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Simple Summary: In this study, we focused on exploring phagocytosis regulators’ expression and
mutational characteristics in skin cutaneous melanoma samples and delineating two molecular
subtypes based on expression characteristics. We determined the relationship between phagocytosis
regulators and survival by survival analysis of molecular subtypes. We then constructed a survival
model (PRRS) to further quantify the criteria. Moreover, we combined pathway analysis, immune
infiltration analysis, and mutation analysis to deeply explore the effects of phagocytosis regulators
on skin cutaneous melanoma samples.

Abstract: Tumor-associated macrophages (TAMs) have gained considerable attention as therapeutic
targets. Monoclonal antibody treatments directed against tumor antigens contribute significantly to
cancer cell clearance by activating macrophages to phagocytose tumor cells. Due to its complicated
genetic and molecular pathways, skin cutaneous melanoma (SKCM) has not yet attained the expected
clinical efficacy and prognosis when compared to other skin cancers. Therefore, we chose TAMs
as an entrance point. This study aimed to thoroughly assess the dysregulation and regulatory
role of phagocytosis regulators in SKCM, as well as to understand their regulatory patterns in
SKCM. This study subtyped prognosis-related phagocytosis regulators to investigate prognostic
differences between subtypes. Then, we screened prognostic factors and constructed phagocytosis-
related scoring models for survival prediction using differentially expressed genes (DEGs) between
subtypes. Additionally, we investigated alternative treatment options using chemotherapeutic drug
response data and clinical cohort treatment data. We first characterized and generalized phagocytosis
regulators in SKCM and extensively examined the tumor immune cell infiltration. We created two
phagocytosis regulator-related system (PRRS) phenotypes and derived PRRS scores using a principal
component analysis (PCA) technique. We discovered that subtypes with low PRRS scores had a
poor prognosis and decreased immune checkpoint-associated gene expression levels. We observed
significant therapeutic and clinical improvements in patients with higher PRRS scores. Our findings
imply that the PRRS scoring system can be employed as an independent and robust prognostic
biomarker, serving as a critical reference point for developing novel immunotherapeutic methods.

Keywords: phagocytosis regulators; skin cutaneous melanoma; tumor-associated macrophages;
tumor immune cell infiltration; subtype division
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1. Introduction

Currently, we know that phagocytosis is involved in a variety of developmental,
homeostatic, and tissue dynamic homeostasis processes inside the organism. It is crucial in
tumor surveillance [1,2], foreign pathogen defense, neutralization, and eradication [3], as
well as apoptosis, the clearance of cellular detritus after injury [4–7], and synaptic prun-
ing [8]. Phagocytes ingest a variety of different particles via a variety of surface receptors
and signaling cascades on their cell membranes [9]. Moreover, dysfunction in phagocytosis
can result in immune system malfunction, aberrant protein aggregation, and developmental
abnormalities [9,10].

In recent years, tumor-associated macrophages (TAMs) have gained increased atten-
tion as a potential target for tumor therapy. Macrophages, a substantial component of
leukocyte infiltration, are present in varying amounts throughout all malignancies, and
macrophages are essential inflammatory mediators in tumors [11]. TAM plays a critical
function in cancer-related inflammation as a coordinator (CRI) [12]. It promotes tumor
development on multiple levels, including promoting genetic instability, cultivating cancer
stem cells, establishing metastasis, and suppressing adaptive protective immunity. Addi-
tionally, it exhibits T cell checkpoint activation triggers, and is thus a target for checkpoint
blockade treatment [13].

Skin cutaneous melanoma (SKCM) is a malignant tumor arising from melanocytes of
the skin and other organs, mainly in the skin and mucous membranes. Its pathogenesis
is currently unknown, and extensive global data suggests that the most critical risk factor
for the disease is overexposure to UV light [14]. The WHO has now designated indoor
tanning as a carcinogen [15], and data from the United States in 2018 suggest that age,
race, and gender are independent risk factors for SKCM [16]. The incidence of SKCM
has climbed yearly, growing from 1 per 100,000 in 1940 to 17.74 per 100,000 in 2000 in
the United States [17]. Furthermore, more than 100,000 cases of SKCM were reported in
the United States in 2021 [18]. Its incidence is growing faster than all other cancer types,
with approximately 55,000 deaths from SKCM worldwide yearly [19]. Its incidence in
2019 ranked third among men (684,470 cases) and fifth among women (672,140 cases) [20].
Compared with other skin tumors, SKCM has clinical features such as high late mortality,
high recurrence rate, and high drug resistance due to its complex genetic and molecular
mechanisms, making its clinical outcome and prognosis consistently unsatisfactory [21,22].

