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Abstract: Invasive candidiasis occurs frequently in hospitalized patients, and is associated with high
mortality rates due to delays in recognition and initiation of appropriate antifungals. Management
of invasive candidiasis must take into account multiple host, pathogen, and drug-related factors,
including the site of infection, host immune status, severity of sepsis, resistance and tolerance
to antifungal agents, biofilm formation, and pharmacokinetic/pharmacodynamic considerations.
Recent treatment directives have been shaped by the widespread introduction of echinocandins,
highly potent and safe antifungals, into clinical use, as well as important changes in drug susceptibility
patterns and the emergence of known and novel drug-resistant Candida species. Advances in
molecular diagnostics have the potential to guide early targeted treatment of high-risk patients.
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1. Background

Candida species are frequent colonizers of the human alimentary tract and skin that have emerged
as important nosocomial pathogens, in tandem with advances in modern medical therapeutics [1,2].
Notable risk factors for invasive candidiasis include exposure to broad-spectrum antibiotics and cancer
chemotherapy, advanced care of premature neonates, major abdominal surgery, organ transplantation,
prolonged stay in an intensive care setting, implanted medical devices such as vascular catheters and
prosthetic heart valves, and parenteral feeding. Invasive candidiasis, a term that encompasses the
overlapping syndromes of deep-seated candidiasis and candidemia, is the most frequent mycotic
disease in hospitalized patients. In an often cited nationwide survey, Candida species were found
to be the fourth most frequent causes of bloodstream infection in hospitalized patients in the US,
and were associated with the highest mortality rate among leading bloodstream isolates [2]. In point
prevalence studies, Candida species account for about 1 in 5 nosocomial bloodstream infections [1,3].
Deep-seated candidiasis, arising from direct inoculation or hematogenous dissemination of Candida
into normally sterile body sites, is often difficult to diagnose and may affect a population as large
as that of candidemia [4–6]. The global incidence of candidiasis has been estimated at 750,000 cases
annually (2.1 to 21 cases per 100,000 population) [4], with an associated crude mortality rate in excess
of 40% and an associated expenditure of ~$46,000 per case [7].

Although Candida albicans is the most common cause of invasive candidiasis, infections due to
non-albicans Candida species account for an increasing proportion of cases. Specifically, C. glabrata
has become an important pathogen in North America, Europe (with the exception of Spain),
and Australia, whereas C. parapsilosis is the dominant non-albicans species in South America, Japan,
and Spain [8–10]. The shift from C. albicans, which is overwhelmingly susceptible to all systemic
antifungals, to species that are more frequently resistant or tolerant to fluconazole, such as C. glabrata
and C. krusei, has impacted treatment recommendations [11–13]. Candida strains with acquired
resistance to echinocandins, specifically C. glabrata, while still generally infrequent, are increasing in
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incidence in some hospitals [10,14]. C. auris, a novel Candida species first identified in 2009, has emerged
since 2013 as a cause of nosocomial outbreaks in multiple countries across 5 continents. C. auris presents
a serious challenge to healthcare systems due to its frequent resistance to multiple systemic antifungals
and disinfectants and its capacity for rapid spread within healthcare facilities [15,16].

2. Systemic Antifungal Drugs for Invasive Candidiasis

The armamentarium of drugs for the treatment of candidiasis currently comprises three major
drug classes: the polyenes, azoles, and echinocandins. In addition, flucytosine, a pyrimidine
analogue, has specific roles as an adjunct in the treatment of central nervous system candidiasis
and Candida endocarditis [17,18].

2.1. Echinocandins

The echinocandins are cyclic lipopeptides that inhibit the transmembrane glucan synthase
complex (Fks1), a biosynthetic enzyme that produces 1,3-β-D-glucan, the major fungal cell-wall
carbohydrate. Disruption of 1,3-β-D-glucan synthesis damages cellular integrity and leads eventually to
cell rupture and death. All three licensed echinocandins (caspofungin, micafungin, and anidulafungin)
are approved for the treatment of invasive candidiasis. These drugs may only be given intravenously.
Caspofungin and micafungin are metabolized in the liver, whereas anidulafungin is slowly degraded
in plasma due to chemical opening of its ring structure.

