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Mucosal-associated invariant T (MAIT) cells are innate-like T cells present at considerable
frequencies in human blood and barrier tissues, armed with an expanding array of effector
functions in response to homeostatic perturbations. Analogous to other barrier immune
cells, their phenotype and function is driven by crosstalk with host and dynamic
environmental factors, most pertinently the microbiome. Given their distribution, they
must function in diverse extracellular milieus. Tissue-specific and adapted functions of
barrier immune cells are shaped by transcriptional programs and regulated through a
blend of local cellular, inflammatory, physiological, and metabolic mediators unique to
each microenvironment. This review compares the phenotype and function of MAIT cells
with other barrier immune cells, highlighting potential areas for future exploration.
Appreciation of MAIT cell biology within tissues is crucial to understanding their niche in
health and disease.

Keywords: mucosal-associated invariant T cells, microenvironment, microbiome, metabolism, tissue resident cells,
mucosal immunology, diet
INTRODUCTION

Mucosal-associated invariant T (MAIT) cells have been intertwined with barrier immunity ever since
they were coined (1, 2). Abundant in human blood, making up to 10% of peripheral T cells, they are also
enriched in tissues (2–4). MAIT cells are defined as TRAV1-2+ (TCR Va7.2+) T cells restricted by the
MHC class I-related molecule (MR1), which recognizes non-peptide riboflavin biosynthesis
intermediates conserved among bacteria and fungi (5–10). All mammalian barrier surfaces are
colonized by riboflavin-synthesizing commensals, and MR1 has co-evolved with MAIT cells through
mostmammalian evolution (11), thus being an example of barrier surfaces imprinting human immunity.

Barrier surfaces are sites of cross-talk between the host and diverse external environments. MAIT
cells are found in the intestine, skin, respiratory, oral and female genital mucosa, which all house
microbial communities adapted to the local environment and in symbiosis with the host (12) (Table 1).
MAIT cells are dependent on this microbiome and are part of a community of tissue immune cells
anatomically close to epithelial surfaces (20, 35), all poised for rapid effector functions to maintain tissue
homeostasis (36, 37).

The range of MAIT cell effector functions is only just being explored. It is increasingly
appreciated that resident macrophages and lymphocytes are in constant cross-talk with
tissues, integrating cues from the local microbiome, cellular, environmental and metabolic
milieus for their development and function (38–44). In this review, we show that MAIT cells
occupy a similar niche, engage in similar cross-talk and could sense similar factors (Figure 1,
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TABLE 1 | MAIT cells in healthy human barrier tissues.

Barrier tissue MAIT location Frequency Phenotype and activation Ref

Oral
Buccal mucosa
Close to basement membrane, both within the
epithelial layer and connective tissue.

No enrichment compared to blood
(50% of oral CD8aa T cells)

↑CD103+ (20-80%) – most are CD8+

↑HLA-DR, CD69, PD-1, CTLA-4
↓CD38, perforin
PMA/ionomycin stim:
↑IL-17A, GzmB (esp. CD103+MAIT)
↓TNF, IFN-g

(13, 14)

Gut
Gastric mucosa
Lamina propria

LPMC 2% (0-12%)
Gastric 1% (0.4-2.39)

↑CD103+CD69+ (80%) (15)
*(16)

Duodenum
Lamina propria and epithelium

1.7%
IEL 3% (0.1-5%)
LPL 2% (0.5-4%)

↓IL-18Ra
IL-12+IL-18 stim:
↓IFN-g

(17, 18)

Jejunum
Lamina propria and epithelium

IEL 60% (n = 1):
(Va7.2+ T cells)

(6)

Colon
Lamina propria and epithelium

No data in healthy
Cancer:
IEL 1%; LPL 2%
Inactive UC
12%
(30% of CD8+ are MDR1+)

Most CD8+ CD103+ (n = 1)
↑CD69 (>90%), HLA-DR, CD25, TIGIT, PD-
1, CTLA-4, LAG-3
↑GzmB (baseline)
↑Tbet, RORgt
PMA/ionomycin stim:
↑TNF, IFN-g, IL-17A, IL-22
E coli stim:
↓IFN-g

*(19)
(20–22)

Rectum 2% (0.5-8%) CD8+ > DN MAIT
↑IL-23R, CSF1, TNF, CD40LG, CRTAM
↓GzmK

(23, 24)

Small intestine
Fetal 2nd trimester

0.5% (0.2-1%) CD8a (30%), Ki67 (20%)
PMA/ionomycin stim:
↑IL-22
E coli stim:
↑IL-22, ↓IFN-g

(25)

Lung
Bronchial tree
Epithelium > lamina propria

5% (Endobronchial biopsy)
TRAV1-2+%CD8: Trachea (42%) > proximal (35%): >
distal bronchus (22%) (n = 1)

(26)
(27)

Lung parenchyma 6% [TRAV1-2+%CD8] (27)

Lung parenchyma Fetal 2nd trimester 0.8%
(range 0.6-2)

CD127+IL-18Ra+ (>90%)
CD8a (20%), Ki67 (15%)
E coli stim:
↑IL-22, ↓IFN-g

(25)

Sputum 2% (26)

BAL adult 2%
4% [TRAV1-2+%CD8]

↑CD103+ (75%),
PMA/ionomycin stim:
↑IL-17A (esp. CD103+)

(26, 28)
(27)

BAL children 1%
3% (in CAP)

Most CD103− – in CAP >50% CD103+

Plasma:
↑IL-12p70
↓IFN-g, IL-22, IL-23, MIP-1a, MIP-1b
CAP:
↑IL-17A, IL-22, IL-23, IL-1b, IL-6, IL-12p70,
MCP-1, MIP-1a, MIP-1b
↑ IL-17A: IFN-g ratio
↑ HIF1A, AHR, BATF, PLZF
↓TCF7

*(29)

Skin
Epidermis and dermis, especially papillary dermis
and adjacent to the superior vascular plexus

3.8+/-0.32% (by IF)
Epidermis: 1.5±0.5%

↑CLA+ (80%)
↑CD103+(80% epidermis, 40% dermis)

(30)
*(31)

(Continued)
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Table 2). Furthermore, we draw parallels with other barrier
lymphocytes to explore tissue-specific factors which could
modulate their function at mucosal surfaces, with the
hypothesis that there are unexplored functional and
Frontiers in Immunology | www.frontiersin.org 3
metabolic adaptions for their survival and execution of
tissue-specific effector functions. Understanding these
factors is important to expand our knowledge of their role
in shaping tissue function in health and disease.
TABLE 1 | Continued

Barrier tissue MAIT location Frequency Phenotype and activation Ref

(11.6±11.0% of CD8+)
Dermis: 0.5±0.1%
(4.6±4.0% of CD8+)

Female Genital Tract
Endometrium
Lamina propria close to and within glandular
epithelium

1%
(range 0-3%)

↓PLZF
(DN vs CD8+ MAIT ↓ Tbet; ↑PLZF, RORgt,
Helios)
E coli stim:
↑polyfunctional, IL17-A, IL-22
↓IFN-g, TNF, GzmB

(32, 33)

Cervix
Endocervix, adjacent to simple columnar
epithelium; Transformation zone lamina propria;
Ectocervix on both side of basement membrane,
predominantly in clusters within epithelium

2%
(range 0-6%)

↓Eomes (32)

Placenta
Decidua parietalis

2%
(IVB 4%)

↑CD69 (80%), CD25 (25%), HLA-DR (35%),
PD-1 (70%), Ki67 (15%)
↓CD127 (50%)
E coli stim:
↑GzmB, Perforin

(34)
November 2020 | Volume 11 | A
Location, frequency, phenotype, and function of MAIT cells in healthy human tissue compiled from studies to date. Frequency is expressed as a % of total CD3+ unless otherwise specified.
Studies highlighted (*) defined MAIT cells using MR1-tetramer. All other studies used proxy measures of variable stringency to identify MAIT cells, predominantly CD161+Va7.2+.
Enrichment and comparisons of phenotype or function are compared to blood. BAL, bronchoalveolar lavage; Ca, cancer; CAP, community acquired pneumonia; DN, double negative;
GzmB, granzyme B; DP, decidua parietalis; DN, double negative; IEL, intraepithelial lymphocytes; IF, immunofluorescence; IVB, intervillous blood; LPL, lamina propria lymphocytes.
FIGURE 1 | Summary of mucosal environmental factors which could influence immune responses directly and indirectly. Created with Biorender.com.
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TABLE 2 | Environmental factors and sensors.

lou (47) Hinks (48) Hinks
TCR (48)

Lamichhane
E.coli (49)

Leng
TCR (20)

Sharma
anti-CD3 (50)

Sharma
BCG (50)

Lu
CAP (29)

↑ ↑ ↑ ↑ BAL > Blood
MAIT17

↑ ↑ ↑ ↑ MAIT17

↑ ↑ ↑ ↑

↑

↑ ↑ ↑

↑ ↑ ↑ ↑

↑ ↑ ↑

↑ BAL > Blood

↑ ↑

↑ MAIT1

↓

↑ ↑ ↑

↑ ↑ ↓ ↓

↑ ↓

↑ ↑ ↑ ↑ ↑ ↑

ne cells. Transcriptional expression of purported sensors*, in some cases including relevant non-sensor genes. All transcriptional
n atlas, genes enriched in MAIT cells compared to other blood immune cells; Fergusson (45), genes enriched in CD161+ T cells;
AIT cells compared to conventional CD8+ T cells; Hinks (48), genes enriched in MR1-tetramer+ MAIT cells compared to CD8+ T
egulated on E coli activation of MAIT cells; Leng (20), genes enriched in MAIT cells stimulated with TCR-dynabeads; Sharma (50),
with community acquired pneumonia (CAP). MAIT17 = type-17 MAIT cells; MAIT1 = type-1 MAIT cells.
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Protein Atlas Fergusson (45) Park (46) Sa

