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Abstract: Although the crossover (CO) patterns of different species have been extensively investi-
gated, little is known about the landscape of CO patterns in Populus because of its high heterozygosity
and long-time generation. A novel strategy was proposed to reveal the difference of CO rate and
interference between Populus deltoides and Populus simonii using their F1 hybrid population. We
chose restriction site-associated DNA (RAD) tags that contained two SNPs, one only receiving the
CO information from the female P. deltoides and the other from the male P. simonii. These RAD tags
allowed us to investigate the CO patterns between the two outbred species, instead of using the tradi-
tional backcross populations in inbred lines. We found that the CO rate in P. deltoides was generally
greater than that in P. simonii, and that the CO interference was a common phenomenon across the
two genomes. The COs landscape of the different Populus species facilitates not only to understand
the evolutionary mechanism for adaptability but also to rebuild the statistical model for precisely
constructing genetic linkage maps that are critical in genome assembly in Populus. Additionally, the
novel strategy could be applied in other outbred species for investigating the CO patterns.

Keywords: crossover rate; crossover interference; Populus deltoides; Populus simonii; F1 hybrid population

1. Introduction

Genetic recombination is a fundamental biological process during meiosis. It not only
affects the adaptability of organisms to the environment [1], but also plays an important
role in the biological evolution and formation of new species [2]. Because recombination
rate is approximately proportional to the physical distance between molecular markers,
it also provides the basis for genetic mapping [3]. Recombination is generated by double
strand breaks (DSBs) in a chromosome [4]. With the repair of DSBs through the double Hol-
liday junction or synthesis-dependent strand annealing pathways, two results are possibly
produced, i.e., crossovers (COs) and non-crossovers (NCOs) [5,6]. COs are the reciprocal
exchanges of DNA fragments between homologues, whereas NCOs are the recombination
products where a section of genetic information is copied from one homologous chro-
mosome to the other, without affecting the donating chromosome. Consequently, a CO
affects two chromatids, but an NCO affects only one chromatid [5,6]. In most species,
the number of COs occupies a small fraction of the DSBs [7,8]. However, because of the
creation of physical connection between homologous chromosome pairs, COs are essential
for faithful chromosome segregation in meiosis [9]. Moreover, because NCOs are very
short and difficult to detect [10,11], most studies used the rate of CO events to represent
the recombination rate [12–14].

Many studies have shown that the CO rates are quite dissimilar in different organisms,
and the distribution of CO events varies greatly even in closely related taxa, populations and
individuals [15,16]. Among them, the most striking is that the CO rate of microorganisms
and fungi is much higher than that of animals and plants [17]. In fact, this comparison is
more common in the specific taxonomic groups. For example, among mammals, marsupials
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have lower CO rates [18]; and among plants, conifers have very low CO rates [19]. Moreover,
a large number of articles have proved that the CO rates of different organisms are related
to the genome architecture and chromatin structure [20–23]. In addition, selection pressure
and environmental factors may also lead to the difference of CO rates [24,25].

COs at both chromosomal and local scales are strictly controlled by a pervasive mech-
anism [26,27], and they do not arise as independent events. The mechanism is called CO
interference [28], by which the occurrence of a CO affects the formation of other COs in its
vicinity. Early studies of genetic maps showed that the existence of a CO in one chromoso-
mal interval reduces the probability of another CO occurring nearby [29], a phenomenon
called positive interference. However, subsequent studies in maize [30] and Arabidopsis
thaliana [12] found the opposite phenomenon, that is, CO interference could increase the
probability of occurrence of nearby COs (negative interference). CO interference is ex-
tremely different in some species. For example, in the meiosis of Caenorhabditis elegans, each
bivalent produced exactly one CO, which indicated that there existed complete interfer-
ence [31], whereas there was weak or no interference in Aspergillus nidulans [32]. Apart from
these extreme cases, CO interference also varies greatly in different species. For example,
the strength of interference across the dog genome was estimated to be much higher than
that in the human genome [33]. Another noteworthy phenomenon is that there is com-
pelling evidence that females and males also have disparate interference landscapes [33,34].
In Anser anser [35], Canis familiaris [33], Homo sapiens [36,37], and Prunus mume [28], the CO
interference in females is lower than that in males. In contrast, in Bos Taurus [38,39] and
A. thaliana [12,40], the CO interference is higher in females than in males. Some studies
indicated that the difference of CO interference between the sexes may be the main factor
leading to the sexual difference in CO rates [34].