The echinocandins are fungicidal in vitro against a broad range of Candida species, including azole
resistant or tolerant species. C. parapsilosis and C. guilliermondii are intrinsically less susceptible
to echinocandins, reflecting naturally occurring polymorphisms in the FKS1 hotspot regions of
these species [19].

The echinocandins are remarkably safe, even at higher than standard doses. Rapid infusion has
been associated with flushing, dyspnea, hypotension, and urticaria, attributed to histamine release.
These drugs should therefore be infused over 1 h. Cardiotoxicity is a rare and severe side effect
that has been observed when echinocandins are administered through a central venous catheter.
This phenomenon may be less frequent with anidulafungin than with caspofungin and micafungin.
No significant hepatotoxicity or nephrotoxicity have been observed.

Drug-drug interactions are relatively few with echinocandins. Caspofungin clearance is
increased by inducers of liver CYP450 enzymes, such as rifampicin, efavirenz and carbamazepine,
requiring a caspofungin dose increase from 50 mg/day to 70 mg/day if co-administered with
those drugs. Caspofungin exposure is increased if co-administered with cyclosporin. Caspofungin
decreases tacrolimus exposure, requiring drug level monitoring and dose adjustment. Micafungin
and anidulafungin are not modulators or substrates of CYP450 enzymes, and were not found to have
important drug-drug interactions.

Clinical Trials

Prospective studies comparing echinocandins with amphotericin B for the treatment of candidiasis
have shown similar efficacy of caspofungin and amphotericin B deoxycholate in the intention to
treat analysis but superiority of caspofungin in the per-protocol analysis [20], and non-inferiority of
micafungin versus liposomal amphotericin B [21]. In both trials, echinocandins were associated with
fewer adverse events, including serious events leading to drug discontinuation. Anidulafungin was
associated with a higher treatment success rate than was fluconazole, but mortality rates were not
significantly different [22]. Interestingly, the superiority of anidulafungin was most significant for
patients with C. albicans infection [22], indicating that drug susceptibility per-se could not account
for the differences in treatment outcomes. Finally, two trials compared different echinocandin
drugs and doses. A 3-arm study compared micafungin 100-mg daily, micafungin 150-mg daily
and caspofungin (70 mg followed by 50 mg daily). Micafungin at both doses was non-inferior to
caspofungin, whereas the median time to culture negativity was 1 day longer for the micafungin
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150-mg dose versus the micafungin 100-mg dose [23]. A study comparing a triple daily dose of
caspofungin (150-mg daily) versus standard 50-mg daily dosing found no advantage for the higher
dose [24]. Taken together, these studies show that higher than standard doses of echinocandins,
while generally well tolerated, do not improve patient outcomes in most clinical scenarios.

2.2. Azoles

Azoles inhibit Candida growth by binding to and inhibiting lanosterol 14α demethylase,
a cytochrome P450 enzyme encoded by the ERG11 gene [25]. Lanosterol 14α demethylase inhibition
causes depletion of ergosterol, the main plasma membrane sterol in fungi, and accumulation of toxic
C14α methylsterols. The antifungal effect is fungistatic rather than fungicidal.

Fluconazole is the principle azole drug used in the treatment of candidiasis. Fluconazole has
excellent bioavailability and may be given either intravenously or orally at identical doses. The main
adverse effect of fluconazole is hepatotoxicity. In addition, fluconazole is a cytochrome P450 inhibitor
and may interact with drugs that undergo metabolism via that route.

Clinical Trials

In randomized controlled clinical trials of nonneutropenic patients with candidemia, outcomes
were similar for patients treated with fluconazole versus amphotericin B, but toxicity was more
frequent with amphotericin B [26,27]. Treatment failure occurred most frequently with C. albicans [26].
A study comparing fluconazole monotherapy with fluconazole combined with amphotericin B found
a higher overall treatment success rate and a lower rate of failure to clear the bloodstream with the
combination regimen [28]. Patients with the lowest and highest APACHE II scores benefited the
least from combination therapy, suggesting that fluconazole monotherapy is adequate for candidemic
patients with mild disease, whereas for the sickest patients, failure rates are high regardless of treatment
choice [28].