Physical factors Sensor*
Hypoxia HIF1A (effector)

Acidosis GPR65 ↑ ↑

Osmolarity NFAT5

Mechanical PIEZO1

Metabolite
Vitamin A RARG ↑ ↑

Vitamin D VDR

Lactate SLC16A1
(transporter)

Tryptophan
metabolites

AHR

GPR35

Oxysterols GPR183

Purines P2RX7

P2RY14

Neuropeptide
Noradrenaline ADRB2 ↑ ↑

Neuromedin U NMUR1 ↑

BigLEN GPR171 ↑

Examples of tissue factors which could modify human MAIT cells in an analogous manner to other resident immu
datasets are from human blood MAIT cells, except (29) which is from matched BAL and blood MAIT cells. Prote
Park (46), genes enriched in CD161+ Va7.2+ compared to conventional T cells; Salou (47), genes enriched in M
cells; Hinks TCR (48), genes upregulated on 5-OP-RU activation of MAIT cells; Lamichhane E coli (49), genes up
genes upregulated with anti-CD3 or BCG stimulation; Lu (29), genes enriched in BAL MAIT cells from children
i

r
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BARRIER TISSUES

Mammalianbarrier surfaces are diversephysiological, chemical and
cellular niches. The skin is dry, lipid-rich and acidic, primarily due
to epidermal fatty acids,with unique exposures to high-salt content,
UV-radiation and large fluctuations in temperature (51, 52). The
female genital tract is even more stressed, driven by Lactobacillus
sp.-derived lactic acid and hydrogen peroxide, with additional
structural and immunological changes with the menstrual cycle,
pregnancy and age (12, 53). The digestive system varies along its
length, both in termsofphysical factors and theunique composition
of themicrobiome: the oralmucosa is subject to occasional physical
trauma from mastication, while the gut has the largest microbial
biomass in the body in addition to a nutrient rich environment
consisting of bile acids and diet-derived metabolites. Finally, the
lungs are subject to fluctuating mechanical shear stress from
ventilation and gravitational posture dependent changes, and also
differ in structure andmicrobial sterility fromhigher to lower order
bronchi and alveoli (54).

Most sites have underlying dense neural networks and varying
concentrations of physiological parameters such as oxygen tension,
lactate, glucose and amino acids depending on the specific location
and inflammatory context; relative hypoxia is physiological in
healthy skin hair follicles and the intestinal lumen, and induced
in the face of increasing tissue demand during inflammation in all
tissues. The inflammatory tissue microenvironment is further
dysregulated by the catabolic processes necessary for generating
an immune response, through excess nutrient consumption and
generation of potentially toxic metabolic by-products. Moreover,
these physical and biochemical changes interact with and shape the
microbiome, therefore directly and indirectly interacting with
resident immune cells, including MAIT cells.

BARRIER MAIT CELLS

Barrier tissue lymphocytes include innate, innate-like and adaptive
immune cells (37). Activation is antigen-independent in natural
killer (NK) and innate lymphoid cells (ILCs), and predominantly
mediated through cytokines. Antigen-dependent mucosal
protection is provided by CD4+ T helper 17 (TH17), regulatory T
(Treg), and CD8+ tissue-resident memory (TRM) and Tc17 cells.
MAIT cells and other unconventional T cells, such as invariant
natural killer T (iNKT) and gamma-delta T (gdT) cells, share
features with both innate and adaptive cells. They can be
activated in a TCR-dependent or independent manner (20, 48,
49, 55), and are important for preserving tissue integrity and
function in homeostasis.

Ontogeny and Tissue Residency
Human MAIT cells in blood have a tissue-homing effector-
memory phenotype (3), but the ontogeny of cells in barrier
surfaces is less clear. Murine tissue MAIT cells and iNKT are
resident populations in homeostasis and following infection,
expressing the transcription factor retinoic acid-related orphan
receptor (ROR) gt (RORgt). After parabiosis, almost all thymic,
and the majority of splenic, hepatic, lymph node and RORgt+
Frontiers in Immunology | www.frontiersin.org 5
lung MAIT cells are host-derived, with some recirculation of
RORgt− lung MAIT cells (47, 56). Following Staphylococcus
epidermidis (S. epidermidis) challenge similar frequencies of
murine skin MAIT, gdT, and iNKT cells are host-derived and
thus tissue-resident (35).

In humans however, it is unclear to what extent tissue MAIT
cells are permanently resident. Expression of aE-integrin (CD103)
associated with CD8+ TRM cells is rare in blood MAIT cells (<3%)
and common, but not universal, amongMAIT cells within the oral
and gastricmucosa (13, 15), skin (31, 57), and lungs (27–29) (Table
1). Thus tissues in health may represent a mixture of resident and
recirculating MAIT cells, which could vary micro-anatomically:
although most epidermal MAIT cells express CD103 and CLA
(cutaneous lymphocyte antigen), only half of dermal MAIT cells
expressCD103 (31).Resident populationsmaybehavedifferentially
in disease – for example, among bronchoalveolar CD8+CD161+
+Va7.2+ cells, which are mostly MAIT cells, only the CD103+
fraction is depleted in HIV infection (28).

Studies on the formation and longevity of tissue MAIT cells in
humans are challenging. Remarkably, some MAIT cells do migrate
into fetal small intestine, liver and lung as early as the 2nd trimester -
before exposure to the conventional commensal flora (25). Fetal
tissue MAIT cells, unlike circulating MAIT cells in adults, are
cycling in the steady state with appreciable Ki67 expression (25).
It is unclear if these early tissue resident MAIT cells could persist
into adult life, similar to other fetal tissue-resident cells (58). One
study using HLA allele mismatching to discriminate between
donor- and recipient-derived T cells following small bowel
transplantation showed that although the majority of tissue MAIT
(CD161+Va7.2+) cells are derived from the host long term, donor-
derived cells can be found over a year after transplantation (59); this
suggests that adult mucosal MAIT cells can persist for prolonged
periods. The dynamics may of course vary in tissues with different
cellular turnover, and analogous to the differential proliferative
capacity and function of resident and monocyte-derived
macrophages in tissues (60), the function of long-lived and newly
formed MAIT cells may be distinct.

It is also unclear if MAIT cells can leave tissues. Thoracic duct
lymph-derived and blood MAIT cells are CCR7− and present at
comparable frequencies with overlapping TCR clonotypes (61),
which suggests that MAIT cells in lymph directly derive from
blood. This could imply either migration after transit through
tissues, or direct CCR7-independent migration from blood
through high endothelial venules. Further work is needed to
understand the drivers for tissue migration, residency and
persistence, including potential functional differences between
long lived and nascent tissue MAIT cells.

Tissue Phenotype and Cytokine
Production
MAIT cell expression of the NK-cell marker CD161 and the
transcription factor RORgt (RORC) are features shared with
other barrier tissue-resident cells, including TH17, peripherally
derived Treg (pTreg), ILC3, iNKT and gdT cells (62–67). CD161+

T cells share a transcriptional program for innate-like cytokine-
responsiveness in the absence of TCR triggering, through high
November 2020 | Volume 11 | Article 584521
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expression of cytokine receptors (e.g., IL-12R, IL-18R) driven by
the transcription factor promyelocytic leukemia zinc finger
protein (PLZF) (45, 55). RORgt is crucial for barrier protective
IL-17 production common to many mucosal lymphocytes (43,
68). Unusually, in homeostasis many human MAIT cells co-
express the type-1 transcription factor T-bet (TBX21) and
RORgt, whereas naïve SPF mice have two almost mutually
exclusive populations (69, 70): nearly all murine tissue resident
MAIT cells are RORgt+T-bet− IL-17A producing MAIT17, with
less numerous T-bet+RORgt− IFN-g producing MAIT1 found in
the circulation (47). Following infection with intranasal
Salmonella or Legionella, an increase in RORgt+T-bet+ lung
MAIT cells is observed, suggesting that the diverse stimuli that
human MAIT cells receive may explain part of the differences
between species (71).

Functionally, human tissue MAIT cells are usually more
activated than their circulating counterparts in homeostasis
and capable of increased cytokine production (19, 23, 72)
(Table 1). Additionally, barrier MAIT cells in the female
genital tract and oral mucosa are predominantly CD8+ cells
biased towards type-17 function (13, 32). Another study found
that CD4−CD8− MAIT cells in healthy endometrium have a
more mature phenotype with higher RORgt and lower T-bet
expression (33). This skewed tissue biased phenotype is present
from early development as fetal small intestine MAIT cells
produce more cytokines (IFNg, IL-22) than their circulating
counterparts in response to Escherichia coli (E. coli) (25). It is
unclear however if this phenotype varies between barrier tissues
in adults. Barrier specific heterogeneity is observed in mice:
murine skin MAIT cells display a transcriptional profile
distinct from lung or liver (35), and both colonic and lung
MAIT cells produce higher IL-17 than non-barrier tissues, such
as the liver and spleen (73). Ultimately, as IL-17A and IL-22
promote barrier integrity, it will be important to understand the
relative contributions of pre-programmed transcriptional and
environmental cues to MAIT cell heterogeneity observed in
human tissues.