The genus Populus was used as a model system in forest genetics and woody plant
studies [41]. Although numerous linkage maps have been constructed with different types
of genetic markers in the genus [42–46], little is known about the CO patterns in different
poplar species. Wang et al. [47] compared the average CO rate over 100-kbp nonoverlapping
windows of three related poplar species, but there were no reports about the genome-wide
difference in CO patterns between the species. In this study, we reported the CO patterns
across the genome in an F1 hybrid population derived by crossing a female P. deltoides and
a male P. simonii. The F1 population was established in our previous studies and a large
number of individuals were successively sequenced with the restriction site-associated
DNA sequencing (RADseq) technology [43,46]. Single nucleotide polymorphism (SNP)
genotypes of individuals were obtained by mapping their paired-end (PE) reads to the
genome sequence of P. simonii [48]. We chose those RAD tags that contained two SNPs,
one heterozygous in the female and homozygous in the male and the other vice versa,
to investigate the difference of CO patterns between the two species. The result would
facilitate not only understanding of the CO role in the evolution of organisms and species,
but also rebuild the statistical model for precisely constructing genetic linkage maps, which
are critical in mapping quantitative trait loci (QTLs) and genome assembly [49]. Meanwhile,
the novel strategy of investigating the difference of CO pattern between two parents using
an F1 hybrid population could be applied in other outbred species.

2. Results
2.1. SNP Genotype Data

A total of 48,938 SNPs were obtained across the two parents and 257 individuals in
the F1 hybrid population of P. deltoides and P. simonii by mapping their RADseq reads
to the male parent genome sequences of P. simonii [50]. The average number of RADseq
reads was 18,416,890 for the parents and the progeny (Supplementary Table S1). After a
stringent filtering procedure with the NGS QC toolkit [51], an average amount of 4.61 Gb
HQ data per individual remained for calling SNP genotypes. As expected from previous
studies in the same population [46,52], the majority of SNPs segregated in the ratio of 1:1
(p > 0.01), with 29,466 SNPs segregating in the type of ab × aa and 18,863 in aa × ab. The
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SNP genotype for each individual at each SNP site satisfied the requirements that the read
coverage depth of an allele was ≥3 for heterozygosity and ≥5 for homozygosity, and that
the Phred score was at least 30. Although the missing genotype rate was allowed to up
to 20% at an SNP site, the average number of genotyped individuals was up to 239 per
SNP site.

Based on the two SNP datasets of different segregation types, a total of 1157 RAD tags
were selected for performing the comparison analysis of CO rate and interference between
the female and male parents. These RAD tags spanned 95.34% of the reference genome.
Each RAD tag contained two SNPs fulfilling the condition that one segregates in ab × aa
and the other in aa × ab (Figure 1A), and that the distance between them is less than 1 Kb.
Moreover, the distance between any two adjacent RAD tags was greater than 100 Kb so
that the crossover events in the interval can be detected in the population. In addition,
the distributions of the RAD tag number and interval length within chromosomes were
outlined in Table 1. It can be seen that the average interval length was around 300 Kb in
all chromosomes except chromosome 19, in which the average length was doubled up to
636 Kb.
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Figure 1. The P. deltoides and P. simonii crossover (CO) rates between two restriction site-associated
DNA (RAD) tags. (A) Each RAD tag contains two SNPs, one with a segregation pattern of ab × aa
and the other aa × ab. (B) The counts of genotypes at single nucleotide polymorphisms (SNPs) 1 and
3 in the progeny provide the estimate of the female parental P. deltoides CO rate assuming the linkage
phase in coupling. (C) The counts of genotypes at SNPs 2 and 4 provide the estimate of the male
parental P. simonii CO rate assuming the linkage phase in coupling.
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Table 1. Summary of adjacent RAD tag interval lengths and CO rates within chromosomes in the
female parent Populus deltoides and the male parent Populus simonii.

