, the co-expression of the δ- and κ-opioid receptors
in the same cell leads to an almost complete loss of binding
to selective δ- and κ-ligands while preserving binding to non-
selective ligands (Jordan and Devi, 1999). As a second example,
somatostatin receptor SSTR1 displays internalization in cells when
it is co-expressed with SSTR5, whereas monomeric SSTR1 is
resistant to internalization in contrast to monomeric SSTR5,
suggesting that the SSTR1 trafficking is modified by its he-
terodimerization with SSTR5 (Rocheville et al., 2000). Thus,
homo- and heterodimerization between GPCR cause complexity
in the receptor pharmacological properties that can be respon-
sible of synergistic or antagonistic signaling cross-talks. This
GPCR pharmacological and signaling complexity could account
for unexpected pharmacological effects and have dramatic impacts
on drug development. All together, these hallmarks indicate that
undesired adverse effects can be expected with a prolonged ago-
nist administration that targets a GPCR (Table 1). Moreover,
many GPCR have already been shown to present proliferative
and pro-tumoral properties (Table 2), suggesting that an increase
of preneoplastic lesions and cancer incidence can potentially
occur following chronic activation of GPCR. Thus, deciphering
which signaling networks are engaged and orchestrated following
GPCR receptor activation appears to be primordial to unveil their
contribution in the cell fate.

One strategy to overcome these limitations would be to exa-
mine the initial steps following receptor activation. The release
of X-ray structures of agonist/GPCR complexes (Chung et al.,
2011; Lebon et al., 2011; Warne et al., 2011; Xu et al., 2011;
Audet and Bouvier, 2012), the numerous biophysical and bio-
chemical studies (Granier et al., 2007; Kahsai et al., 2011; Liu et al.,
2012; Rahmeh et al., 2012) have enabled to show that different
and selective ligands, named biased ligands, can induce or stabi-
lize distinct receptor conformations and activate one (or several)
signaling pathway(s) in contrast to non-biased agonists which acti-
vate all the signaling pathways (Vaidehi and Kenakin, 2010). Thus
an understanding of the structure and dynamics of the ensem-
ble of receptor conformations would greatly help the design of
small molecules with functional selectivity or “biased signaling”
properties and would provide more specific and efficient new
drugs. Receptor structure/activity relationship studies, structure-
and docking-based virtual screening are now widely applied in
drug discovery and must take in account the existence of different
receptor conformations activating specific signaling pathways.

Although GPCRs can modulate a large variety of distinct
signaling pathways, classification of biased ligands are actually
restricted to two groups depending on their ability to activate
two main transduction pathways (Whalen et al., 2011): (1) G
protein-biased ligands which promote G protein activation with-
out β-arrestin recruitment and (2) β-arrestin-biased ligands which

recruit β-arrestin to the receptor and initiate consecutive signaling
pathways in the absence of G protein activation.

The vast majority of biased ligands identified so far exhibits
exclusive β-arrestin activity for a number of receptors (Rajagopal
et al., 2010a; Whalen et al., 2011), including the AT1 angiotensin
II receptor, β1- and β2-adrenergic receptors, or the CXCR7
decoy receptor (Wei et al., 2003; Wisler et al., 2007; Kim et al.,
2008; Rajagopal et al., 2010b). The parathyroid hormone (PTH)
analog, D-Trp(12),Tyr(34)-PTH(7-34), binds the PTH receptor
1 (PTHR1) and activates β-arrestin-dependent but not classi-
cal G protein-dependent signaling (Gesty-Palmer et al., 2009;
Gesty-Palmer and Luttrell, 2011). In mice, this PTH biased ago-
nist induces anabolic bone formation without stimulating bone
resorption, comparatively with the non-selective agonist PTH(1-
34) which induces both functions. Thus, this PTHR1 biased ligand
may present interesting properties for the treatment of metabolic
bone diseases such as osteoporosis and is a proof of concept that
the exploitation of β-arrestin biased agonism may offer therapeutic
benefit.

Few ligands have been yet identified as perfect G protein-biased
ligands, namely inducing G protein signal transduction without
any β-arrestin recruitment (Whalen et al., 2011). GMME1 ligand
binding to the CCR2 chemokine receptor leads to calcium mobi-
lization, caspase-3 activation and consecutive cell death, but does
not recruit β-arrestin2 (Rafei et al., 2009). Selective ligands that
activate G protein-coupling by FSH-R (follicle-stimulating hor-
mone receptor) and PTH-1R have been also reported (Bisello
et al., 2002; Wehbi et al., 2010). Of note, some ligands classified
as G protein-biased can induce a weak β-arrestin recruitment by
the targeted GPCR (Whalen et al., 2011). For example, oxyntomo-
dulin and glucagon are full agonists in GLP-1R-mediated cAMP
accumulation but partial agonists in recruiting β-arrestins to this
receptor, suggesting that oxyntomodulin and glucagon are biased
ligands on the GLP-1R (Jorgensen et al., 2007).