A study by Georgoudaki et al. revealed that TAM-mediated phagocytosis could influ-
ence tumor stem cell development and differentiation, tumor invasion and migration, and
immune resistance. TAM can influence tumor cell growth and metastatic spread through
immunosuppression in the tumor microenvironment (TME), thus serving as a critical target
for tumor therapy [23]. Yamazaki et al.’s study suggested that phagocytosis can affect the
TME as well, and thus interfere with tumor proliferation and differentiation, which has a
promising future in tumor therapy [24]. TAM-mediated phagocytosis not only plays a role
in the genesis of SKCM tumors, it promotes tumor drug resistance as well, and may exist
as a constitutive state of metastatic SKCM cells [25]. The primary (M0 type) TAM can be
differentiated into M1 and M2 types, which play different roles in the tumor, by recruitment
and polarization of different cytokines in the TME [26]. The M1 type can inhibit tumor
progression, and the M2 type can promote tumor growth [27]. The phenotype of TAM in
SKCM is essential to analyzing tumor progression and identifying personalized therapies.
According to Falleni et al., TAM has an M1 to M2 type switch during SKCM progression.
Moreover, the accumulation of M2 type TAM is more significant than M1 type throughout
the tumor development stage, thus favoring tumor growth and strongly correlating with
poor prognosis [28]. In addition, Gordan et al. revealed that TAM can express PD-1 in
humans and mice and that TAM PD-1 expression increases over time and with disease
progression. TAM expression of PD-1 is negatively correlated with phagocytosis of anti-
tumor cells; blocking PD-1/PD-L1 increases TAM phagocytosis and slows tumor growth.
This suggests that immunotherapies such as PD-1/PD-L1 can operate directly on TAM,
which has crucial implications for their use in tumor treatment [29]. Thus, TAM is a critical
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entry point for immunotherapeutic treatment of SKCM. Identifying and characterizing
the regulation of TAM by phagocytosis regulators plays a crucial role in resolving the
mechanism of cytophagocytosis in SKCM.

We employed a combination of several databases in this study to distill and summarize
phagocytosis regulators discovered in prior research. We used the phagocytosis regulator-
related system (PRRS) to develop a survival prediction model and assess patient prognosis
by fully integrating immune cell infiltration within SKCM. Additionally, we estimated tumor
micro-environment (TME) patterns in patients with high and low PRRS subgroups, and
validated the PRRS scoring method using multiple model validation and clinical validation.

2. Material and Methods
2.1. Data Collection, Functional Analysis of Phagocytosis Regulators and Aberrant Phagocytosis
in Tumors

First, we obtained relevant expression, phenotype, survival, gene copy, and gene
mutation data from the TCGA database. The appropriate GEO data was downloaded
from the GEO database. Following that, we downloaded the human gtf files from the
Ensemble database. We obtained the set of immune cell-associated genes from Pornpimol
Charoentong et al. [30]. We downloaded the relationship between immune infiltrating cells
and gene expression from the TIMER database. We organized the data related to this study
in Tables 1–3.

Table 1. Characteristics of patients in TCGA-SKCM.

Variables Number of Cases

Age (years)
≤60/>60 251/206

Gender
Male/Female 285/172

Stage
0/I/II/III/IV/I or II nos/not reported 6/77/136/170/23/10/35

Pathologic T
T0/T1/T2/T3/T4/Tx

23/41/77/90/148/78

Pathologic N
N0/N1/N2/N3/Nx/NA 226/73/49/56/34/19

Pathologic M
M0/M1/NA 407/24/26

OS
Alive/Dead 235/222

Cluster 1

cluster 1/cluster 2
DEG cluster 2

DEG cluster 1/DEG cluster 2
Clark level

I/II/III/IV/V
Breslow depth

>median(high)/≤median(low)/NA

335/122

248/209

5/18/76/164/52

170/182/105
1 molecular subtypes; 2 molecular subtypes based on DEGs.