Chrom. RAD Tag
Number

Length
Range (Kb)

Length
Mean (Kb)

Female CO
Rate Range

Female CO
Rate Mean

Male CO
Rate Range

Male CO
Rate Mean

Chr01 151 101~1492 337 0.005~0.150 0.053 0.004~0.166 0.040
Chr02 88 102~1191 282 0.008~0.111 0.047 0.005~0.118 0.043
Chr03 67 100~1502 313 0.005~0.113 0.046 0.004~0.117 0.044
Chr04 67 103~1370 338 0.004~0.137 0.044 0.008~0.111 0.040
Chr05 71 105~2195 336 0.008~0.202 0.060 0.004~0.100 0.040
Chr06 83 100~1490 324 0.008~0.192 0.057 0.005~0.202 0.046
Chr07 49 102~1175 301 0.004~0.170 0.052 0.009~0.102 0.042
Chr08 51 110~1566 374 0.004~0.165 0.056 0.014~0.225 0.066
Chr09 54 101~1310 248 0.008~0.147 0.043 0.008~0.095 0.038
Chr10 82 100~1056 265 0.005~0.164 0.050 0.004~0.123 0.039
Chr11 41 108~2405 403 0.004~0.127 0.060 0.009~0.123 0.039
Chr12 37 103~2025 365 0.009~0.145 0.050 0.008~0.159 0.052
Chr13 42 100~1755 346 0.008~0.152 0.048 0.004~0.089 0.039
Chr14 60 106~1990 325 0.004~0.203 0.045 0.005~0.147 0.045
Chr15 46 102~2311 314 0.012~0.110 0.044 0.004~0.136 0.040
Chr16 40 109~1659 374 0.005~0.167 0.052 0.005~0.158 0.043
Chr17 49 102~869 314 0.008~0.148 0.053 0.009~0.101 0.042
Chr18 47 100~2837 306 0.004~0.201 0.047 0.004~0.204 0.044
Chr19 32 104~3687 625 0.008~0.120 0.056 0.012~0.158 0.054

2.2. Difference of CO Rates between Two Parents

We calculated the CO rates in each RAD tag interval using the SNPs with segregation
types of ab × aa for the female parent P. deltoides and aa × ab for the male parent P. simonii.
The range and mean of CO rates within chromosomes were presented for P. deltoides and
P. simonii in Table 1. It can be observed that the minimum CO rate was 0.004 and the
maximum up to 0.224 over the intervals on all chromosomes. The means of CO rates on
all chromosomes but three (Chr08, Chr12, and Chr14) were greater in P. deltoides than in
P. simonii. The maximum mean difference was found to occur in chromosome 5 and 11. The
Wilcoxon signed-rank test showed that the difference of the mean CO rate between the two
species was significant with a p-value of 0.002.

We tested the difference of CO rates between the two species in each interval with the
LR statistic. Consequently, of all the 1138 RAD tag intervals, there existed 307 intervals
in which the CO rates between the two species were significantly different (Figure 2).
The distribution of the number of these significant intervals within chromosomes was
summarized in Table 2. We found that two or more significant intervals were successive and
formed a region that we called a significant region. The number of the significant regions
within each chromosome was also summarized in Table 2. Meanwhile, the distribution
of the length of significant intervals and regions was investigated and also presented in
Table 2 for each chromosome. It can be seen that the lengths of most significant intervals and
regions were less than 1 Mb, but there were 27 significant intervals or regions distributed on
13 chromosomes whose lengths were greater than 1 Mb. Furthermore, the coverage of the
significant intervals of each chromosome was calculated to be ranged from 6.91% (Chr18)
to 33.65% (Chr04), resulting in a total coverage of 23.80% of the whole genome (Table 2).
In addition, we found that the maximum significant region contained three significant
intervals and spanned 2.36 Mb on Chr04 (Figure 2).
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Figure 2. Distribution of RAD tag intervals and regions within chromosomes for significantly
differential CO rates between the P. deltoides and P. simonii. The yellow and red bars represent the
intervals when the significances are at the 0.05 and 0.01 levels, respectively. Two or more successive
significant intervals constitute a significant region.