Tissue Homeostasis and Tissue Repair
Given their anatomical location and similarity to other tissue-
resident lymphocytes, it is perhaps unsurprising that MAIT cell
effector function is important in tissue-homeostasis. This
parallels tissue homeostatic roles for H2-M3 restricted CD8+ T
cells (and Tregs) in mouse skin (74, 75), and gdT cell populations
in the lung and gut (76–78). In NOD mice, Mr1-deficient
animals have impaired intestinal barrier integrity, implicating
MAIT cells in maintaining surface homeostasis (79). This
concept was further supported in a model of colonic graft
versus host disease (GvHD); Mr1-deficient animals had
increased proinflammatory donor-derived CD4+ T cell
expansion and reduced tight junction expression (73). GvHD
in human bone marrow transplant recipients is also associated
with lower MAIT cell frequency (80, 81), again potentially
implicating a role in maintaining mucosal health.

Further recent data from both mouse and human studies has
identified an important role for MAIT cells in tissue repair.
Frontiers in Immunology | www.frontiersin.org 6
Constantinides et al. found that murine skin resident MAIT cells
are enriched for a distinct tissue repair transcriptional signature,
similar to that observed in the previously described H2-M3
restricted CD8+ T cells responsive to S. epidermidis-derived N-
formylated peptides (35). To assess MAIT cell specific tissue repair
in vivo without confounding skin gdT and H2-M3 restricted CD8+

cells which can perform analogous functions, Tcrd−/− mice were
infected with a strain of S. epidermidis that fails to induce CD8+ H2-
M3-recognizing T cells. Tissue repair in response to S. epidermidis,
measured by epidermal tongue length growth after skin punch
biopsy, was higher in Tcrd−/− compared to Mr1−/−Tcrd−/− mice,
implicating the additional MAIT cell deficiency.

How do these data relate to human MAIT cells? Recently,
murine and human MAIT cells were also found to have a shared
tissue repair transcriptional profile (as seen with the H2-M3
restricted CD8+ T cells) on resolution of infection from
Legionella longbeachae and with re-infection, suggesting
significant functional parallels (48). Two additional studies in
human MAIT cells showed activation of such tissue repair gene
expression patterns predominantly following TCR-mediated
triggering (20, 49). In vitro assays of wound healing also
revealed a functional repair role for MAIT cell derived soluble
factors, which could be blocked using anti-MR1 antibodies (20).
Taken together all these studies suggest that a local repair
program analogous to other tissue resident cell types is active
in MAIT cells and likely triggered in vitro through encounter
with microbiota. This is supported by the remarkable
observation in vivo that direct topical application of the MAIT
cell TCR ligand 5-OP-RU alone prior to skin injury, in the
absence of additional cytokines, is sufficient to selectively induce
cutaneous MAIT cell expansion and expedite tissue repair (35).
Much more work is needed to define the importance of this in
human disease and also the exact mechanisms through which
this large panel of soluble mediators exert their impact.

In addition to tissue-repair functions in response to
commensals in the absence of inflammation, there is evidence
that innate-like T cells can regulate barrier surface homeostasis
by shaping the microbial landscape. CD1d and intestinal iNKT
cells influence murine intestinal homeostasis and microbial
colonization, with reduced Bacteriodales colonization in iNKT-
deficient mice (82). Mr1-deficient animals, which lack MAIT
cells, have reduced intestinal microbial diversity, similar to that
found in IL-17A deficient animals (73). Conversely, in obese
mice MAIT cells seem to promote microbial dysbiosis and ileal
barrier dysfunction. Fecal transplantation from obese Mr1-
deficient animals reduces barrier permeability in mice fed a
high-fat diet, and the microbiome of obese Va19+/− mice with
a high MAIT cell frequency has lower Bifidobacteriaceae and
Lactobacillaceae species (83). Given the importance of a diverse
microbiome to human health, further work is needed on the
interactions of MAIT cells and a healthy microbiome in
maintaining tissue homeostasis.

These expanding tissue-specific functions raise the tantalizing
possibility that similar to other innate-like lymphocytes, MAIT
cell barrier functions may be more diverse than initially
appreciated (84, 85). We know that gdT cells can remarkably
November 2020 | Volume 11 | Article 584521
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promote stem-cell remodelling (86), adaptive thermoregulation
in response to cold stress (87), and sympathetic nervous
innervation (88). Furthermore, cytokine activated ILC3 can
promote antigen specific CD4+ T cells responses directly in
vitro through cell surface MHCII and co-stimulatory molecule
expression (89). Indeed MAIT cells have the capacity to
indirectly manipulate tissue adaptive responses, through
dendritic cell maturation (90), and could potentially act as a
sink for IL-7 similar to IL-7R+ ILC to limit homeostatic
proliferation and preserve TCR diversity in neighboring tissue
T cells (91).

In summary, MAIT cells in tissues are distinct from the
population most frequently studied thus far in blood. The
array of effector functions is expanding beyond the traditional
cytotoxicity and cytokine production first described, and further
understanding of the context in which these effector programs
are engaged together with knowledge of how to modulate them
are key to enable translation of MAIT cell biology to effective
human therapeutics.
BARRIER ADAPTATION

Metabolism
T cell development, differentiation, activation, function and
survival are regulated by the cell intrinsic metabolism of
glucose, amino acids and lipids (92–94). Nutrient availability
differs between T cell compartments: circulating lymphocytes
function in secondary lymphoid organs with high glucose and
amino acid concentrations, whereas barrier tissues are more
restrictive anatomically with variable nutrient composition.
Permanent tissue-resident cells must therefore adapt to these
niches for continued survival and proliferation which are also
required for their tissue-specific effector functions.

Activated peripheral blood MAIT cells upregulate glucose
uptake as glycolysis is required for their cytotoxicity and IFN-g
production (95, 96), and human circulating MAIT cells have
reduced mitochondrial activity compared to CD161−CD8+ T
cells (95). Amino acid metabolism is also crucial - peripheral
MAIT cells express high levels of the L-type amino acid
transporter, SLC7A5, and L-amino acid oxidase (96, 97). The
metabolism of tissue MAIT cells has however not been explored.

Tissue MAIT cells may rely on OXPHOS, which correlates
with TNF and IL-17 production in their circulating counterparts
(96, 98). Given low tissue glucose concentrations, many resident
immune cells are adapted to oxidative phosphorylation of fatty
acids abundant in the skin and intestine (99). Tissue-resident but
not circulating memory CD8+ T cells require these exogenous
fatty acids for their survival, and upregulate transporters and
fatty acid binding proteins (FABP) necessary for long term
maintenance (100, 101). FABP isoform expression is tissue-
specific, shared among resident TRM, IEL, ILC and gdT cells,
with TRM able to modulate isotype specific expression on
relocation to a new environment (102); Fabp4 and Fabp5
expression are enriched among skin resident cells, whereas
Fabp1 is enriched among liver resident cells, including
invariant NKT cells. Endogenous fatty acid metabolism is also
Frontiers in Immunology | www.frontiersin.org 7
important in IL-17 producing TH17 (103), with murine Tc17
cells and human IL-17 producing bronchoalveolar MAIT cells
also enriched for genes in fatty acid and lipid metabolism (29,
104). It would therefore be logical to explore tissue MAIT cell
mitochondrial and lipid metabolism in understanding their
barrier specific effector functions.

Tissue Stress
Tissue stress includes homeostatic perturbations in metabolic
or environmental factors. Examples include insufficient
nutrients or accumulations of potentially toxic byproducts,
including oxidative stress from excessive free radicals.
Barrier tissues with an active immune response frequently have
minor homeostatic perturbations tolerated by resident
immune cells.

Autophagy is a metabolic stress response that recycles
intracellular proteins and provides an additional nutrient
source advantageous in tissues and activating environments
(93, 105). MAIT cells in the liver have higher basal autophagy
compared to their circulating counterparts, which may be
required given the higher mitochondrial depolarization
observed in stressed tissue-resident cells (106). In vitro,
inhibition of autophagy reduces acquisition of a tissue-resident
phenotype in circulating CD8+ T cells (106), thus enhanced
autophagy may be a requirement for MAIT cell tissue survival.

Tissue oxidative stress can also be mitigated in barrier tissues
by xenobiotic transporters, such as multidrug resistance protein
1 (MDR1). MDR1 (ABCB1) is an ATP-binding cassette B1 drug
resistance transporter expressed on IL-17 producing CD4+ T
cells in the ileum, which protects against bile acid induced
oxidative stress to maintain intestinal homeostasis (107); a
subset of patients with ileal Crohn’s have loss of function in
MDR1, highlighting an important role in controlling tissue
inflammation. MAIT cells and other CD161+ T cells also
express high levels of MDR1 (3, 45, 108), and it would be
interesting to evaluate in future studies whether this has
similar implications for their survival and function in toxin
rich niches.

Tissue oxidative stress also produces free radicals and
hydrogen peroxide (H2O2). H2O2 can be transported by the
plasma membrane water channel, aquaporin 3 (AQP3), which is
part of a core transcriptional signature shared among type-17
secreting NKT17, ILC3, gdT, and TH17 cells in mice (109). Aqp3-
deficient T cells have impaired chemokine mediated trafficking
to the skin (110), and AQP3 expression is higher in human
CD161+Va7.2+ MAIT cells compared to circulating CD161−

cells expressing the same TCRa (46). It is therefore possible that
tissue stress regulates MAIT cell migration and survival in
inflammatory tissues such as the skin.