Interestingly, some ligands are biased in regard to the diffe-
rent G protein families and can trigger opposite cellular responses
(Reversi et al., 2005; Sensken et al., 2008). For example, oxytocin
receptors (OTR) coupling to Gi inhibits cell proliferation, whereas
its coupling to Gq stimulates cell proliferation. Atosiban, an oxy-
tocin derivative, was shown to act as a competitive antagonist on
OTR/Gq coupling, and to display agonistic properties on OTR/Gi-
coupling, thereby leading to the selective inhibition of cell growth
(Reversi et al., 2005; Busnelli et al., 2012). SOM230 which activates
the somatostatin receptor sst2A behaves as agonist for Gi coupling
and inhibition of adenylyl cyclase, but antagonizes somatostatin’s
actions on intracellular calcium and ERK phosphorylation which
can be activated by a Gi/Go independent process (Cescato et al.,
2010).

Biased signaling can also exist with respect to other signa-
ling proteins than G proteins and arrestins. The internalization
of apelin receptor takes different signaling pathways depending of
the apelin isoforms (Lee et al., 2010). Indeed, apelin-13-activated
receptors dissociated rapidly from β-arrestin1 and were recycled
to the cell surface through a Rab4-dependent mechanism, while
the apelin-36-internalized receptors trafficked with β-arrestin1 to
intracellular compartments and were targeted by Rab7 to lyso-
somes for degradation. CCL19 and CCL21 ligands both induce
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Table 2 | Examples of Neuropeptide GPCRs with pro-tumoral activities and properties.

Ligands Receptors Target Activity Reference

Adrenocorticotropic hormone MC2R Prostate Proliferation Hafiz et al. (2012)

Angiotensin II AT1R Breast Proliferation, adhesion,

migration, invasion

Rodrigues-Ferreira et al. (2012), Du et al. (2012b)

Gastrin CCK2 Pancreas, stomach Proliferation, adhesion Dufresne et al. (2006), Cayrol et al. (2006),

Bierkamp et al. (2004), Clerc et al. (2002a,b),

Mathieu et al. (2005)

Glucagon-like peptide-1 GLP-1R Exocine pancreas

Thyroid

Pro-tumoral Nachnani et al. (2010), Gier et al. (2012a), Elashoff

et al. (2011), Bjerre Knudsen et al. (2010), Madsen

et al. (2012), Victoza (Liraglutide) Injection (2012)

Ghrelin GHS-R Breast Proliferation, migration Jeffery et al. (2005)

Prostate Proliferation Yeh et al. (2005), Jeffery et al. (2002)

Endometrium Proliferation Fung et al. (2010)

Stomach Tian and Fan (2012)

Melanin-concentrating

hormone

MCHR1 colon Pro-tumoral, apoptosis Nagel et al. (2012)

Neuromedin B NMB-R Colon Proliferation Matusiak et al. (2005)

Breast Apoptosis, proliferation Park et al. (2011)

Neuromedin U NMU-R2 Pancreas Migration, invasion Ketterer et al. (2009)

Neuropeptide Y NPY Y5-R Breast Proliferation, migration Medeiros et al. (2012), Sheriff et al. (2010)

NPY Y2-R Neuroblastoma Proliferation, angiogenesis Lu et al. (2010)

NPY Y1-R Prostate Proliferation Ruscica et al. (2006)

Neurotensin NTSR1/3 Colon Proliferation, Pro-tumoral Muller et al. (2011)

Parathyroid hormone PTH-R bone Pro-tumoral Subbiah et al. (2010), Hodsman et al. (2005)

Pituitary adenylate

cyclase-activating polypeptide

PAC1 Lung Proliferation Moody et al. (2012)

Prokineticin 1/2 PROKR1/2 Thyroid Angiogenesis Monnier and Samson (2010)

Relaxin RXFP1 Uterus Proliferation, apoptosis Suzuki et al. (2012)

Prostate Pro-tumoral, metastasis,

proliferation

Feng et al. (2010)

Urotensin II UTR Prostate Migration, invasion Grieco et al. (2011)

Lung Proliferation Wu et al. (2010)

Vasoactive intestinal peptide VPAC1 Prostate Proliferation, migration Fernandez-Martinez et al. (2010)

Brain (glioblastoma) Migration Cochaud et al. (2010)

Breast Angiogenesis Valdehita et al. (2012)

Lung Proliferation Moody et al. (2000)

26RFa GPR103 Prostate Migration Alonzeau et al. (2012)

β-arrestin2 recruitment by the receptor CCR7, but activate dif-
ferent GRK (G protein receptor kinase) isoforms (Zidar et al.,
2009). Indeed, CCL19 leads to robust CCR7 phosphorylation
and β-arrestin2 recruitment catalyzed by both GRK3 and GRK6
whereas CCL21 activates GRK6 alone. The functional conse-
quences are that only CCL19 leads to classical receptor desensi-
tization whereas both agonists are capable of signaling through
GRK6 and β-arrestin2 to ERK kinases.