Table 2. Characteristics of patients in GSE54467.

Variables Number of Cases

Age (years)
≤60/>60 47/32

Gender
Male/Female 50/29
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Table 2. Cont.

Variables Number of Cases

Stage
I/II/III/not reported 29/29/20/1

Event
Alive/Dead 27/52

Table 3. Characteristics of patients in IMvigor210.

Variables Number of Cases

Event
Dead/Alive 189/109

Response
CR 1/PR 2/SD 3/PD 4 25/43/63/167

1 CR: complete response; 2 PR: partial response; 3 SD: stable disease; 4 PD: progressive disease.

Afterward, we investigated how phagocytosis regulators affect macrophage phagocytosis.
We collected phagocytosis regulatory factors for later analysis from Roarke A. Kamber’s [31]
and Michael S. Haney’s [32] studies using a 5% false discovery rate (FDR) threshold. We
combined them with those from Meghan A. Morrissey’s [33] study to access the complete
phagocytosis regulators set. We calculated macrophage enrichment scores for cancer samples
using the GSVA package in R and normalized the data using the scale function. We then
calculated the Pearson correlation between macrophage enrichment scores and phagocytosis
regulators’ expression, grouped the top six genes’ expression into high and low expression
groups using the median as nodes, and examined the macrophages’ enrichment scores in the
high and low expression groups. Additionally, we utilized the clusterProfiler package in R to
conduct functional analysis on phagocytosis regulators, screening them against p-value < 0.05
and q-value < 0.2 to identify critical enrichment pathways.

Furthermore, we investigated abnormal phagocytosis in SKCM. The relevant gene sets
were retrieved from the Molecular Signatures Database (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp, accessed on 26 January 2022) using the keyword “phagocytosis”,
which comprised 34 results; the samples were then grouped by age (>60 vs. ≤60) and stage
(III–IV vs. I–II). Gene wet enrichment analysis (GSEA) was performed based on the software
default thresholds, taking significant results (p < 0.05 and FDR < 0.25) for presentation.

2.2. Genetic and Transcriptional Analysis

We started by investigating transcriptional and genetic changes in phagocytosis regu-
lators in SKCM. We studied the differences in the expression of phagocytosis regulators
between various subgroups of cancer. Then, we downloaded the MAF files of TCGA-SKCM
mutations and mapped the mutation landscapes of phagocytosis regulators using the R
package Map Tools. Next, we obtained the TCGA-SKCM data on gene-level copy number
variation, counted the copy number changes of phagocytosis regulators, and estimated
variation frequencies. We identified the positions of phagocytosis regulators from human
chromosomal GTF data and utilized the R package RCircos to generate a gene circos map
for position visualization.

The effect of phagocytosis regulators on tumor survival was then investigated. We
combined overall survival (OS) data using univariate Cox regression analysis to iden-
tify genes associated with survival (p < 0.05), then divided the high and low expression
subgroups based on the phagocytosis regulators significantly associated with survival,
using their median as the node. To further investigate the correlation between genes, the
Kaplan–Meier (KM) curves of gene expression groups were plotted using the R packages
survival and survminer.

Furthermore, we extracted mutational information for phagocytosis regulators, screened
genes that were mutated in at least five samples (1 percent of total samples), and screened
genes that were significantly associated with survival based on mutation (p < 0.05) using

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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univariate Cox regression. The KM curves were then plotted based on mutation with or
without grouping in combination with OS for presentation.

2.3. Subtype Identification and Tumor Microenvironment Analysis

To begin, we classified molecular subtypes using phagocytosis regulators. We used
the R package Consensus Cluster Plus to perform unsupervised clustering of samples
based on the expression matrix of phagocytosis-regulated genes. The algorithm used
was kmdist, and the distance was Euclidean. We then obtained molecular subtypes of
phagocytosis-regulated genes using the PAC algorithm, followed by survival analysis of
samples between subtypes (cluster 1 and cluster 2) and plotting of OS-based KM curves.
At the same time, we performed principal component analysis (PCA) with the R packages
factoextra and FactoMineR, then drew PCA scatter plots.