Table 2. Distribution of the numbers of significant SNP intervals and regions over different lengths
within chromosomes. The CO rates of these intervals are significantly different in the two parents.
The significant region is constituted of two or more continuous significant intervals.

Chrom. Interval Sig.
Interval

Sig.
Region 100–500 kb 500 Kb–1 Mb ≥1 Mb Cover.

(Mb) a
Percent
(%) b

Chrom.
Size (Mb) c

Chr01 150 41 11 15 6 4 13.06 25.69 50.84
Chr02 87 32 8 13 3 1 6.86 27.09 25.34
Chr03 66 13 2 8 3 0 3.70 17.63 20.97
Chr04 66 16 4 5 2 3 7.92 33.65 23.53
Chr05 70 23 5 9 3 2 7.32 28.83 25.39
Chr06 82 25 8 9 4 3 8.46 30.98 27.31
Chr07 48 10 2 6 0 1 3.43 21.82 15.71
Chr08 50 20 7 5 3 3 7.43 37.72 19.71
Chr09 53 11 3 3 3 0 3.28 24.14 13.60
Chr10 81 24 4 9 1 3 6.35 28.53 22.25
Chr11 40 15 4 3 1 2 3.94 21.04 18.70
Chr12 36 7 3 3 1 0 1.65 10.75 15.30
Chr13 41 7 2 3 0 2 3.58 22.65 15.80
Chr14 59 17 5 6 2 1 5.21 26.35 19.76
Chr15 45 12 3 8 0 1 3.43 22.75 15.07
Chr16 39 8 3 1 1 1 2.13 14.52 14.66
Chr17 48 13 2 5 3 0 3.23 20.29 15.92
Chr18 46 6 0 6 0 0 1.01 6.91 14.60
Chr19 31 7 1 6 0 0 1.81 9.20 19.64
Total 1138 307 77 123 36 27 93.78 23.80 394.11

a The total coverage length in Mb of the significant intervals in the chromosome. b The percentage of the total
coverage of significant intervals over the chromosome length. c The chromosome size of Populus simonii [50].
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2.3. Investigation of CO Interference in Both Species

Since the degree of CO interference between two adjacent marker intervals depends
on the interval lengths, different scales of the SNP intervals were considered to investigate
the landscape of CO interference across the genomes in the female P. deltoides and male
P. simonii. We selected those SNPs such that the minimum interval length (MIL) was
required to be 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0 Mb separately for calculating the coefficient of
coincidence (CoC). When the MIL was equal to 0.5 Mb, there were 454 pairs of adjacent
SNP intervals, of which 290 and 233 showed significant CO interference in P. deltoides and
P. simonii, occupying 79.86% and 69.77% of their genomes, respectively (Table 3, Figure 3).
As the MIL increased, the number of adjacent interval pairs with CO interference (NPCI)
decreased, covering over half of the genomes for most cases. When the MIL reached 4.0 Mb
or more, the interference-occurred regions in the male P. simonii abruptly became small. If
the MIL was equal to 5.0 Mb, there existed nine pairs of interference-occurred intervals,
covering 22.78% of the male P. simonii genome. Similarly, when the MIL reached 5.0 Mb,
the NPCI in the female P. deltoides decreased abruptly from 290 to 14, with the genome
coverage from 79.86% to 35.10% (Table 3). Overall, except the case when the MIL was
equal to 3.0 Mb, the NPCI was slightly larger in the female than in the male, indicating that
P. deltoides has a higher level of CO interference.
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mosomes in the male (M) P. simonii and female (F) P. deltoides. The minimum interval length was set
to be 0.5 Mb. The red and gray bars indicate the regions with and without CO inference, respectively.
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Table 3. The number of pairs of adjacent interference-occurred intervals with their coverage in bracket
across different minimum interval lengths in the genomes of the female (F) P. deltoides and the male
(M) P. simonii.