Voriconazole, a broad spectrum triazole active against filamentous fungi as well as Candida species,
was as effective as amphotericin B followed by fluconazole for the treatment of candidemia [29].
Voriconazole is associated with more adverse events and drug-drug interactions than fluconazole,
and offers few advantages over fluconazole in the treatment of candidiasis. In practice, this drug may
be useful in the treatment of infections with the intrinsically fluconazole-resistant species C. krusei.

2.3. Amphotericin B

The polyene amphotericin B is a lipophilic molecule that binds to ergosterol within the fungal
cytoplasmic membrane. Amphotericin B self-assembles into oligomers that insert into the cytoplasmic
membrane, forming aqueous pores that cause ion leakage and rapid cell lysis. Amphotericin B
is formulated with deoxycholate or in one of three lipid formulations (liposomal amphotericin B,
amphotericin B lipid complex and amphotericin B colloidal dispersion). The specific formulation has
no effect on the drug’s spectrum of activity, but does alter its distribution to different organs.

Once the mainstay of antifungal treatment, amphotericin B has been demoted to a second-line
treatment of invasive candidiasis due to its toxicity. The nephrotoxicity caused by amphotericin B
may be divided into early reversible azotemia due to afferent arterial vasoconstriction, and late kidney
damage due to nephron loss and tubular basement membrane damage. The latter is irreversible and
correlates with the total dose of amphotericin B infused. Overall, acute kidney injury occurs in 30%
of adults treated with amphotericin B, and is associated with significantly increased mortality rates,
length of hospital stay, and costs [30]. Early infusion reactions manifesting as chills and fever are
common, and tend to lessen with subsequent drug infusions. Lipid amphotericin B formulations are
less nephrotoxic, and liposomal amphotericin B and amphotericin B lipid complex are associated with
fewer acute infusion reactions than amphotericin B deoxycholate.
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3. Practical Aspects of Antifungal Susceptibility Testing

In vitro susceptibility testing is performed using broth microdilution (Clinical and Laboratory
Standards Institute (CLSI) or European Committee on Antimicrobial Susceptibility Testing (EUCAST)
methodology) [31,32]. Less labor-intense methods employed by clinical microbiology laboratories
include Etest (bioMerieux, Marcy l’Etoile, France), disk diffusion, Sensititre Yeast One (TREK
Diagnostic Systems, Thermo Fisher Scientific Inc., Waltham, MA, USA), and various semiautomated
methods such as the Vitek system (bioMerieux).

3.1. Echinocandin Susceptibility Testing

Echinocandin minimal inhibitory concentrations (MICs) are read on broth microdilution assays
as the drug concentration that produces significant (~50%) reduction in turbidity after 24 h [31].
Caspofungin has been found to be unreliable for MIC determination due to high interlaboratory
variability [33–36]. Therefore, anidulafungin and micafungin are used for susceptibility testing,
and caspofungin susceptibility may be inferred from these results.

A paradoxical (or eagle) echinocandin effect has been observed in which increased Candida growth
is detected at higher than MIC drug concentrations. This effect is more pronounced with caspofungin
than with other echinocandins, is unrelated to MIC, appears to be most common with C. albicans and
C. dubliniensis, and is strikingly absent in C. glabrata [37–39]. The paradoxical effect is abolished by
testing in 50% human serum and in the presence of the chitin synthase inhibitor nikkomycin Z and
calcineurin inhibitors, suggesting that cell-wall stress response pathways are involved [39]. The clinical
relevance of the paradoxical effect is incompletely understood. No correlation has been found with
survival rates in clinical trials. However, an animal model of peritoneal C. tropicalis infection using
a strain showing paradoxical growth demonstrated impaired fungal clearance with high caspofungin
concentrations [40], suggesting that this phenomenon may contribute to persistence and relapsed
infection in vivo.

3.2. Resistance to Echinocandins

Clinically significant acquired resistance of Candida species to echinocandins has, thus far,
always been associated with single amino acid substitutions arising from mutations within conserved
(“hot spot”) sequences of the gene FKS1, and in C. glabrata FKS2, which encode for glucan synthase.
In multivariate analyses, FKS mutations, rather than echinocandin MIC, were the only significant
predictor of clinical echinocandin treatment failure [41]. Therefore, molecular detection of FKS
mutations may be the most accurate way of classifying echinocandin resistant isolates. As there
are currently no commercially available assays for FKS genotyping, molecular resistance testing is
limited to reference laboratories.