Following that, we performed TME engraving among several phagocytosis subtypes.
Using the Hallmark gene set, we first performed GSEA of samples comparing subtypes
of phagocytosis-regulated gene molecules. Thereafter, using the estimate package in R,
we calculated the Stromal Score, Immune Score, ESTIMATE Score, and Tumor Purity of
cancer samples in TCGA-SKCM data, then quantified the differences in sample-related
scores between subtypes. In addition, the GSVA R package was utilized to calculate the
enrichment scores of 28 immune-infiltrating cells in cancer samples, obtain the results,
and normalize the data with the scale function. The proportion of immune cells in cancer
samples was calculated using the R package CIBERSORT and the online TIMER database.
We further collected immune checkpoint-related genes from the study of Xing Huang [34],
then counted the expression differences of related genes among different subtypes in the
TCGA-SKCM data.

Later, we performed validation of regulatory mechanisms among different phagocyto-
sis subtypes. We began screening differentially expressed genes (DEGs) between subtypes
(cluster 1 and cluster 2) using the R package limma with p < 0.05 and |logFC| > 1. We
used the R package clusterProfiler to perform functional analysis on DEGs using criteria of
p-value < 0.05 and q-value < 0.2 to identify significantly enriched pathways. Following that,
we performed unsupervised clustering of samples based on the DEG expression matrix
using the R package ConsensusClusterPlus, with pam as the algorithm and Euclidean as
the distance. We used the PAC algorithm to generate molecular subtypes based on DEGs
(DEG cluster 1 and DEG cluster 2), followed by survival analysis and sample plotting
between subtypes using OS-based KM curves. We further examined the expression of
phagocytosis-regulated genes among DEG molecular subtypes.

2.4. Construction and Validation of a Scoring System on Phagocytosis Regulators

First, we performed the construction of a phagocytosis regulator-related system (PRRS).
We performed bulk univariate Cox regression analysis for DEG of cancer samples combined
with OS data. After regression analysis, we screened genes significantly associated with OS
(p < 0.05) for PCA analysis to obtain principal component 1 and principal component 2,
and calculated the score for each sample based on the following formula:

PRRS = ∑(PC1i + PC2i) (1)

where i denotes the sample, PC1 denotes principal component 1, and PC2 denotes principal
component 2. Principal components 1 and 2 (PC1 and PC2) were chosen as signature scores.
This approach down-weighted contributions from genes that did not track with other
set members in favor of the score of the set that had the greatest block of genes with the
strongest correlations (or anti-correlations). Then, to define the PRRS, we used a formula
similar to earlier research [35,36].

To validate the model’s efficacy, we divided the PRRS of TCGA-SKCM samples into
high and low PRRS groups using the median as the node, combined with OS data, plotted
KM curves, and determined the difference between high and low PRRS groups to be
significant at p < 0.05. We then used the sample PRRS scores as the model prediction results
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and combined them with survival data to calculate the area under the curve (AUC) of the
model at one, three, and five year values and plotted the receiver operating characteristic
(ROC) curves. Afterwards, we downloaded the GSE54467 data from the GEO database.
PCA was conducted on the genes highly associated with OS based on TCGA data to
generate PC1 and PC2, and PRRS scores were then obtained to confirm the efficacy of our
model once again.

Following that, we verified whether PRRS was associated with tumor prognosis. To
determine whether the PRRS score grouping of TCGA data was an independent prognostic
factor, we performed a univariate Cox regression analysis with other prognostic factors
(age, gender, stage, cluster). In addition, we used multivariate Cox regression to examine
the overall prognosis of the above five components (including PRRS score grouping) to
demonstrate that the PRRS score factor was an independent prognostic factor. To further
confirm that PRRS score grouping was an independent predictive predictor, we merged
GSE54467 data by age, gender, and stage. Additionally, we examined the association
of PRRS with other clinical features. Finally, we calculated the PRRS differences across
subgroups and examined their significance. We carried out additional validation in two
datasets, GSE19234 and GSE65904, to confirm the effectiveness of our PRRS.

2.5. Molecular Mechanisms and Somatic Alteration Analysis

To explore the relation between PRRS and cancer hallmarks, we first calculated the
correlation between PRRS and hallmark enrichment scores and explored the functional
differences between different PRRS groupings. We obtained the differential expression
ranking of genes based on high and low PRRS groupings using the R package limma,
followed by GSEA of differential genes using the gseKEGG and gseGO functions of the R
package clusterProfiler (p < 0.05).