Parent CoC 0.5 Mb 1.0 Mb 2.0 Mb 3.0 Mb 4.0 Mb 5.0 Mb

F >1 214 64 13 9 3 0
<1 76 34 29 25 25 14

Total
(Coverage) 290 (79.86%) 98 (57.05%) 42 (54.79%) 34 (46.17%) 28 (55.35%) 14 (35.10%)

M >1 138 37 8 2 1 0
<1 95 40 31 34 18 9

Total
(Coverage) 233 (69.77%) 77 (46.35%) 39 (52.44%) 36 (55.50%) 19 (38.28%) 9 (22.78%)

Both F and M >1 81 18 1 1 0 0
<1 17 3 12 14 11 4

Total
(Coverage) 168 (52.61%) 37 (24.21%) 16 (23.81%) 17 (27.46%) 12 (24.26%) 4 (9.20%)

We found that the number of the common pairs of interference-occurred intervals in
both species decreased as the MIL increased (Table 3). When the MIL was set as 0.5 Mb,
there were 168 common pairs of interference-occurred intervals, spanning 52.61% of the
genomes. However, when the MIL increased to 5.0 Mb, only four common pairs of
interference-occurred intervals existed, covering 9.20% of the genomes.

The positive and negative CO interferences were also investigated across the cases of
different MILs (Table 3). It was observed that when the MIL was equal to 0.5 Mb, the number
of pairs of negative interference intervals (CoC > 1) was significantly greater than that of
positive interference intervals (CoC < 1), especially for the female P. deltoides (214 versus
76). For each species, we observed that the number of pairs of positive interference
intervals generally decreased to 0 as the MIL increased from 0.5 to 5.0 Mb, indicating that
the positive interference vanished when the interval length was equal to or greater than
5.0 Mb. Meanwhile, the number of pairs of negative interference intervals decreased to the
minimum numbers for each species as the MIL increased from 0.5 to 5.0 Mb.

We further compared the difference of CO interference between the female P. deltoides
and male P. simonii by calculating interference strength parameters within chromosomes.
Figure 4 showed the estimated values of interference strength across the 19 chromosomes
for the female and male. It was observed that the parameters were consistently less than 1,
and those for the female were generally less than for the male in all chromosomes except in
chromosome 4. Moreover, the result from the t test showed that the average value (0.559) of
the female parameters was significantly less than that (0.611) of the male (p-value = 0.012),
indicating the negative interference strength in P. deltoides was greater than that in P. simonii.
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3. Discussion

We took a novel strategy to successfully reveal the landscape of genome-wide CO
events in an F1 hybrid population of P. deltoides and P. simonii. Such work used to be
considered a tough task in forest trees. In inbred lines, reciprocal backcrosses with the same
set of molecular markers were usually utilized to investigate the similarities and differences
of male and female recombination in plants such as in Arabidopsis [12,54], Brassica nigra [55],
and maize [56]. However, it is not so easy to establish the BC populations in forest trees
because of their specific biological characteristics such as high heterozygosity and long
generation times. Although the so-called ‘pseudo-testcross’ was often applied for linkage
mapping in forest trees [57], there exists a barrier that the linkage phase was not fixed so
that the traditional software for linkage analysis cannot be directly used [58,59]. Yet, in the
current study, we obtained RAD tags in the F1 hybrid population with the RAD sequencing
technology [60,61]. These RAD tags contained two types of SNPs—one that segregated in
ab × aa, and the other in aa × ab (Figure 1)—constituting two datasets just like from two
separate ‘pseudo-testcross’ populations and permitting the investigation of the CO patterns
between two parents in the same genome regions. This strategy of combining the use of
the F1 hybrid population and the RAD sequencing technology for studying COs of two
parents could be applied to other forest trees or even other outbred species.