Finally, given the often overlapping functions, some
adaptations may serve to prune the tissue response to only the
most appropriate cells. Murine TH17, iNKT and TRM are
enriched for the purinergic receptor, P2RX7, which recognizes
extracellular purines (ATP, NAD+) released after cell lysis and
has cell type specific effects (111–113). Purines released from
high microbial turnover can regulate barrier specific immune cell
function, promoting murine TH17 differentiation (111) but
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inhibiting human ILC3 IL-22 production (114). P2RX7
expression on tissue iNKT and TRM however induces
pyroptosis and limits immunopathology from bystander
activation (113, 115). As purinergic receptor expression is
downregulated on TCR engagement, release of purines from
tissue damage preferentially depletes bystander activated TRM

(115). Over time this could serve to shape the barrier immune
response by conserving predominantly T cells specific to
regularly encountered antigens. Given their presence in tissues
and potential for bystander activation in response to cytokines,
MAIT cell function may also be shaped by variable adaptations
to tissue damage. Indeed, one could imagine that as a mammal
ages, MAIT cell TCR-dependent responses could be superseded
by antigen-specific TRM populations.
BARRIER SENSING

Microbiome
Barrier surveillance of the commensal microbiome is essential
for tissue immunity in homeostasis through shaping the
composition and phenotype of innate and adaptive cells (116–
118). Numerous mucosal cell types are perturbed in germ-free
(GF) and antibiotic treated mice, including RORgt-expressing
tissue Treg, TH17 and innate-like IL-17 producing gdT cells (119).
Conversely cohousing laboratory mice with wild mice to induce a
more diverse microbiome promotes a human adult-like immune
composition, with increased tissue innate and differentiated
memory CD8+ T cell populations (120).

We have known MAIT cells are also reliant on the
microbiome since Treiner et al. discovered that they were
absent in the lamina propria of GF mice (2). It was
subsequently found that metabolites from riboflavin-
synthesizing commensals, which engage the MAIT cell TCR,
are necessary for most stages of MAIT cell intra-thymic
development and subsequent peripheral expansion (56, 121).
Accordingly, the dominant murine population of RORgt+

MAIT17 dependent on TCR-triggering for proliferation and
function are depleted in the thymus and tissues of GF-mice,
skewing the response to IFN-g production (56). Recolonization
of GF mice with microbes can rapidly restore this RORgt+ MAIT
population. Remarkably, metabolites from skin riboflavin-
synthesizing commensals, even in the absence of bacteria, can
drive intra-thymic MAIT cell development remotely (56), in
addition to sustaining the development and function of local
skin-resident MAIT cells (35). There is however a narrow
neonatal window until 3 weeks of age where recolonization of
GF mice can restore MAIT cell development; recolonization of
adult mice with bacteria after 7 weeks does not increase MAIT
cell frequencies in the skin. Although they have complementary
functions, this may be due to a finite niche for competing innate-
like T cells shaped by the early microbiome; Tcrd-deficient
animals have increased tissue-resident iNKT and MAIT cell
populations (35), Cd1d-deficient animals have increased
splenic and thymic MAIT cells (121), while GF mice have
increased iNKT cells (122). A competing or compensatory
interaction is also supported by the massive expansion of Vd2+
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T cells in a patient with a homozygous point mutation in MR1
and MAIT cell deficiency (123). Supporting complementary
functions, human blood MAIT cell and iNKT cell frequencies
positively correlate (124, 125). Additional work is needed to
clarify the relationship between innate-like T cells, and whether
this is influenced by age, disease and ligand abundance.

In humans, with a much lower frequency of tissue iNKT and
gdT cells, it remains to be seen if this window period for
reconstitution and niche exist in adulthood. BAL MAIT cells
depleted in HIV are increased with ART; as ART partially
restores a dysregulated lung microbiome (126), it is tempting
to speculate this contributes to MAIT cell reconstitution.
Peripheral MAIT cells however are not reconstituted by ART
(21, 24). Long term reconstitution is also seen after allogeneic
hematopoietic stem cell transplantation (81), dependent on the
microbiome and potentially continued thymic output given the
negative correlation with age.

Microbial Diversity and Pathogenicity
The mammalian microbiome is diverse and heterogeneous,
varying between sites with different microenvironments. Skin
hair follicles, sweat glands and sebum promote distinct
commensals and immune responses compared to the intestine
(52, 127, 128); diet, age and antimicrobials all shape the gut
microbial landscape (129). Furthermore, dysbiosis can result
from changes in the tissue microenvironment which drives the
expansion of more suitably adapted commensals.

The appreciation of different microbial phyla to MAIT cell
expansion and function is expanding. A screen of bacterial
species in vitro found that the capacity to stimulate MAIT
cells correlated with riboflavin secretion (130). Colonization of
GF mice with Proteus mirabilis alone in the neonatal period is
sufficient for MAIT cell expansion in the skin and lungs (35). In
reality we have communities of microbes and there is evidence
that increased microbial diversity is associated with improved
MAIT cell reconstitution after allogeneic hematopoietic stem
cell transplantation (81). This could partly be through a
reduction in their activation induced cell death as in vitro
microbial diversity has been shown to reduce MAIT cell
activation (131). Testing common intestinal commensals in
vitro has demonstrated that MAIT cell activation correlates
with net riboflavin secretion, with higher diversity resulting in
predominant riboflavin uptake and thus lower presentation to
MAIT cells (131). This is supported by observations in apical
periodontitis oral mucosa, where prominent riboflavin-
expressing taxa correlate negatively with Va7.2-Ja33 and
IL17A transcripts (132). Furthermore, Il17a-deficient mice,
which have microbial dysbiosis and reduced barrier
protection, actually have increased MAIT cell frequencies in
the lung and colon. As IL17a-deficient mice have increased
Candidatus Homeothermaceae and Bacteriodaceae, it is
tempting to speculate that the composition of the microbiome
is crucial for MAIT cell expansion (73). As microbial diversity
varies between tissues in health and disease, normally high in
healthy colon and reduced in dysbiosis and metabolic diseases,
this could be a mechanism to manipulate MAIT cell function
and through which they may contribute to pathology.
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In addition to diversity, healthy tissues are characterized by
an intact barrier, disruption of which induces inflammation and
could impact MAIT cell function. Most microbes are
commensals living in symbiosis with the host; pathogens
induce barrier disruption, inflammation and cytokine
production. For example, colonization with commensal S.
epidermidis does not induce inflammation and is important for
tissue homeostasis and a MAIT cell tissue repair signature (35).
However, stimulation of human MAIT cells in vitro with
cytokines in addition to TCR engagement promotes an
antimicrobial program, including the cytokine IL-26, capable
of directly killing extracellular bacteria (133), and effector
recruiting chemokines CXCL9 and CXCL10 (20, 49). Thus, the
pathogenicity of the human microbiome could tune the MAIT
cell response, and further studies should assess the various
pathogen-specific factors which induce antimicrobial rather
than more tolerant repair effector programs.

Microbial Metabolism and Environment
Microbial metabolism is also shaped by the tissue
microenvironment and could tune MAIT cell activation. One
mechanism is through availability of TCR ligands derived from
riboflavin synthesis: heat stress in Streptococcus pneumoniae
induces expression of the riboflavin operon (134); and acid
stress increases purine and folate metabolism, as well riboflavin
uptake (19, 131). Bacterial co-culture conditions influence their
capacity to activate human MAIT cells in vitro (19); hypoxia,
simulating the low oxygen tension in colonic crypts, stationary
growth phase and hypercarbia increase MAIT cell activation,
whereas hypoglycemia, acetate and pyruvate inhibit bacterial
control (19). Even chemicals and pesticides, which cause gut
dysbiosis on ingestion of food, have been found to increase E.
coli-induced MAIT activation (135). MAIT cells could therefore
survey the nature and state of the microbiome as a proxy
measure of tissue health.

Non-riboflavin microbial metabolites could also modulate
tissue MAIT cells, contributing to tissue homeostasis or
pathogenic inflammation. Lactobacilli, enriched in the female
genital tract, produce high levels of L(+)-lactate; and both lactate
and Lactobacilli-derived factors dampen Staphylococcus aureus
(S. aureus)-induced MAIT cell activation in whole PBMC (136).
Given that the antibacterial response of MAIT cells resident in
the female genital tract is biased towards IL-17 and IL-22
production compared to their circulating counterparts (32), it
is tempting to speculate that microbial derived factors at barrier
surfaces might directly skew MAIT cell responses.

There is evidence that other products of bacterial metabolism,
short chain fatty acids (SCFA), can directly modulate barrier
RORgt+ immune cell responses (137). Acetate, propionate and
butyrate are products of dietary fiber fermentation which signal
via G-protein coupled receptors (GPCR) to inhibit histone
deacetylases (HDACs) (137). These SCFA directly promote
barrier preservation and can reverse some of the immune
dysregulation in GF-mice; SCFA rescue the colonic Treg

depletion seen in GF mice (138) and are capable of
augmenting RORgt+Treg expansion (139–141) and ILC3 IL-22
production (142). Barrier cells such as ILC3 can directly sense
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acetate through Ffar2 (free fatty acid receptor 2) (142), which
interestingly is also enriched transcriptionally in murine skin
MAIT cells compared to CD4+ T cells (35). As SCFA reduce
MAIT cell antimicrobial function in vitro (19), it would be of
interest to determine if microbial metabolites could be sensed
and tune MAIT cell responses in a TCR-independent manner.

Dietary Factors
In addition to the microbiome, mucosal immune cells are
capable of directly sensing chemicals, including nutrients in
the mammalian diet (39). Dietary-derived metabolites,
particularly lipophilic compounds, rapidly diffuse and bind to
intracellular ligand-dependent transcription factors and can
regulate tissue resident cells (143); these include receptors for
vitamin A (retinoic acid receptor, RAR), vitamin D (vitamin D
receptor, VDR), and tryptophan metabolites (aryl-hydrocarbon
receptor, AhR). Given their often-shared function and location,
MAIT cells may also be regulated by these dietary factors.