Next, we explored the TME of different PRRS subgroups. We further examined the
difference in GSVA-calculated enrichment scores of immune infiltrating cells between high
and low PRRS subgroups and demonstrated differences in the proportion of immune cells in
CIBERSORT and TIMER-calculated cancer samples between high and low PRRS subgroups.

In addition, we explored the differences in genomic alterations across different PRRS
subgroups. We used Masked Copy Number Segment data of TCGA-SKCM samples to
analyze copy number variation (CNV) changes between high and low PRRS groupings
online by GenePattern GISTIC 2.0 (https://cloud.genepattern.org/gp/pages/index.jsf,
accessed on 6 February 2022). Then, we visualized them using the R package maftools.
Moreover, we used the MAF files of TCGA-SKCM mutations in combination with the
high and low PRRS groupings, then utilized the R package maftools to plot the mutation
landscapes of the samples between the groupings.

2.6. Potential Immunotherapy Strategies Analysis

We performed chemotherapy drug resistance prediction using the R package pRRophetic
to predict the response of samples to 138 drugs to obtain the predicted IC50 values. We then
counted the differences in IC50 of samples in the high and low PRRS groups. After multiple
corrections with Bonferroni methods, six drugs with significant differences (p < 0.05) were
selected for presentation.

The IMvigor210 immunotherapy group from earlier studies with complete clinical
and transcriptome data was included in our study [37]. The effectiveness of an anti-PD-L1
antibody in people with advanced uroepithelial cancer is the main focus of the IMvigor210
cohort. The IMvigor210 cohort has been extensively employed in cancer studies as a
high-quality and comprehensive immunotherapy cohort to assess the prognostic value of
immunotherapy in various kinds of tumor prediction models [38–41]. We downloaded
IMvigor210 bladder cancer data using the R package IMvigor210CoreBiologies and per-
formed an exploration of immunotherapy response. We then performed PCA based on
genes significantly associated with OS attained from TCGA to obtain PC1 and PC2, which
in turn yielded PRRS scores. We divided high and low PRRS score subgroups using the

https://cloud.genepattern.org/gp/pages/index.jsf
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median as the node, plotted KM curves for high and low PRRS score subgroups, and
counted the differences of PRRS scores of different response groups.

2.7. Validation of mRNA Expression Levels by qRT-PCR

We used the following cell lines to validate critical genes in SKCM and normal skin
tissues: A375 human melanoma cell line (American Type Culture Collection, American),
SK-MEL-28 cell line (National Infrastructure of Cell Line Resource, China), human immor-
talized keratin-forming cell line (Hacat), and human melanocyte line (PIG1) (Shanghai
Guandao Biological Engineering Company, China). All cells were cultured in RPMI-1640
culture medium + 10% fetal bovine serum, with the surrounding environment maintained
at 37 ◦C and 5% CO2. We further validated the collected specimens of thirty pairs of SKCM
and normal skin tissues. All experimental components were approved by the Human Re-
search Ethics Committee of the General Hospital of the Chinese People’s Liberation Army
(Chinese PLA General Hospital), and all patients had signed an informed consent form.
We employed qRT-PCR to determine the relative expression of nine essential genes [42].
All primers we used were synthesized by Huada Corporation (Beijing, China).

2.8. Statistical Analysis

We used the Wilcoxon test for comparisons between two groups, the Kruskal–Wallis
test for group comparisons among more than two groups, and the chi-square test for com-
parisons between proportions. We utilized Kaplan–Meier curves to plot survival curves for
each subgroup and log-rank tests to assess whether differences were statistically significant.
We employed univariate and multivariate Cox analyses to screen for independent predic-
tors of OS. We used Spearman and Pearson correlation analysis to analyze the correlation
coefficients and the Mann–Whitney test to compare the ssGSEA scores of different taxa of
immune cells or immune pathways. All statistical analyses were performed with R version
4.1.1 and considered two-tailed p < 0.05 to be statistically significant.