Acquired echinocandin resistance has been described in all major Candida species, but is most
frequently encountered in C. glabrata, where an association with echinocandin treatment failure has
been described [14,42]. Echinocandin-resistant Candida isolates have impaired fitness as compared
with isogenic FKS wild-type strains [43,44]. This fitness cost has been demonstrated using in vivo
virulence and competitive growth experiments, and is associated with morphological and functional
changes, namely slower growth rate, a thick cell wall with reduced glucan and increased chitin
content, and impaired filamentation of the FKS mutants [43]. Perhaps related to their reduced fitness,
Candida species carrying FKS hotspot mutations are almost invariably recovered from patients with
extensive recent exposure to echinocandins, and usually after more than 3 weeks of treatment [45].

3.3. Fluconazole Susceptibility Testing

Susceptibility testing to fluconazole using CLSI or EUCAST broth microdilution methodology
produces MIC values that correlate reasonably well with the likelihood of successful treatment
outcomes [46,47]. The MIC is read at 24 or 48 h as the minimal drug concentration resulting in
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significant (~50%) reduction in growth [31]. Pfaller et al. [46] set forth fluconazole clinical breakpoints
that met the so-called “90–60” rule, whereby treatment success is achieved for ~90% of susceptible
isolates and ~60% of non-susceptible isolates. In 2012, these breakpoints were revised to account for
species-specific differences in drug response, as well as to enhance sensitivity to detect the emergence
of fluconazole-resistant strains [47]. Breakpoints for C. albicans, C. tropicalis, and C. parapsilosis
were lowered, so that MICs over 4 mg/L are considered resistant. For C. glabrata, an inherently
fluconazole-tolerant species, an MIC greater than 32 mg/L is considered resistant, whereas an MIC
of 32 mg/L or less is considered susceptible dose-dependent (S-DD), a term indicating that maximal
drug dosage is required for optimal treatment.

3.4. Resistance to Fluconazole

Unlike the canonical resistance mechanism to echinocandins, acquired resistance to fluconazole
may arise by various mechanisms that differ among the Candida species. Drug efflux is the most
frequent mechanism, and is mediated by transmembrane transporter molecules of either the
ATP-binding cassette (ABC) or major facilitator (MFS) superfamilies [48,49]. Resistance may also
arise from mutations in the C. albicans ERG11 coding sequence, resulting in reduced drug-to-target
affinity, and gain-of-function mutations in the gene encoding transcription factor UPC2 that lead to
enhanced ERG11 expression [50]. Acquired fluconazole resistance may arise in any Candida species
following prolonged exposure to the drug, as previously shown for AIDS patients with oropharyngeal
and esophageal candidiasis [49]. Of the major pathogenic Candida species, C. glabrata is the most
prone to acquire fluconazole resistance, usually associated with upregulation of the ABC efflux pumps
CDR1 and CDR2 [51,52]. A gain-of-function mutation in the gene encoding for transcription factor
PDR1 leads to coordinated upregulation of multiple ABC-type drug transporters [53–57]. Contrary to
echinocandin resistance, fluconazole-resistance does not incur a significant fitness cost, and may
in fact be associated with enhanced virulence [55]. C. krusei is intrinsically resistant to fluconazole
because of ERG11 polymorphism, but is usually susceptible to other azoles such as voriconazole and
posaconazole. C. auris is intrinsically resistant to fluconazole, and cannot reliably be treated with
other azoles [16,58,59].

3.5. Amphotericin B Susceptibility Testing

Amphotericin B MIC values are determined as the drug concentration that produces complete or
near-complete reduction in growth at 24 h or 48 h. Correlation between amphotericin B MIC values
and clinical response has not been consistently established [60,61]. Based on pharmacokinetic data and
epidemiological cut-off values, C. albicans, C. tropicalis, C. parapsilosis, C. glabrata, and C. krusei isolates
with MIC > 1 mg/L are assumed to be resistant to amphotericin B [31,62].

3.6. Resistance to Amphotericin B

Primary resistance to amphotericin B is uncommon. Two related species, C. lusitaniae and
C. auris, display higher MICs for amphotericin B than other species. Acquired resistance is also
rare, and involves reduced ergosterol biosynthesis and the production of alternative sterols to which
amphotericin B has low affinity. Candida strains resistant to amphotericin B were found to harbor
mutations in ERG2, ERG3, ERG5, and ERG11, and were co-resistant to fluconazole [63–66].