However, the analysis of such a strategy cannot be directly implemented with the
traditional statistical methods applied in the populations derived from inbred lines. Since
the linkage phase between two SNP markers was not fixed in the ‘pseudo-testcross’ popula-
tion, we first inferred the linkage phase from coupling and repulsion cases using two-point
linkage analysis before comparing the CO rates between the two parents at the same region.
Meanwhile, in the analysis of CO interference, different linkage phase combinations of two
adjacent marker intervals were also considered to establish the likelihood for estimating the
CoC and performing the corresponding hypothesis test (Supplementary Text S1). Unlike
in the previous studies [12,54–56], we proposed a statistical strategy for analyzing the CO
patterns in the two parents, which was based on the maximum likelihood framework and
simultaneously incorporated the complex linkage phases in the F1 hybrid population.

We therefore revealed the genome-wide CO patterns between the two parents in the
F1 population, though the result may not be suitable for all species in Populus. First, the
CO rate of the female P. deltoides is generally greater than that of the male P. simonii across
the genomes, with 23.80% of the genome regions in which the two parental CO rates
were significantly different. This result is opposite to many studies which showed that, in
angiosperms, the CO rate in females was lower than in males [62]. Second, we revealed
that the occurrence of CO interference pervaded both parental genomes at local scale when
the MIL was limited to 0.5 Mb, covering ~80% of the female P. deltoides genome and ~70%
of the male P. simonii genome, where the negative interference was more frequent than
the positive interference (Table 3). Moreover, we found that there existed a significant
difference of CO interference between the two parents in that the negative interference in
the female was stronger than in the male. The phenomenon of extensive occurrences of
CO interference was also observed by Wang et al. [63] in P. euphratica. The difference of
interference strength between two sexes in Populus was similar to the results from studies
in mice and cattle [34,39], and even in humans [64]. However, our result is limited to the
female P. deltoides and the male P. simonii. Therefore, extensive studies should be performed
in other intraspecific or interspecific crosses to further confirm whether such a result is a
common phenomenon in Populus.

Besides helping understand its roles in the evolution of species, the assessment of CO
interference has great implications in modelling multi-loci linkage analysis for precisely
constructing genetic linkage maps. Up to date, the most popular genetic mapping soft-
ware such as JoinMap [65] and MapMaker [66] did not incorporate the situation of CO
interference either in two- and three-point linkage analysis or in multiple locus ordering.
If CO interference significantly existed in meiosis, linkage maps constructed with these
tools certainly had some limitations in the estimated genetic distances between markers
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and the marker orders within linkage groups, possibly seriously affecting the downstream
analyses such as map-based QTL mapping [67,68] and genome sequence assembly [50,69].
Therefore, it is necessary to develop new algorithms by incorporating the CO inference
parameters to calculate the genetic distances and the likelihood for an order of a large
number of marker loci. This would substantially enhance the accuracy of genetic maps and
thus facilitate the assembly of contigs or scaffolds into chromosomes, which is an important
task in the era of high-throughput genomic sequencing [49]. It is worth noting that the CO
interference affects QTL studies in two aspects. On the one hand, genetic linkage maps that
incorporated CO interference could improve the power of detecting QTLs. On the other
hand, the popular QTL statistical methods such as interval mapping [67] and composite
interval mapping [68] were established under the assumption of without CO interference.
Without any doubt, if CO interference was incorporated into these QTL mapping models,
it would greatly improve their ability to identify QTLs.

4. Materials and Methods
4.1. Plant Material and Sequencing Data

A total of 257 individual trees were selected from the F1 hybrid population of P. deltoides
and P. simonii for investigating the difference of CO patterns between the two parents. The
F1 population was established by crossing the female P. deltoides and the male P. simonii
from 2009 to 2011, as described in Tong et al. [46] and Mousavi et al. [43]. The selected
individuals and their parents were sequenced with RADseq technology in 2013 and 2016,
and each had PE reads data of > 2× genome coverage [50]. The accession number prefixed
with SRR of each individual data was listed in Supplementary Table S1 and all the data
reads are available in the NCBI SRA database (http://www.ncbi.nlm.nih.gov/Traces/sra,
accessed on 1 January 2022).