3. Result
3.1. Phagocytosis Regulators Regulate Macrophage Phagocytosis in Tumor Development

Figure 1A depicts the flowchart of the study, whereas Figure 1B schematically depicts
the evolution of TAM in the tumor microenvironment and its mechanism of action. We
identified 271 phagocytosis regulatory factors in the linked literature [31–33], 260 of which
included information on their expression. Then, we calculated the Pearson correlation coef-
ficients and p-values for the 260 phagocytosis regulators and macrophage enrichment scores
and used the top six to generate scatter plots. The correlations between the macrophages
and the genes shown in the plots were more than 0.8 and p < 0.01 (Figure 2A–F). Based on
their median expression levels, we divided the top six genes into high and low expression
groups; our results indicated that the macrophage enrichment scores for all genes in the
high expression group were significantly higher than those in the low expression group,
which was consistent with the correlation results (Figure 2G–L).

We then performed functional enrichment analysis on genes controlled by phago-
cytosis. Among these, the examination of GO enrichment was subdivided into three
sections: biological process (BP), cellular component (CC), and molecular function (MF).
BP-enriched pathways are primarily immune response-activating cell surface receptor
signaling pathways, CC-enriched pathways are primarily mitochondrial inner membrane
pathways, MF-enriched pathways are primarily transcription coactivator activity path-
ways, and KEGG-enriched pathways are primarily thermogenesis pathways, among others
(Figure 2M–P).
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Figure 1. (A) The flowchart of this study and (B) a schematic diagram of the role of tumor-associated
phagocytes (TAMs). TAMs are infiltrating tumor tissue macrophages, and are mainly differentiated
from monocytes. Chemokines such as CSF1 and CCL2 secreted by tumor cells can recruit monocytes
from peripheral circulating blood to the tumor microenvironment (TME), after which monocytes
differentiate into macrophages. TAMs are an essential component of the TME, and are often associated
with poor prognosis and drug resistance; they have emerged as very promising targets in cancer
immunotherapy.
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Figure 2. Phagocytosis regulators regulate the involvement of macrophages in tumor development.
(A–L) Phagocytosis regulators regulate macrophage phagocytosis. (A–F) Pearson correlation of
phagocytosis regulators with macrophage enrichment scores (Top6). We obtained 260 phagocytosis
regulators with expression information from the relevant literature and then calculated their Pearson
correlations with macrophage enrichment scores. We took the six with the strongest correlations
(A–F: SP11, ITGB2, NCKAP1L, SASH3, PTPN6, PIK3R5) to plot scatter plots (all p-values < 0.01 and
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correlation coefficients > 0.8). (G–L) Differences in macrophage enrichment scores in high and low
gene expression groups. We divided the top six genes among the 260 phagocytosis regulators into
high and low expression groups according to the median. Our results showed that the macrophage
enrichment scores were significantly higher in the high expression group than in the low expression
group for all genes (**** p < 0.0001). (M–P) Functional analysis of phagocytosis regulators. (M) Func-
tional analysis of biological process. (N) Functional analysis of cellular component. (O) Functional
analysis of molecular function. (P) Functional analysis of KEGG. (Q–S) Abnormal phagocytosis in
tumors. We examined the functional enrichment of stage groupings of cancer samples in a set of 34
phagocytosis-associated genes. The following three pathways reached significant enrichment levels
(p < 0.01): (Q) WP microglia pathogen phagocytosis pathway; (R) HP hemophagocytosis pathway;
And (S) GOBP phagocytosis recognition pathway.

To further investigate aberrant phagocytosis in tumors, we examined the functional
enrichment of age grouping (>60 vs. ≤60) and stage (III–IV vs. I–II) of cancer samples in
the set of 34 phagocytosis-related genes. Our results showed that we enriched five gene sets
in the >60 groupings for the age grouping, then enriched 29 gene sets in the ≤60 groupings;
however, none reached significant levels. Meanwhile, for the stage grouping we enriched
22 gene sets in III–IV, which reached significant levels with three pathways (Figure 2Q–S).