3.7. Development of Antifungal Resistance in C. glabrata

C. glabrata is uniquely predisposed to become resistant to antifungals during treatment. Recent
work has revealed both genetic and epigenetic mechanisms underpinning this propensity. Specific
mutations in the DNA mismatch repair gene MSH2 lead to a hyper-mutable phenotype and were
found to be highly prevalent in clinical C. glabrata isolates [67]. MSH2 deletion significantly increases
breakthrough infection and the emergence of resistance to all systemic antifungal drug classes
in in vitro and animal experimental systems [67]. Heteroresistance, specifically to fluconazole,
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was also shown to be highly frequent among clinical C. glabrata strains, and is associated with
failure of fluconazole to clear C. glabrata from tissues of experimentally infected immunocompetent
mice [68]. Heteroresistance implies cell-to-cell variation in drug response within a genetically
homogeneous population, and may lead to persistence of a sub-population of cells exposed to high
drug concentrations [69]. Heteroresistance to fluconazole is associated with up-regulation of ABC-type
drug transporters, and may be detected and quantified using population analysis profiling [68],
a method not routinely used by clinical microbiological laboratories.

4. Treatment Strategies

The goals of treatment of patients with invasive candidiasis are to prevent three types of adverse
outcomes: 1. Death, usually within the first 7 days after onset of infection; 2. Late complications from
metastatic and persistent deep-seated infection; and 3. Emergence of drug-resistant Candida strains.

4.1. Early Initiation of Antifungal Therapy

There is extensive clinical evidence that delayed initiation of appropriate antifungal treatment
is associated with increased mortality in patients with invasive candidiasis [70–72]. This association
is particularly pronounced for patients with candidemia and septic shock, for whom initiation of
antifungal treatment more than 24 h after the onset of shock is associated with a mortality rate of
nearly 100% [73]. However, blood culture, the standard tool for diagnosis of invasive candidiasis,
has suboptimal sensitivity, especially for those patients with deep-seated candidiasis [74] and for
patients infected with C. glabrata [75]. Moreover, the median time to blood culture positivity is
2–3 days, and may be as long as 8 days. Again, median time to detection is longer for C. glabrata versus
other species [75]. Consequently, blood cultures are too insensitive and delayed in their efficacy to
serve as triggers for early appropriate antifungal treatment. Strategies to identify patients who would
benefit from treatment of incipient invasive candidiasis have included risk scores and biomarkers.

Risk factors for invasive candidiasis have been incorporated into a number of clinical prediction
rules. The best known of these, the Candida score, assigns points for total parenteral nutrition, surgery,
multifocal Candida colonization (1 point each), and severe sepsis (2 points) [76]. A total score of 3 or
more has 81% sensitivity and 74% specificity for the diagnosis of invasive candidiasis, and a 7.7-fold
greater risk of candidiasis [76]. The Candida score is simple, accessible, and inexpensive. Real-life use
of this prediction rule in the intensive care setting reveals a high negative predictive value (80% to
97%) but modest positive predictive value (57% to 70%) [77,78]. The positive predictive value increases
with the numeric value of the Candida score [79].

A number of non-culture based biomarkers have been utilized to guide therapy of invasive
candidiasis. The performance of all biomarkers is improved when multiple test results are analyzed
sequentially over time. (1,3)-β-D-glucan is a cell wall component of Candida species and other
pathogenic fungi. A meta-analysis of 16 trials found a pooled sensitivity of 76% and specificity
of 85% [80]; false positive results are attributed to the ubiquity of glucans in the environment.
An assay that detects both mannan and anti-mannan IgG (Platelia, Bio-rad, Hercules, CA, USA)
has a combined sensitivity and specificity of 83% and 86%, respectively [81]. Finally, PCR assays that
detect Candida DNA in full blood or serum are both sensitive and specific [82]. However, until recently,
there have been no commercially available Candida PCR assays that underwent extensive clinical
validation. The T2Candida assay (T2Biosystems, Lexington, MA, USA) combines real time PCR with
amplicon-induced agglomeration of supermagnetic nanoparticles and T2 magnetic resonance detection.
In a multicenter study of patients with candidemia, the sensitivity of T2Candida was double that of
conventional blood cultures when both were tested on follow-up blood samples [83]. Patients who had
received antifungal treatment were more likely to have negative blood cultures and positive T2Candida
results. Overall, when used in the appropriate clinical setting, biomarkers offer opportunities for early
detection and treatment of invasive candidiasis. T2Candida represents an important advance as the
first commercially available, fully-automated rapid assay that specifically detects Candida species.
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4.2. Choice of Antifungal Agent