Vitamin A
The fat soluble Vitamin A is enriched in human intestine and is
important for mucosal health (39). Dietary vitamin A, as all-
trans-retinol, retinyl esters, or b-carotene, is metabolized to
bioactive all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid
(144), which bind to nuclear retinoic acid receptors RARa
(RARA), RARb (RARB), and RARg (RARG) (39). In mice RA
maintains barrier homeostasis by directly modulating Treg, TH17
and ILC3 function. RORgt+pTreg development, homing and
differentiation are RA dependent (145–148), with dietary
deficiency promoting TH17 mediated tissue pathology (141).
Similarly ILC3 gut homing (149), plasticity (150), and IL-22
mediated protection in DSS colitis are RA dependent (151). In
humans, ATRA directly increases CD161 and gut homing CCR9
expression in a population of RORC+CD161+ colonic Treg

associated with tissue repair (64). Vitamin A deficiency is also
strongly associated epidemiologically with severe mucosal
infections, which may partly be through direct effects on
barrier protective immune cells.

The role of RA in innate-like T cells is less clear. RA reduces
invariant NKT induced-sterile tissue damage by inducing P2RX7
expression, rendering bystander but not TCR-activated cells
more susceptible to extracellular ATP-induced pyroptosis
(152). gdT cell function is also reduced: CD27−gdT cell IL-17
production is inhibited by RA through reduction in IL-1R, IL-
23R, and pSTAT3 expression (153). In IBD tissue however, RA
levels correlate with increased gdT and MAIT cell function (IL-
17, IFN-g) (154). As RARG is upregulated in blood MAIT cells
relative to conventional T cells (46), vitamin A could conceivably
modulate intestinal MAIT cell migration and function to
ultimately maintain mucosal integrity in an analogous manner
to neighboring CD161+ T cells.

Vitamin D and Cholesterol Metabolites
The lipophilic oxysterol derivate Vitamin D can be derived from
the diet or photochemically synthesized in the skin (39), and
binds to its heterodimeric receptor, composed of VDR and the
retinoid X receptor (RXR). Immune cells, particularly those in
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the intestine and skin, are enriched for expression of the nuclear
VDR which is reduced in inflammatory bowel disease and
implicated in the moderation of mucosal inflammation (39,
155). VDR expression is upregulated on TCR signaling and
decreases type 17 associated immunopathology in humans and
mice, increasing the ratio of Treg: TH17 (156, 157), inhibiting
ILC3 IL-23R expression (158), and directly competing with
NFATc1 for binding to the IL17A promoter (159). Vdr−/− mice
also have impaired iNKT and CD8aa+ IEL development,
suggesting a broad role in tissue immunity (159–161).

MAIT cell frequency and function may also be subject to
regulation by vitamin D. MAIT cells triggered through their
TCR upregulate VDR, either in vitro in humans or during acute
Legionella longbeachae infection in mice (48). In asthmatic
patients, seasonal fluctuations in peripheral MAIT cell
frequency correlate with serum phytochemically derived
vitamin D3 levels and peak in August (162). In cystic fibrosis
patients however, although baseline serum vitamin D3
correlates with peripheral MAIT cell CD38 expression, there
was a trend for reduced MAIT cell frequency in those receiving
oral vitamin D supplementation (163). Dietary and
photochemically-derived vitamin D may differentially
regulate MAIT cells in different compartments and activation
states – whether responding to commensals in homeostasis or
during active inflammation.

Other cholesterol derivatives of host or microbial metabolism,
including oxysterols, are abundant in the intestine and can act as
RORgt ligands to promote development and function of RORgt+

intestinal cells (164). Stromal cells produce 7-a ,25-
hydrocycholesterol, which binds to GPR183 expressing ILC3 to
promote their migration in homeostasis (165). As tissue IFN-g
producing MAIT cells transcriptionally express the oxysterol
receptor GPR183 (29), oxysterol sensing may also functionally
regulate MAIT cells.

Bile acids are cholesterol-derived surfactants crucial for fat
digestion that bathe the ileum as part of the enterohepatic
circulation and regulate both the microbiota and mucosal
immunity (166). Secondary bile acids derived from microbial
metabolism, including deoxycholic acid (DCA) and lithocholic
acid (LCA), can directly promote mucosal homeostasis by
increasing colonic FOXP3+ RORgt+ Treg (167). A screen of
secondary bile acids also found that LCA derivatives can
reduce the TH17:Treg balance in the intestinal lamina propria,
by directly blocking RORgt-induced TH17 differentiation and
promoting Treg Foxp3 expression and differentiation in a
mitochondrial ROS-dependent manner (168). MAIT cell
activation and PLZF expression negatively correlate with
serum concentrations of conjugated bile acids in teenage
children, and in vitro bile acids inhibit MAIT cell activation in
response to E. coli (169), so it would be important to explore
whether intestinal bile acids promote homeostatic MAIT cell
responses against commensals within a healthy functioning
symbiotic intestinal environment.

Aryl Hydrocarbon Receptor
Aryl hydrocarbon receptor (AhR) is a conserved ligand activated
transcription factor highly expressed by cell types at barrier surfaces,
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in keeping with its role as an environmental sensor promoting
mucosal integrity. Physiological AhR ligands include: indole-
derived ligands from dietary cruciferous vegetables; host and
microbe-derived tryptophan-metabolites (e.g., kynurenine); and
exogenous chemicals (40). Initially discovered and enriched in
intestinal TH17 and Treg (41, 170), AhR signaling is also
important for the function of mucosal IL-17 producing gdT,
iNKT and ILC3 (66, 171, 172). Sensing of diverse environmental
signals promotes Treg differentiation, IL-22 production, ILC3
survival and IEL homeostasis, thus promoting barrier integrity
(173). Ahr-deficient mice have dysfunctional skin and intestinal
gdT cells and absent IEL (172, 174), with reduced capacity for TH17
differentiation and IL-22 secretion. AhR expression in CD8+ T cells
is crucial for TRM and IEL persistence in tissues (175, 176), while
cytokines upregulate AhR expression in NK cells and iNKT to
promote cytotoxicity and IL-22 production respectively (66, 177).

The role of AhR in MAIT cells has only been tentatively
explored. Ahr is dispensable for MAIT cell thymic development
in mice (56). In HIV patients on ART, increased tryptophan
catabolism and generation of the AhR ligand, kynurenine
correlates with lower peripheral blood MAIT cell frequency
and higher frequency of Treg (178). As AHR expression is
higher in bronchoalveolar MAIT cells compared to matched
circulating cells in children with pneumonia (29), further work
should explore specifically whether tissue MAIT cells are
selectively regulated by AhR in a similar manner to other IL-
22 producing cells in particular.

Lipids
The predominant calorie source of diet can influence barrier
immunity in mice. A high glucose diet exacerbates colitis by
increasing mitochondrial metabolism to drive TH17
differentiation (179). Mice fed a high fat diet also have
increased TH17 differentiation through induction of the lipid
sensitive kinase, acetyl co-A carboxylase 1, crucial for de novo FA
synthesis and oxidative phosphorylation (103, 180). A ketogenic
high fat diet however protects against influenza challenge and
promotes improved lung barrier integrity associated with early
lung gdT cell recruitment, expansion and barrier type-17
function (181). In addition to diet, tissue free fatty acids have
also been shown to induce a regulatory phenotype in iNKT
(182). Lung type-17 MAIT cells in the context of pneumonia are
enriched in genes for OXPHOS, glycolysis, lipid efflux and
translocation, while other MAIT cells are enriched in genes for
steroid metabolism, fatty acid synthesis and lipid uptake (29).
Further studies should investigate the regulation of MAIT cell
function by lipids and metabolism.

Tissue Environment
Tissue immune cellular and soluble mediators, particularly
cytokines, manipulate the function of MAIT cells and other
resident populations (4). This is further nuanced by the confined
shared niche occupied by resident cells which compete for space
and local survival signals (175). Tissue inflammation and
infiltration of metabolically active, cytotoxic cells into this
niche can disrupt homeostatic regulation by depleting
nutrients (glucose, amino acids) and oxygen, producing waste
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products such as reaction oxygen species and lactate which
contributes to tissue acidosis (183, 184). Resident immune cells
are themselves in turn tuned by these non-immune
tissue parameters.

Oxygen Sensing
Oxygen tension and regulation varies in vivo: blood and primary
lymphoid organs have tightly regulated levels, whereas
physiological hypoxia is observed in tissues such as the skin
and intestine (38, 52, 185). Microbes can also indirectly induce
colonic oxygen consumption through SCFA (186). Hypoxia
regulates immune cells directly by preventing cytosolic
degradation of the oxygen sensing transcription factor,
hypoxia-inducible factor (HIF1A). T cell upregulation of
HIF1A expression is STAT3-dependent and promotes CD8+ T
cell effector functions (187), Treg plasticity (188, 189), and TH17
differentiation through induction of glycolysis, Rorgt expression
and Foxp3 proteasomal degradation (190, 191).