3.2. Phagocytosis Regulator Genes and Transcriptional Alterations in Tumors

We evaluated differences in the expression of phagocytosis regulatory variables be-
tween age, gender, pathologic M, pathologic N, pathologic T, tumor stage, Breslow depth,
and Clark level subgroups in cancer samples. The findings revealed that 41 genes were
differentially expressed in the age grouping, 19 genes in the gender grouping, 6 genes in
the pathologic M grouping, 25 genes in the pathologic N grouping, 109 genes in the patho-
logic T grouping, 104 genes in the tumor stage subgroup, 131 genes in the Breslow depth
subgroup, and 63 genes in the Clark level subgroup (Figure 3A–H). However, because there
are so many phagocytosis regulators, the significant results were tabulated, and the details
are presented in Supplementary Table S1.
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Figure 3. Transcriptional and genetic alterations of phagocytosis regulators in tumors. (A–H) Differential
expression of phagocytosis regulatory factors in cancer samples across clinical factors, including age
(41 genes were differentially expressed), gender (19 genes were differentially expressed), pathologic
M (6 genes were differentially expressed), pathologic N (25 genes were differentially expressed),
pathologic T (109 genes were differentially expressed), tumor stage (104 genes were differentially
expressed), Breslow depth (131 genes were differentially expressed), Clark level (63 genes were differ-
entially expressed). (I–L) Genomic alterations in phagocytosis regulators. (I) Mutation profile of the
top 20 phagocytosis regulators. Our results showed that mutations occurred in 309 of the 467 samples,
accounting for 66.17% of the samples. (J) Sample mutation frequency in 467 skin cutaneous melanoma
samples. (K) Copy number change frequency statistics of the top 30 phagocytosis regulators. Our
results demonstrated that the highest frequency of deletion occurred in RRAGA. (L) The positions of
all phagocytosis regulators on each chromosome. The connector (small line segment connecting gene
names) marks the gene’s location on the chromosome. Connectors that are more dense indicate a
higher level of enrichment. We infer that the regions on chromosomes 1 and 3 are more enriched than
other chromosome regions.

We mapped the mutation profiles of phagocytosis regulators based on the MAF files
for TCGA-SKCM mutations. Due to the large number of genes, only the top 20 were
displayed; our results indicated that the mutation rate of the top 20 phagocytosis regulating
factors was 66.17% in SKCM samples, with ZDBF2 having the greatest mutation rate
followed by HDAC9 (Figure 3I). We calculated the copy number changes of phagocytosis
regulators using the TCGA-SKCM gene-level copy number data. As there were more genes,
the top 30 were presented, with RRAGA having the highest frequency of deletion and
PTEN having the second highest (Figure 3J). Additionally, we determined the frequency of
copy number alterations in the top 30 phagocytosis regulators (Figure 3K) and plotted the
locations of all phagocytosis regulators on each chromosome (Figure 3L).
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We examined the influence of phagocytosis regulators’ expression on survival using OS
data. Due to the large number of genes involved, we first used univariate Cox regression to
identify those significantly associated with survival. Our results showed that the expression
of 84 of 260 phagocytosis regulators was strongly related to prognosis, with HR > 1 for
13 genes and HR < 1 for the remaining 71 genes (Supplementary Figure S1). Then, the
nine genes with the lowest p-value were listed. The KM curves of these nine genes are
presented in Figure 4A–I. We used OS data to investigate the influence of phagocytosis
regulator mutations on survival. Considering the large number of genes, we first screened
for genes associated with survival using univariate Cox regression. Our results showed
that 126 genes had mutations in at least five samples, with seven genes having mutations
associated with prognosis (HR > 1 in four genes and HR < 1 in the remaining three genes).
Following that, we created the KM curves for these seven genes (Figure 4J–P).
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Figure 4. Effect of phagocytosis regulators on tumor survival. (A–I) We investigated the effect
of phagocytosis regulators’ expression on the survival of skin cutaneous melanoma patients. The
expression of 84 genes out of 260 phagocytosis regulators was significantly associated with prognosis.
We used the nine with the lowest p values to plot Kaplan-Meier curves, including ACTR3, AXL,
BIN2, CD38, CIITA, DOCK2, FCGR1B, FCGR2A, and FCRL3 (p < 0.0001). (J–P) We investigated the
effect of mutations in phagocytosis regulators on the survival of skin cutaneous melanoma patients.
Among the 260 phagocytosis regulators, 126 genes met the requirement of being mutated in at least
five samples, and seven of these genes were significantly associated with prognosis: CADM1, RAC1,
PTPRC, CIITA, TMEM119, UBR4 and ANAPC7.