For most forms of invasive candidiasis, echinocandins are recommended as front-line agents,
for the following reasons: 1. Broad spectrum activity against the majority of clinically important
Candida species; 2. Excellent safety profile; and 3. Clinical superiority when compared to other
systemic antifungals. A patient-level meta-analysis of 7 clinical trials with 1915 patients found that
treatment with an echinocandin was associated with decreased mortality [84]. Lipid formulations of
amphotericin B are associated with similar rates of treatment success as echinocandins but higher rates
of nephrotoxicity [21]. Their use should be considered for patients with significant (>4 weeks) recent
exposure to echinocandins, for whom acquired resistance to this class is a concern (Figure 1) [42].
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4.3. Species-Specific Considerations

4.3.1. C. glabrata

Treatment of C. glabrata with fluconazole remains an area of clinical uncertainty. Not only does
C. glabrata have higher median MICs of fluconazole compared with other common Candida species,
but treatment failure and the emergence of fluconazole-resistant strains occur frequently during
treatment of initially susceptible isolates [52]. In addition, as noted, heteroresistance to fluconazole is
frequent in clinical C. glabrata isolates [68]. With these considerations in mind, treatment of invasive
C. glabrata infection with fluconazole should be reserved for cases where: 1. Bloodstream infection
has been cleared with a fungicidal agent, such as an echinocandin or amphotericin B formulation;
2. The patient is clinically stable, infected catheters have been removed and deep-seated foci of
undrained infection have been ruled out; and 3. The isolate is fluconazole non-resistant. Fluconazole
should always be used at maximal doses (i.e., 12 mg per kg daily) in such cases.
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4.3.2. C. parapsilosis

C. parapsilosis is intrinsically less susceptible to echinocandins than other Candida species; however,
there are conflicting epidemiological and clinical data regarding the significance of this observation.
Recent exposure to an echinocandin was found to significantly increase the risk of infection with
C. parapsilosis [85]. Indeed, the rising incidence of C. parapsilosis in some medical centers has been
linked to increased echinocandin use [86,87]. Clinical trials have shown numerically more cases of
treatment failure for C. parapsilosis with anidulafungin versus fluconazole [22] and with caspofungin
versus amphotericin B [20], although these differences were not statistically significant. In a trial
comparing two dosing regimens of caspofungin, the response rate was non-significantly lower for
C. parapsilosis in the standard dose regimen (50 mg/day) versus the high-dose regimen (150 mg/day)
(61% versus 91%, respectively) [24]. These trials were not designed or able to detect differences in the
subgroup of patients with C. parapsilosis infection. In contrast, observational clinical data did not show
an association between echinocandin treatment of C. parapsilosis bloodstream and treatment failure [88].
Echinocandins remain the preferred treatment of patients with C. parapsilosis infection, but alternative
agents should be considered in patients with persistent infection while receiving an echinocandin.

4.3.3. C. auris

Optimal drug treatment of C. auris has not yet been defined. For most clinical isolates, MICs of
echinocandins are in the susceptible range. Echinocandins are currently recommended by the US
centers for disease control as empiric treatment of C. auris infections [89]. However, there are no clinical
data to support this recommendation, and there is evidence that C. auris is tolerant to echinocandins.
Exposure to echinocandins was consistently found to be a risk factor for infection with C. auris,
and breakthrough infection on echinocandins has been noted [16,90,91]. Preliminary in vitro and
animal data support the use of liposomal amphotericin B, alone or in combination with flucytosine,
for patients with known or suspected C. auris infection [92].