In vitro sorted human MAIT cells co-cultured with proximal
tubular epithelial cells are more activated in hypoxic conditions,
with increased cytotoxicity albeit no difference in cytokine
p roduc t i on (192 ) . In ch i l d r en w i th pneumon i a ,
bronchoalveolar MAIT cells have higher HIF1A expression
compared to their blood counterparts which correlates with
their capacity for increased IL-17 production (29).
Furthermore, the tissue repair signature enriched in MAIT
cells engaged through their TCR includes upregulation of
HIF1A in addition to factors associated with angiogenesis
(VEGFA, PDGF2, CSF2) (48). It would seem plausible that
tissue MAIT cells, likely to experience local hypoxia during the
course of an immune response, could tune their effector
functions accordingly to ultimately induce tissue repair and
improve oxygenation.

pH
Although circulating pH is homeostatically maintained around
pH 7.4, deviations are seen in tissues: healthy skin is acidic due to
a high free-fatty acid content; and inflammation drives tissue
acidosis through glycolytic products (52). Many immune cells
possess mechanisms for proton sensing, including acid-sensing
ion channels (ASIC), transient receptor potential (TRP)
channels, and GPCRs (193). Among T cells, human MAIT
cells and other CD161+ T cells share functionality and a
conserved transcriptional signature by bulk microarray, which
includes enrichment for two candidate GPCR proton sensors,
GPR65 and GPR68 (45, 194, 195). GPR65 may play an important
role in RORgt+ T cells; the Gpr65 promoter has a RORgt binding
site (196), and Gpr65 expressing T cells regulate the development
of EAE in mice which is driven by type 17 inflammation (197).
Naïve Gpr65−/− CD4+ T cells differentiated under TH17
conditions, or memory Gpr65−/− CD4+ T cells reactivated with
IL-23 produce less IL-17A in vitro, and the adoptive transfer of
Gpr65−/− CD4+ T cells into Rag1−/− recipients prior to EAE
induction markedly delays and reduces disease (197). Another
study however found that Gpr65-deficient mice develop
exacerbated EAE, which was lost in the absence of iNKT (198);
functionally deficient Gpr65gfp/gfp but not Cd1d–/– Gpr65gfp/gfp
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mice develop more severe disease compared to wild-type. It is
particularly interesting to note that murine Gpr65 expression is
important for CD4+ T survival in culture and highest in iNKT,
followed by gdT and NK cells, suggesting a homeostatic role for
acid sensing in innate-lymphoid cells. MAIT cells were not
assessed in this study, but in humans share similarities with
and are a hundred times more common than iNKT (67), thus
may represent the most prominent GPR65 expressing cell.
Indeed type 17 bronchoalveolar MAIT cells in children with
pneumonia are enriched for GPR65 expression so future studies
should explore whether acid-sensing can promote MAIT cell
mucosal function (29).

Lactate
Increased lactate is concomitantly seen with acidosis in
inflammation, and can be directly sensed by CD4+ T and
CD8+ T cells through SLC5A12 and SLC16A1 transporters
respectively; these function to inhibit T cell migration and
potentially promote tissue retention (199–201). However in
mice, cells with low glycolytic capability, including murine
iNKT, show reduced survival under high lactate conditions in
vitro (202). MAIT cells and other IL-23R+ lymphocytes could
also be indirectly regulated by lactic acid augmentation of TLR-
induced IL-23p19 production (203), which would skew towards
type 17 responses in tissues (32, 204).

Temperature
Fever is a conserved response to infection and autoinflammatory
disease across species. Although core temperature is rigorously
regulated, peripheral tissues such as the skin where MAIT cells
reside, are prone to deviations (205). High temperatures have
long been known to enhance human lymphocyte proliferation
and cytotoxicity in vitro (206), as well as CD8+ T cell
differentiation and CD4+ T cell activation through increased
membrane fluidity and reduced co-stimulation thresholds (207,
208). In mice, antipyretics (aspirin, ibuprofen) inhibit TH17
differentiation, with high temperatures selectively promoting
inflammatory TH17 differentiation and increased lung
neutrophil recruitment (209). Pulmonary MAIT cells and IL-
17A producing innate-like T cells clearly protect against bacterial
and viral infections in mice, which become pyrexial during the
course of a normal immune response (210–212). It is unclear if
pharmacological or pathological alteration of this normal febrile
response, or significant exposure to cold environments, could
modulate the response of tissue MAIT cells.

Electrolytes and Osmotic Stress
Similar to pH, electrolytes such as sodium, potassium, and
chloride are normally tightly regulated in blood. Elevated
extracellular potassium is, however, found in necrotic tissues
and tumors, which paralyses human cytotoxic T cell responses
(213). It is also appreciated that salt (NaCl) concentration can be
enriched in barrier tissues such as the skin, particularly during
inflammation (44, 52, 214). High salt diet increases EAE severity
in mice due to increased TH17 differentiation from naïve
precursors; direct salt-sensing ultimately induces TH17 IL-23R
expression (215, 216) and inhibits Treg differentiation (217, 218).
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In humans, high salt in vitro augments both naïve CD4+ TH17
polarization and memory CD8+ T cell IL-17A production in
response to TCR-activation in the absence of polarizing
cytokines (219). Interestingly, the skin of patients with atopic
dermatitis has higher salt concentrations, and salt promotes both
TH2 and TH17 cytokine production and skin-homing CCR8
expression by TCR-activated memory CD4+ T cells, thus
potentially linking the environment with pathogenic mucosal T
cell responses (219). Salt also indirectly regulates mucosal T cell
function through differential production of polarizing cytokines:
osmotic stress increases macrophage IL-1b production and Th17
generation in mice (220); and humans with a fixed high salt diet
have increased plasma IL-23 (221). As MAIT cells are IL-23+ T
cells in the skin, it would be interesting to determine whether
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their responses are also skewed in a similar way by the tissue
electrolyte composition and if this contributes to disease.
Neuroendocrine System
The dense peripheral neuronal network underlying barrier
surfaces co-ordinate rapid often reflex responses to external
insults, such as itch, pain or cough reflex. Remarkably
peripheral nerves directly regulate tissue immunity through
soluble factors, including neuropeptides: neuromedin U
(NMU) modulates ILC2-mediated tissue protection (222, 223);
vasoactive intestinal peptide (VIP) increases ILC3-mediated
epithelial barrier protection (224, 225); and catecholamines
have inhibitory and stimulatory effects on ILC2 and NK cells
A B

C D

FIGURE 2 | Potential regulation of the MAIT cell transcriptome and effector function by environmental cues. MAIT cells can be activated (A) independent of TCR-
ligands by cytokines, or (B) through TCR-mediated recognition of microbial-derived riboflavin derivates presented by MR1. These signals can work both
independently and synergistically to induce a spectrum of different effector programs. Cytokine-mediated MAIT activation results in the induction of a strong anti-
microbial program (C), including the production of cytokines like IFNg, IL-26 and members of the IL-17 family as well as pro-inflammatory chemokines like CXCL9
and CXCL10. These antimicrobial functions are further amplified with concurrent TCR signaling. TCR signals result in the induction of a homeostatic response (D),
including cytokines associated with barrier maintenance (IL-22, IL-17), and proteins associated with tissue repair, such as the endoprotease furin. MAIT cells effector
functions are controlled by the transcription factors PLZF, RoRgt, and Tbet. Importantly, while PLZF expression within MAITs is stable, expression of the homeostatic
effector program is associated with increased expression of RoRgt and decreased expression of Tbet. Finally, TCR-mediated MAIT cell activation also leads to
expression of HIF1A, another transcription factor associated with tissue repair. In addition to TCR-ligands and cytokines, several other factors have the potential to
modulate MAIT cell activation. Bile acids and L-lactate were shown to generally reduce MAIT cell responses, while binding of Vitamin D to its receptor (VDR), the
expression of which is upregulated in MAIT cells in response to TCR-signaling, has the potential to specifically inhibit the homeostatic response. In contrast,
recognition of several other metabolites including AhR ligands, Vitamin A and lipids was associated with the expression of homeostatic effector molecules in other T
cell populations and hence, could positively influence the expression of these molecules in MAIT cells as well. Similarly, short-chain fatty acids (SCFA), a product of
bacterial metabolism, were shown to stimulate production of IL-22 and expansion of RORgt-expression lymphocytes in other immune cells, while reducing the
antimicrobial function of MAIT cells, which could overall present a mechanism to preserve tissue homeostasis. Created with Biorender.com.
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respectively via adrenoceptor beta-2 (ADRB2) (226). The enteric
nervous system can also indirectly control resident lymphocytes,
through nociceptor induced IL-18 and IL-23 expression (227,
228). Given their location within this neuroimmune network,
and expression of relevant receptors for cytokines and
neuropeptides transcriptionally, MAIT cells could be subject to
rapid manipulation by the nervous system.

Growth factors also regulate tissues and could influence
MAIT cells. One example is insulin-like growth factor 1 (IGF-
1) signaling, which promotes STAT3 signaling and aerobic
glycolysis to increase type-17 effector functionality of TH17
and ILC3 (229). IGFbp4, an important modulator of IGF1
signaling, is enriched in murine RORgt+ TH17, Treg, and ILC3.
In humans, IGFBP4 is enriched in CD161+ T cells, so may be an
important regulator of MAIT cell type-17 functionality (45).
Indeed insulin resistance and fasting insulin levels in obese
children correlate with circulating IL-17A producing MAIT
cells (230), which may imply that feedback circuits regulating
tissue glucose metabolism play an important role in skewing
MAIT cell function.

External Environment
UV-light can regulate the immune system (231), partly through
photochemical synthesis of vitamin D. Additionally, UV light
dampens inflammatory pathology in psoriasis and has been
shown to degrade numerous photosensitive MAIT cell ligands,
including folic-acid derived 6-FP (6-formyl-pterin) (232). Given
the unstable nature of MAIT cell ligands, the impact of light on
skin MAIT cell responses to commensals in particular deserves
further attention.