4.2. SNP Genotyping

First of all, the PE reads of each individual were filtered to generate high-quality
(HQ) data using the NGS QC toolkit with default parameters [51]. Then, we mapped the
HQ reads to the improved genome sequence of the male parent P. simonii [50] to call SNP
genotypes of each individual using the software BWA [70], SAMtools and BCFtools [71].
The calling procedures were as follows: (1) mapping each individual HQ reads to the
reference genome to obtain a sequence alignment/map (SAM) format file using the mem
command of BWA with default parameters; (2) converting each SAM file to BAM format
and sorting and indexing it with SAMtools; (3) producing a BCF file with each sorted
BAM file using the command bcftools mpileup -Obuzv -a AD,INFO/AD –f ; (4) generating
VCF files with the command bcftools call -m -v -f gq for each parent; (5) filtering SNPs
from the two parental VCF files such that the allele DP (read coverage depth) ≥ 3 and the
GQ (genotyping quality) > 30, and merging the two parental SNP sites into a list site file;
(6) creating VCF files for all individuals with the command bcftools call -m -v -f gq using
the list site file generated above; (7) extracting all SNP genotypes of each individual from
its VCF file, satisfying that the allele DP ≥ 3 and GQ > 30 for a heterozygous genotype
and that the allele DP ≥ 5 for a homozygous genotype; and (8) merging all individual SNP
genotypes into one SNP dataset.

As indicated in the previous studies [43,46,50], the SNPs were mainly segregated in
the patterns of aa × ab and ab × aa, where the first two letters represent the female parental
genotype and the last two the male parental genotype. We extracted two SNP datasets, one
for the segregation type of aa × ab and the other for the type of ab × aa. Meanwhile, we
filtered out those SNPs that were seriously deviated from the Mendelian segregation ratio
of 1:1 (p > 0.01). Moreover, those SNPs with more than 20% missing genotypes across the
progeny were also removed from the dataset.

We further selected RAD tags that contained two SNPs, one with a segregation pattern
of ab × aa and the other aa × ab (Figure 1A), to investigate the difference of CO patterns
between the two parents. The genotypes of the adjacent RAD tags in the F1 progeny

http://www.ncbi.nlm.nih.gov/Traces/sra
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allowed us to estimate the female and male parental CO rates (Figure 1B,C), and even to
compare the CO interference between the two species (Figure 5).
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Figure 5. Three RAD tags provide information on CO interference for the female P. deltoides and
male P. simonii. (A) Three RAD tags constitute two adjacent marker intervals. Each RAD tag contains
two SNPs, one with a segregation pattern of ab × aa and the other aa × ab. (B) The counts and
frequencies of genotypes at SNPs 1, 3, and 5 in the progeny provide the estimate of the CoC of the
female P. deltoides between the two intervals, assuming the linkage phases in coupling. (C) The counts
and frequencies of genotypes at SNPs 2, 4, and 6 in the progeny provide the estimate of the CoC of
the male P. simonii between the two intervals assuming the linkage phases in coupling.

4.3. Comparison of CO Rates between Two Parents

For any two adjacent RAD tags as described above (Figure 1A), assume the female
P. deltoides and the male P. simonii CO rates to be r f and rm, respectively. In the F1 hybrid
population, if we denote the counts of the four genotypes as n11,n12,n13, and n14 at the two
SNPs that are contained in the two RAD tags and segregate in ab × aa (Figure 1B), and the
counts of the four genotypes as n21,n22,n23, and n24 at the two SNPs segregating in aa × ab
(Figure 1C), then the likelihood of r f and rm can be expressed, under the assumption of
coupling linkage phase, as

L1(r f , rm) =
n1!

n11!n12!n13!n14!

[
1
2

(
1 − r f

)]n11+n14
(

1
2

r f

)n12+n13

× n2!
n21!n22!n23!n24!

[
1
2
(1 − rm)

]n21+n24
(

1
2

rm

)n22+n23

(1)

where n1 = n11 + n12 + n13 + n14 and n2 = n21 + n22 + n23 + n24. The maximum likelihood
estimates (MLEs) of r f and rm can be easily obtained as

r̂ f =
n12 + n13

n1
and rm =

n22 + n23

n2
(2)

To test if the CO rates of the two sexes are equal or not, the null hypothesis is defined
as H10 : r f = rm = r, under which the likelihood can be written as

L10(r) =
n1!

n11!n12!n13!n14!
× n2!

n21!n22!n23!n24!