THE GLP-1R
Results obtained from preclinical and clinical studies tend to
support a pro-tumoral action of GLP-1 in the pancreas and the
thyroid. Deciphering the signaling networks engaged following
GLP-1R agonist administration in pancreatic ductal cells and thy-
roid C-cells comparatively to pancreatic β-cells is critical to unveil
their contribution in the different cellular processes. The identi-
fication of GLP-1 analogs that promote insulin secretion to treat
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type-2 diabetes without inducing pro-tumoral effects is therefore
a timely challenging issue. Like most GPCRs, the GLP-1R cou-
ples to different classes of heterotrimeric G proteins, including
Gαs, Gαq, and Gαi, regulatory proteins such as the β-arrestins,
and activates multiple signaling pathways such as cAMP pro-
duction, intracellular calcium mobilization, phosphorylation of
ERK1/2. While GLP-1 can activate all of these signaling path-
ways, some compounds were shown to present biased activity
on GLP-1R. Oxyntomodulin and glucagon biased the GLP-1R
toward cAMP accumulation over the recruitment of β-arrestins,
BMS21 compound toward ERK1/2 activation and cAMP pro-
duction over β-arrestins recruitment, BETP compound toward
calcium mobilization and β-arrestins recruitment over cAMP
production and ERK1/2 activation (Jorgensen et al., 2007; Woot-
ten et al., 2013). Moreover, some molecules acting as allosteric
modulators were shown to modulate GLP-1R agonist-mediated
signaling pathways (Willard et al., 2012; Wootten et al., 2013). For
example, BETP increases the affinity of GLP-1R to oxyntomod-
ulin and potentiates the activation of cAMP production induced
by oxyntomodulin.

The most crucial GLP-1R signaling pathway for enhancing
glucose-dependent insulin secretion involved the receptor cou-
pling to Gαs proteins and the activation of cAMP production
(Baggio and Drucker, 2007). While GLP-1 analogs are currently
tested for their capacity to activate Gαs protein and cAMP pro-
duction, their effects on other signaling pathways, particularly
those involved in cell proliferation, should be included. More-
over, the analysis of pharmacological ligand properties should be
done on the main cellular target, the pancreatic β-cell, but also on
cells involved in carcinogenic side effects. This could enable the
design and development of improved therapeutics that have the
ability to fine-tune receptor signaling leading to beneficial the-
rapeutic outcomes while reducing side effect profiles. The use
of allosteric ligands in addition to GLP-1R biased agonists could

also provide a therapeutic advantage to target a specific receptor
response toward signaling pathways promoting insulin secretion
over cell proliferation.

THE GPER
Despite the clinical success of tamoxifen in breast cancer treat-
ment, the development of drug resistance and endometrial can-
cers involving the GPER leads to the requirement of alternative
hormonal therapy. In this regard, the contribution of GPER-
mediated responses estrogen antagonists must be considered in the
future development of anti-estrogenic molecules. Recent studies
based on pharmacological structure/function relationship on ER
and/or GPER have identified selective GPER antagonists which
completely block uterine epithelial cell proliferation mediated
by GPER and which are poorly active or inactive on ER (Den-
nis et al., 2009, 2011; Burai et al., 2012). Future studies utiliz-
ing GPER-selective ligands will further define the role of this
receptor in vivo and open the door to the generation of diag-
nostics and therapeutics directed at individual or both estro-
gen receptors. Such compounds might represent an important
new approach for cancer therapy, thus increasing the armamen-
tarium of drugs used to treat estrogen-sensitive and resistant
cancers. On the other hand, aromatase inhibitors which act by
preventing the enzyme aromatase to convert androgens into
estrogen have been also brought forward as a potential alter-
native (Josefsson and Leinster, 2010; Abdulkareem and Zurmi,
2012).

In conclusion, GPCRs provide huge therapeutic opportuni-
ties; some are already in use. The progress in the knowledges
of signaling pathways downstream of these receptors and the
effects arising, their regulation by pharmacological agents, and
the data from the receptor structure provide new opportunities
which should lead to new generation of ligands with minimized
side effects.
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