4.4. Treatment Duration and De-Escalation

Two weeks of antifungal treatment seem to be sufficient to prevent late complications from
clinically important metastatic foci of infection in the vast majority of cases [93]. Blood cultures
should be repeated every 1–2 days after treatment is initiated to document clearance of Candida from
the bloodstream. In general, once the patient is clinically stable, repeat blood cultures are negative
and the Candida isolate is found to be sensitive to fluconazole, treatment may be safely switched to
fluconazole. This strategy was shown to be safe and feasible for multiple Candida species, including
C. glabrata [94]. De-escalation to oral fluconazole may reduce exposure to echinocandins, limit the
emergence of resistance to this important drug class, shorten hospital stays, and limit costs.

5. Source Control

The majority of patients with candidemia have indwelling central venous catheters (CVC) when
the diagnostic blood culture is obtained [2,95], but differentiating between CVC- and non-CVC-related
candidemia is not always straightforward. C. parapsilosis is particularly frequent as a cause of CVC
infection, and neutropenic patients are relatively more likely than non-neutropenic patients to have
Candida bloodstream infection that originates in the gut [88]. For individual patients, however,
such distinctions lack sufficient predictive power. There is compelling evidence that CVC removal is
associated with higher rates of treatment success and lower mortality rates as compared with CVC
retention [73,84,88,96,97]. Despite contradictory data from a post-hoc analysis of 2 clinical trials [98],
it is generally accepted that indwelling CVCs should be removed as early as possible in all patients
with candidemia [11,12,84,96]. CVCs should be urgently removed in patients with septic shock [73].
For clinically stable patients for whom immediate CVC removal presents significant difficulties,
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for example due to limited vascular access or coagulopathy, establishing a diagnosis of CVC infection
may be of importance.

As for bacterial bloodstream infection, differential time to positivity, i.e., the time difference
between detection of growth in blood drawn from the CVC lumen to peripherally drawn blood,
is a readily-available metric that may be used to predict the likelihood of CVC infection [99].
A differential time to positivity of greater than 2 h is associated with Candida CVC infection, but is not
useful in cases of C. glabrata bloodstream infection [99]. Peripheral blood time to positivity alone may
also be of value, as a value greater than 30 h is associated with a significantly lower likelihood of CVC
infection [100]. For the slow growing C. glabrata, a breakpoint of 48 h may be used [101].

Catheter lock therapy has been used to salvage long-term CVCs infected with low-pathogenicity
microorganisms [102]. There is limited clinical experience with the use of this method to eradicate
Candida species from difficult to extract CVCs [103]. Ethanol, echinocandins and amphotericin B have
been used in lock solutions, with anecdotal success [103].

Management of other foci of deep-seated infection is equally important. Intra-abdominal
candidiasis tends to progress to abscesses that are persistent and recalcitrant, and if undrained may
predispose for the development of drug-resistance [5,104]. Echinocandins in particular may achieve
subinhibitory concentrations within abdominal abscesses, underscoring the importance of surgical
drainage and debridement.

6. Echocardiography

Endocarditis is a rare but devastating complication of candidemia. In an observational single
center cohort study, the authors reported findings suggestive of endocarditis in 2.9% of patients
who underwent transthoracic echocardiography (TTE) and 11.4% of patients who underwent
transesophageal echocardiography (TEE) [105]. Importantly, endocarditis was clinically unsuspected
in a third of the cases, prompting a recommendation for TEE in all patients with candidemia [11].
However, other groups have reported much lower incidence rates of endocarditis, suggesting that
a more selective strategy may be reasonable [12]. Patients at risk of endocarditis include those with
prosthetic heart valves, injectable drug users, patients with prolonged or non-resolving candidemia,
and those with new onset of heart failure or embolic phenomena. Further work is needed to calculate
the cost-benefit ratio of TEE and to better define subgroups of patients with candidemia who would
benefit from an exhaustive search for endocarditis.