[
1
2
(1 − r)

]n11+n14+n21+n24
(

1
2

r
)n12+n13+n22+n23

(3)
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and the ML estimate is derived as

r̂ =
n12 + n13 + n22 + n23

n1 + n2
(4)

Therefore, the log-likelihood ratio (LR) of the full model over the null model is ex-
pressed as

LR1 = 2 log

[
L1(r̂ f , r̂m)

L10(r̂)

]
(5)

which is asymptotically distributed as a chi-square distribution with 1 degree of freedom.

4.4. Analysis of CO Interference in Both Parents

Suppose that three adjacent RAD tags 1, 2 and 3 are located in such an order on thw
chromosome, each containing two SNPs with different segregation types (Figure 5A). For
the SNPs of 1, 3, and 5 that segregate in ab × aa on the three RAD tags (Figure 5B), let C f
denote the CoC between the two adjacent SNP intervals for the female parent and r f ij the
frequencies of crossovers occurred (i = 1) or not (i = 0) in the first interval, and occurred
(j = 1) or not (j = 0) in the second interval. Then, we have the relationships between the
CoC and the CO rates under the assumption of coupling linkage phases, as the following:

r f 11 = r f 1r f 2C f
r f 01 = r f 2 − r f 1r f 2C f
r f 10 = r f 1 − r f 1r f 2C f
r f 00 = 1 − r f 1 − r f 2 + r f 1r f 2C f

(6)

where r f 1 and r f 2 are the CO rates of the first and second intervals, respectively. Therefore,
the likelihood of the CO rates and the CoC can be written as

L f (C f ) =
n1!

∏8
j=1 n1j!

(
1
2

r f 00

)n11+n18
(

1
2

r f 01

)n12+n17
(

1
2

r f 10

)n14+n15
(

1
2

r f 11

)n13+n16

(7)

from which the MLEs of the parameters r f 1, r f 2, and C f can be obtained as the following
(Supplementary Text S1): 

r̂ f 1 = 1
n1
(n13 + n14 + n15 + n16)

r̂ f 2 = 1
n1
(n12 + n13 + n16 + n17)

Ĉ f =
n13+n16
n1 r̂ f 1 r̂ f 2

(8)

where n f = n11 + n12 + . . . + n18. To test if the crossover interference exists between the
two adjacent SNP intervals, we applied the LR statistic as

LR f = 2 log

[
L f (Ĉ f )

L f (C f = 1)

]
(9)

where n2j and rmij denote the counts and frequencies of crossovers similar to Equation (6)
containing the CO rates of the first and second SNP intervals and the parameter Cm.
Meanwhile, the LR statistic for testing the existence of the CO interference can be applied
and has the same form as Equation (9).

The above analyses of CO interference are under the assumption of the coupling link-
age phase, i.e., the Case 1 of linkage phases as described in Supplementary Text S1. For the
other cases of linkage phases, the corresponding likelihoods and LR statistics largely have
the same forms as above, but with different forms of exponents in Equations (7) and (10),
which lead to the MLEs of the parameters as modified versions of Equation (8).

To compare the difference of CO interference between the two parents, we used the
R package xoi to estimate the strength of interference by fitting a gamma model to the
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distribution of observed crossover [53]. The parameter ν of the fitted gamma distribution is
a measure of the strength of CO interference, corresponding to no, positive, and negative
interference for ν = 1, ν > 1, and ν < 1, respectively. The comparison of interference
strength between two sexes was performed using a student’s t test on the values estimated
from each chromosome.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11081046/s1. Table S1: (SuppFileS1.xlsx) The RADseq data
information for the two parents and 257 progenies in the F1 hybrid population of Populus deltoides
and Populus simonii. Text S1: (SuppFileS2.pdf) Calculation of the coefficient of coincidence between
the two adjacent SNP intervals for the female parent in an F1 population of Populus deltoides and
Populus simonii.
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