Finally, the circadian rhythm has a role in entraining barrier
RORgt+ cells (233). Clock genes regulate the RORC promoter to
dictate TH17 differentiation (234) and ILC3 function (235–237);
and disruption of the light-dark cycle in mice exacerbates TH17
IL-17A-dependent DSS colitis. Pathway enrichment for innate-
like T cells suggests that circadian clock regulation is a shared
feature among human innate-like T cells, with transcription
factors ARNTL (encoding BMAL), RORA, PER1, and CRY1
enriched among MAIT, iNKT, and Vd2+ gdT cells (238). As
circadian biology regulates mammalian behavior and exposure to
environmental factors, including food, this could be particularly
relevant to mucosal MAIT cell function.
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MAIT cells serve an increasingly appreciated role in barrier tissues,
yet the full range of effector functions remain to be determined.
Similar to other mucosal lymphocytes, they are engaged in cross-
talk with the tissues and microbiome via their TCR and through
cytokine receptors (Figure 2). The context of this cross-talk in
tissues, in addition to the array of increasingly recognized signals
sensed by resident lymphocytes, suggest that other factors may
influence MAIT cell activation, function, and plasticity. Indeed,
these environmental factors were identified with mouse models
that may have missed the impact on MAIT cell biology as these
cells are infrequent in murine mucosal tissues. Humans, however,
have an abundance of MAIT cells and in contrast to laboratory
mice, are exposed to phenomenally diverse environmental factors
unique to each individual. Exploring local environmental factors
in addition to fixed pre-programmed factors in the investigation of
MAIT cell tissue biology will be crucial to understanding the
variability in humans and could pave the way for personalized
therapies in the context of disease.
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et al. Oxysterol Sensing through the Receptor GPR183 Promotes the
Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and
Colonic Inflammation. Immunity (2018) 48(1):120–8. doi: 10.1016/
j.immuni.2017.11.020

166. Chen ML, Takeda K, Sundrud MS. Emerging roles of bile acids in mucosal
immunity and inflammation. Mucosal Immunol (2019) 12(4):851–61. doi:
10.1038/s41385-019-0162-4

167. Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, et al. Microbial bile acid
metabolites modulate gut RORg+ regulatory T cell homeostasis. Nature
(2020) 577(7790):410–15. doi: 10.1038/s41586-019-1865-0

168. Hang S, Paik D, Yao L, Kim E, Jamma T, Lu J, et al. Bile acid metabolites
control TH17 and Treg cell differentiation. Nature (2019) 576(7785):143–8.
doi: 10.1038/s41586-019-1785-z

169. Mendler A, Pierzchalski A, Bauer M, Röder S, Sattler A, Standl M, et al.
MAIT cell activation in adolescents is impacted by bile acid concentrations
and body weight. Clin Exp Immunol (2020) 200(2):199–213. doi: 10.1111/
cei.13423

170. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld J-C,
et al. The aryl hydrocarbon receptor links TH17-cell-mediated
autoimmunity to environmental toxins. Nature (2008) 453(7191):106–9.
doi: 10.1038/nature06881

171. Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M. Interleukin-17-
producing gammadelta T cells selectively expand in response to pathogen
products and environmental signals. Immunity (2009) 31(2):321–30. doi:
10.1016/j.immuni.2009.06.020

172. Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF,
et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl
hydrocarbon receptor activation. Cell (2011) 147(3):629–40. doi: 10.1016/
j.cell.2011.09.025

173. Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon
receptor: multitasking in the immune system. Annu Rev Immunol (2014) 32
(1):403–32. doi: 10.1146/annurev-immunol-032713-120245

174. Kadow S, Jux B, Zahner SP, Wingerath B, Chmill S, Clausen BE, et al. Aryl
hydrocarbon receptor is critical for homeostasis of invariant gammadelta T
cells in the murine epidermis. J Immunol (2011) 187(6):3104–10. doi:
10.4049/jimmunol.1100912

175. Zaid A, Mackay LK, Rahimpour A, Braun A, Veldhoen M, Carbone FR,
et al. Persistence of skin-resident memory T cells within an epidermal
niche. Proc Natl Acad Sci USA (2014) 111(14):5307–12. doi: 10.1073/
pnas.1322292111

176. Kurd NS, He Z, Louis TL, Milner JJ, Omilusik KD, Jin W, et al. Early
precursors and molecular determinants of tissue-resident memory CD8+ T
lymphocytes revealed by single-cell RNA sequencing. Sci Immunol Sci
Immunol (2020) 5(47):eaaz6894. doi: 10.1126/sciimmunol.aaz6894

177. Shin JH, Zhang L, Murillo-Sauca O, Kim J, Kohrt HEK, Bui JD, et al.
Modulation of natural killer cell antitumor activity by the aryl hydrocarbon
Frontiers in Immunology | www.frontiersin.org 18
receptor. Proc Natl Acad Sci USA (2013) 110(30):12391–6. doi: 10.1073/
pnas.1302856110

178. Gaardbo JC, Trosied M, Stiksrud B, Midttun O, Ueland PM, Ullum H, et al.
Increased Tryptophan Catabolism Is Associated With Increased
Frequency of CD161+Tc17/MAIT Cells and Lower CD4+ T-Cell Count
in HIV-1 Infected Patients on cART After 2 Years of Follow-Up. J Acquir
Immune Defic Syndr (2015) 70(3):228–35. doi: 10.1097/QAI.0000000
000000758

179. Zhang D, Jin W, Wu R, Li J, Park S-A, Tu E, et al. High Glucose Intake
Exacerbates Autoimmunity through Reactive-Oxygen-Species-Mediated
TGF-b Cytokine Activation. Immunity (2019) 51(4):671–5. doi: 10.1016/
j.immuni.2019.08.001

180. Endo Y, Asou HK, Matsugae N, Hirahara K, Shinoda K, Tumes DJ, et al.
Obesity Drives Th17 Cell Differentiation by Inducing the Lipid Metabolic
Kinase, ACC1. Cell Rep (2015) 12(6):1042–55. doi: 10.1016/
j.celrep.2015.07.014

181. Goldberg EL, Molony RD, Kudo E, Sidorov S, Kong Y, Dixit VD, et al.
Ketogenic diet activates protective gd T cell responses against influenza virus
infection. Sci Immunol Sci Immunol (2019) 4(41):eaav2026. doi: 10.1126/
sciimmunol.aav2026

182. LaMarche NM, Kane H, Kohlgruber AC, Dong H, Lynch L, Brenner MB.
Distinct iNKT Cell Populations Use IFNg or ER Stress-Induced IL-10 to
Control Adipose Tissue Homeostasis. Cell Metab (2020) 32(2):243–6. doi:
10.1016/j.cmet.2020.05.017

183. Medzhitov R. Origin and physiological roles of inflammation. Nature (2008)
454(7203):428–35. doi: 10.1038/nature07201

184. Haas R, Marelli-Berg F, Mauro C. In the eye of the storm: T cell behavior in
the inflammatory microenvironment. Am J Clin Exp Immunol (2013) 2
(2):146–55.

185. Colgan SP, Furuta GT, Taylor CT. Hypoxia and Innate Immunity: Keeping
Up with the HIFsters. Annu Rev Immunol (2020) 38(1):341–63. doi: 10.1146/
annurev-immunol-100819-121537

186. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al.
Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and
Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host
Microbe (2015) 17(5):662–71. doi: 10.1016/j.chom.2015.03.005

187. Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV, Yang E, et al.
Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells
to persistent antigen. Nat Immunol (2013) 14(11):1173–82. doi: 10.1038/
ni.2714

188. Lee JH, Elly C, Park Y, Liu Y-C. E3 Ubiquitin Ligase VHL Regulates
Hypoxia-Inducible Factor-1a to Maintain Regulatory T Cell Stability and
Suppressive Capacity. Immunity (2015) 42(6):1062–74. doi: 10.1016/
j.immuni.2015.05.016

189. Westendorf AM, Skibbe K, Adamczyk A, Buer J, Geffers R, Hansen W, et al.
Hypoxia Enhances Immunosuppression by Inhibiting CD4+ Effector T Cell
Function and Promoting Treg Activity. Cell Physiol Biochem (2017) 41
(4):1271–84. doi: 10.1159/000464429

190. Dang EV, Barbi J, Yang H-Y, Jinasena D, Yu H, Zheng Y, et al. Control of T
(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell (2011) 146(5):772–
84. doi: 10.1016/j.cell.2011.07.033

191. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1alpha-
dependent glycolytic pathway orchestrates a metabolic checkpoint for the
differentiation of TH17 and Treg cells. J Exp Med (2011) 208(7):1367–76.
doi: 10.1084/jem.20110278

192. Law BMP, Wilkinson R, Wang X, Kildey K, Giuliani K, Beagley KW, et al.
Human Tissue-Resident Mucosal-Associated Invariant T (MAIT) Cells in
Renal Fibrosis and CKD. J Am Soc Nephrol (2019) 30(7):1322–35. doi:
10.1681/ASN.2018101064

193. Pattison LA, Callejo G, St John Smith E. Evolution of acid nociception: ion
channels and receptors for detecting acid. Philos Trans R Soc Lond B (2019)
374(1785):20190291. doi: 10.1098/rstb.2019.0291

194. Ishii S, Kihara Y, Shimizu T. Identification of T cell death-associated gene 8
(TDAG8) as a novel acid sensing g-protein-coupled receptor. J Biol Chem
(2005) 280(10):9083–7. doi: 10.1074/jbc.M407832200