7. Ocular Complications

Metastatic spread of Candida species to the eyes occurs in 9% to 16% of patients with
candidemia [106,107], and may lead to loss of vision. Ocular infection initially manifests as
chorioretinitis, and if untreated may extend into the vitreous to cause vitritis (endogenous
endophthalmitis). Visual outcome is associated with involvement of the retinal macula and the
extent of vitritis at the time of diagnosis. All patients with candidemia should have a retinal
examination performed by an experienced ophthalmologist [12]. Clinical guidelines recommend
retinal examination within the first week of therapy [12]. However, as many as 18% of ocular lesions
were only detected on follow-up examination in one study [106], suggesting that it may be prudent
to perform an additional retinoscopy during the second week of therapy, especially in patients with
persistent candidemia. Because the chorioretinal layer is highly vascular, treatment of chorioretinitis
with any of the systemic antifungal drugs should be effective. However, because subclinical vitritis
may be present, treatment with antifungals that achieve therapeutic concentrations within the vitreous
is preferred. Treatment with fluconazole is recommended if susceptibility to this drug has been
established [108]. For fluconazole-resistant isolates, liposomal amphotericin B is preferred over
echinocandins, which achieve suboptimal vitreous concentrations [109,110]. Detection of lesions near
the macula or vitritis necessitate intravitreal injection of antifungals (100 µL solution of amphotericin
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B deoxycholate or voriconazole), and in some cases, vitrectomy. Treatment should be extended for at
least 4 to 6 weeks with ophthalmological monitoring to assess clearance of the ocular infection.

8. Novel Drugs for Invasive Candidiasis

A number of exciting new Candida-active compounds are currently in various stages of drug
development and clinical trials. These include agents with potent activity against challenging Candida
species, such as echinocandin- and azole-resistant C. glabrata and multidrug-resistant C. auris.

Ibrexafungerp (SCY-078, Scynexis, Jersey City, NJ, USA) is a first-in-class oral glucan synthase
inhibitor that has shown fungicidal activity against a wide range of Candida species in in vitro assays
and animal models [111]. Importantly, SCY-078 appears to be active against echinocandin-resistant
and azole-resistant Candida strains, including C. auris [111–113]. C. glabrata strains with acquired
resistance to SCY-078 have already been described, harboring partially novel FKS mutations [114].
Results of a phase 2 trial evaluating SCY-078 as step-down treatment following micafungin are awaited
(NCT02244606). SCY-078 is currently being assessed in a single-arm phase 3 trial for the treatment of
C. auris infections (NCT03363841).

Rezafungin (CD101, Cidara Therapeutics, San Diego, CA, USA) is an echinocandin that is notable
for its long half-life (80 h), allowing once weekly dosing. Potential advantages include simpler
management of patients requiring long courses of treatment as outpatients. A phase 2 study is
underway, comparing rezafungin with caspofungin followed by fluconazole in patients with invasive
candidiasis (NCT02734862) [115].

Oteseconazole (VT-1161, Viamet Pharmaceuticals, San Francisco, CA, USA) is a next-generation
azole (tetrazole) with improved specific affinity towards fungal versus mammalian CYP51.
As a consequence, VT-1161 is active against fluconazole-resistant C. glabrata strains [116,117], and has
fewer off-target effects and drug-drug interactions compared with other azoles. It is currently being
evaluated in patients with recurrent vulvovaginal candidiasis.

APX001 (Amplyx Pharmaceuticals, San Diego, CA, USA), another first-in-class drug, is a small
molecule that inactivates the fungal enzyme Gwt1. This prevents post-translational modification of
glycosylphosphatidylinositol (GPI) and disrupts the anchoring of mannoproteins to the fungal cell
wall, causing cell wall damage and impaired growth and biofilm formation. APX001 was shown
to be active against C. auris in vitro, and increased the survival of C. auris infected mice (80% to
100% survival versus 50% survival with anidulafungin) [118]. Intravenous and oral formulations are
available. Clinical trials are underway.

MAT2203 (Matinas Biopharma, Bedminster, NJ, USA) is a novel encochleated amphotericin B
formulation that allows oral administration. Orally administered MAT2203 prevented death and
reduced tissue fungal burden in mice with invasive candidiasis [119,120]. Clinical patient data have
not yet been published.

9. Summary

Treatment of invasive candidiasis is changing. Sensitive molecular diagnostics have the potential
to shift treatment strategies from current, risk-based empirical therapy to early targeted treatments.
Echinocandins have transformed the care of patients with invasive candidiasis, but their widespread
use is leading to rising rates of resistance in Candida isolates at some hospitals. Treatment options for
drug-resistant C. glabrata and C. auris are poorly defined, and may well change following results from
ongoing clinical trials with novel antifungal agents.
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