195. Ihara Y, Kihara Y, Hamano F, Yanagida K, Morishita Y, Kunita A, et al. The
G protein-coupled receptor T-cell death-associated gene 8 (TDAG8)
facilitates tumor development by serving as an extracellular pH sensor.
November 2020 | Volume 11 | Article 584521

https://doi.org/10.1128/MCB.05020-11
https://doi.org/10.4049/jimmunol.1002545
https://doi.org/10.4049/jimmunol.1003444
https://doi.org/10.1016/j.jaci.2015.01.014
https://doi.org/10.1111/cei.12984
https://doi.org/10.1016/j.cmet.2015.01.004
https://doi.org/10.1016/j.immuni.2017.11.020
https://doi.org/10.1016/j.immuni.2017.11.020
https://doi.org/10.1038/s41385-019-0162-4
https://doi.org/10.1038/s41586-019-1865-0
https://doi.org/10.1038/s41586-019-1785-z
https://doi.org/10.1111/cei.13423
https://doi.org/10.1111/cei.13423
https://doi.org/10.1038/nature06881
https://doi.org/10.1016/j.immuni.2009.06.020
https://doi.org/10.1016/j.cell.2011.09.025
https://doi.org/10.1016/j.cell.2011.09.025
https://doi.org/10.1146/annurev-immunol-032713-120245
https://doi.org/10.4049/jimmunol.1100912
https://doi.org/10.1073/pnas.1322292111
https://doi.org/10.1073/pnas.1322292111
https://doi.org/10.1126/sciimmunol.aaz6894
https://doi.org/10.1073/pnas.1302856110
https://doi.org/10.1073/pnas.1302856110
https://doi.org/10.1097/QAI.0000000000000758
https://doi.org/10.1097/QAI.0000000000000758
https://doi.org/10.1016/j.immuni.2019.08.001
https://doi.org/10.1016/j.immuni.2019.08.001
https://doi.org/10.1016/j.celrep.2015.07.014
https://doi.org/10.1016/j.celrep.2015.07.014
https://doi.org/10.1126/sciimmunol.aav2026
https://doi.org/10.1126/sciimmunol.aav2026
https://doi.org/10.1016/j.cmet.2020.05.017
https://doi.org/10.1038/nature07201
https://doi.org/10.1146/annurev-immunol-100819-121537
https://doi.org/10.1146/annurev-immunol-100819-121537
https://doi.org/10.1016/j.chom.2015.03.005
https://doi.org/10.1038/ni.2714
https://doi.org/10.1038/ni.2714
https://doi.org/10.1016/j.immuni.2015.05.016
https://doi.org/10.1016/j.immuni.2015.05.016
https://doi.org/10.1159/000464429
https://doi.org/10.1016/j.cell.2011.07.033
https://doi.org/10.1084/jem.20110278
https://doi.org/10.1681/ASN.2018101064
https://doi.org/10.1098/rstb.2019.0291
https://doi.org/10.1074/jbc.M407832200
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Amini et al. MAIT Cells in Barrier Tissues
Proc Natl Acad Sci USA (2010) 107(40):17309–14. doi: 10.1073/
pnas.1001165107

196. Ciofani M, Madar A, Galan C, Sellars M, Mace K, Pauli F, et al. A validated
regulatory network for Th17 cell specification. Cell (2012) 151(2):289–303.
doi: 10.1016/j.cell.2012.09.016

197. Gaublomme JT, Yosef N, Lee Y, Gertner RS, Yang LV, Wu C, et al. Single-
Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity. Cell
(2015) 163(6):1400–12. doi: 10.1016/j.cell.2015.11.009

198. Wirasinha RC, Vijayan D, Smith NJ, Parnell GP, Swarbrick A, Brink R, et al.
GPR65 inhibits experimental autoimmune encephalomyelitis through CD4+
T cell independent mechanisms that include effects on iNKT cells. Immunol
Cell Biol (2018) 96(2):128–36. doi: 10.1111/imcb.1031

199. Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T,
D’Acquisto F, et al. Lactate Regulates Metabolic and Pro-inflammatory
Circuits in Control of T Cell Migration and Effector Functions. PloS Biol
(2015) 13(7):e1002202. doi: 10.1371/journal.pbio.1002202

200. Pucino V, Certo M, Bulusu V, Cucchi D, Goldmann K, Pontarini E, et al.
Lactate Buildup at the Site of Chronic Inflammation Promotes Disease by
Inducing CD4+ T Cell Metabolic Rewiring. Cell Metab (2019) 30(6):1055–8.
doi: 10.1016/j.cmet.2019.10.004

201. Pucino V, Bombardieri M, Pitzalis C, Mauro C. Lactate at the crossroads of
metabolism, inflammation, and autoimmunity. Eur J Immunol (2017) 47
(1):14–21. doi: 10.1002/eji.201646477

202. Kumar A, Pyaram K, Yarosz EL, Hong H, Lyssiotis CA, Giri S, et al.
Enhanced oxidative phosphorylation in NKT cells is essential for their
survival and function. Proc Natl Acad Sci USA (2019) 116(15):7439–48.
doi: 10.1073/pnas.1901376116

203. Shime H, Yabu M, Akazawa T, Kodama K, Matsumoto M, Seya T, et al.
Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway.
J Immunol (2008) 180(11):7175–83. doi: 10.4049/jimmunol.180.11.7175

204. Witkin SS, Alvi S, Bongiovanni AM, Linhares IM, Ledger WJ. Lactic acid
stimulates interleukin-23 production by peripheral blood mononuclear cells
exposed to bacterial lipopolysaccharide. FEMS Immunol Med Microbiol
(2011) 61(2):153–8. doi: 10.1111/j.1574-695X.2010.00757.x

205. Hanson DF. Fever and the immune response. The effects of physiological
temperatures on primary murine splenic T-cell responses in vitro. J Immunol
J Immunol (1993) 151(1):436–48.

206. Smith JB, Knowlton RP, Agarwal SS. Human lymphocyte responses are
enhanced by culture at 40 degrees C. J Immunol (1978) 121(2):691–4.

207. Zynda ER, GrimmMJ, Yuan M, Zhong L, Mace TA, Capitano M, et al. A role
for the thermal environment in defining co-stimulation requirements for
CD4(+) T cell activation. Cell Cycle (2015) 14(14):2340–54. doi: 10.1080/
15384101.2015.1049782

208. Mace TA, Zhong L, Kilpatrick C, Zynda E, Lee C-T, Capitano M, et al.
Differentiation of CD8+ T cells into effector cells is enhanced by
physiological range hyperthermia. J Leukocyte Biol (2011) 90(5):951–62.
doi: 10.1189/jlb.0511229

209. Wang X, Ni L, Wan S, Zhao X, Ding X, Dejean A, et al. Febrile Temperature
Critically Controls the Differentiation and Pathogenicity of T Helper 17
Cells. Immunity (2020) 52(2):328–41. doi: 10.1016/j.immuni.2020.01.006

210. Wang H, D’Souza C, Lim XY, Kostenko L, Pediongco TJ, Eckle SBG, et al.
MAIT cells protect against pulmonary Legionella longbeachae infection. Nat
Commun (2018) 9(1):3350. doi: 10.1038/s41467-018-05202-8

211. Wilgenburg BV, Loh L, Chen Z, Pediongco TJ, Wang H, Shi M, et al. MAIT
cells contribute to protection against lethal influenza infection in vivo. Nat
Commun (2018) 9(1):4706. doi: 10.1038/s41467-018-07207-9

212. Hassane M, Jouan Y, Creusat F, Soulard D, Boisseau C, Gonzalez L, et al.
Interleukin-7 protects against bacterial respiratory infection by promoting
IL-17A-producing innate T-cell response. Mucosal Immunol (2020) 13
(1):128–39. doi: 10.1038/s41385-019-0212-y

213. Eil R, Vodnala SK, Clever D, Klebanoff CA, Sukumar M, Pan JH, et al. Ionic
immune suppression within the tumour microenvironment limits T cell
effector function. Nature (2016) 537(7621):539–43. doi: 10.1038/nature19364

214. Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, Müller DN, et al. 23Na
magnetic resonance imaging-determined tissue sodium in healthy subjects
and hypertensive patients. Hypertension (2013) Mar61(3):635–40. doi:
10.1161/HYPERTENSIONAHA.111.00566
Frontiers in Immunology | www.frontiersin.org 19
215. Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of
pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature (2013)
496(7446):513–7. doi: 10.1038/nature11984

216. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al.
Sodium chloride drives autoimmune disease by the induction of
pathogenic TH17 cells. Nature (2013) 496(7446):518–22. doi: 10.1038/
nature11868

217. Hernandez AL, Kitz A, Wu C, Lowther DE, Rodriguez DM, Vudattu N,
et al. Sodium chloride inhibits the suppressive function of FOXP3+
regulatory T cells. J Clin Invest (2015) 125(11):4212–22. doi: 10.1172/
JCI81151

218. Yang YH, Istomine R, Alvarez F, Al-Aubodah T-A, Shi XQ, Takano T,
et al. Salt Sensing by Serum/Glucocorticoid-Regulated Kinase 1
Promotes Th17-like Inflammatory Adaptation of Foxp3+ Regulatory T
Cells. Cell Rep (2020) 30(5):1515–1529.e4. doi: 10.1016/j.celrep.
2020.01.002

219. Matthias J, Maul J, Noster R, Meinl H, Chao Y-Y, Gerstenberg H, et al.
Sodium chloride is an ionic checkpoint for human TH2 cells and shapes the
atopic skin microenvironment. Sci Transl Med (2019) 11(480):eaau0683. doi:
10.1126/scitranslmed.aau0683

220. Ip WKE, Medzhitov R. Macrophages monitor tissue osmolarity and
induce inflammatory response through NLRP3 and NLRC4
inflammasome activation. Nat Commun (2015) 6(1):6931. doi: 10.
1038/ncomms7931

221. Yi B, Titze J, Rykova M, Feuerecker M, Vassilieva G, Nichiporuk I, et al.
Effects of dietary salt levels on monocytic cells and immune responses in
healthy human subjects: a longitudinal study. Transl Res (2015) 166(1):103–
10. doi: 10.1016/j.trsl.2014.11.007
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