3.3. Different Modes of Phagocytosis Regulation in Tumors

We performed unsupervised clustering on phagocytosis regulators’ expression ma-
trix samples (Figure 5A–C) and identified two subtypes with significantly different KM
curves (Figure 5D). Cluster 1 survival curves declined significantly faster than cluster
2 survival curves, and our PCA scatter plots reveal a clear distinction between the two
subtypes (Figure 5E). Additionally, there were significant differences in the expression of
phagocytosis regulators between the two subtypes (Figure 5F).
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Figure 5. Different modes of phagocytosis regulation in tumors. (A–F) Identification of molecular
subtypes of phagocytosis regulators. (A) Heat map of unsupervised clustering of samples. (B) Cumulative
distribution graph. (C) Unsupervised clustering gravel map. (D) Inter-subtype Overall Survival
(OS)-based Kaplan-Meier curves. (E) Principal component analysis (PCA) scatter plot. (F) Heat
map of phagocytosis regulators expression. (G) Heat map display of enrichment analysis results
of the inter-subtype hallmark pathway. We performed MSigDB database-based hallmark pathway
enrichment analysis on samples between subtypes, with 37 of the 50 pathways showing significant
differences (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

We then etched the TME between distinct phagocytosis subtypes. Using the MSigDB
database, we first performed an enrichment analysis of hallmark pathways within samples
between subtypes and discovered that 37 out of 50 pathways had significant differences,
including HALLMARK TNFA SIGNALING VIA NFKB and HALLMARK TGF BETA SIGN
ALING, which were all significantly different between the two subtypes (Figure 5G). Addi-
tionally, we generated the StromalScore, ImmuneScore, ESTIMATEScore, and TumorPurity
scores for cancer samples and quantified the differences in sample-related scores between
subtypes. The StromalScore, ImmuneScore, and ESTIMATEScore scores were consider-
ably higher in cluster 2 samples than in cluster 1, although the TumorPurity scores were
significantly higher in cluster 1 samples than in cluster 2 (Figure 6A–D). The enrichment
scores of 28 immune infiltrating cells were then computed in cancer samples. Our re-
sults indicated that all immune infiltrating cells were considerably different between the
two subtypes, with activated B cells, activated CD4+ T cells, and activated CD8+ T cells
scoring significantly higher in cluster 2 than in cluster 1 (Figure 6E). Additionally, we
determined the fraction of immune cells in cancer samples using the R package CIBER-
SORT and the online TIMER database. The corresponding box plots are provided in
Supplementary Figure S2A,B. Moreover, we evaluated the expression of immunological
checkpoints between subtypes. Our results revealed that 43 of 45 immune checkpoints
have differential expression, with CD274, CTLA4, PDCD1, and LAG3 being significantly
overexpressed (p < 0.0001) in cluster 2 (Figure 6F).
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Figure 6. (A–E) Differences in immune infiltrating cells between subtypes. (A) Immunization score
difference display of StromalScore. (B) Immunization score difference display of ImmuneScore.
(C) Immunization score difference display of ESTIMATEScore. (D) Immunization score difference
display of TumorPurity. (E) Differences in immuno-infiltrating cell enrichment scores (* p < 0.05,
** p < 0.01, **** p < 0.0001). (F) Differences in immune checkpoint expression between subtypes. Our
results showed significant expression differences in 43 of the 45 immune checkpoints (*** p < 0.001,
**** p < 0.0001).

Afterward, we validated the regulatory mechanisms underlying distinct phagocytosis
subtypes. Furthermore, we used all protein-coding genes to screen for DEGs between
subtypes and then identified 661 DEGs based on threshold values. On DEGs, we performed
functional enrichment analysis. The GO enrichment analysis was split into three parts:
T cell activation was the primary focus of BP enrichment pathways; the external side
of the plasma membrane was the primary focus of CC enrichment pathways; cytokine
receptor binding was the primary focus of MF enrichment pathways; and cytokine–cytokine
receptor interaction was the primary focus of KEGG enrichment pathways (Figure 7A–D).
We further performed unsupervised clustering on the samples using the DEG expression
matrix. We obtained two subtypes with significant differences in the KM curves of the
samples between the subtypes and significant differences in the expression of the DEGs
between the two subtypes (Figure 7E–F). The expression of phagocytosis regulators was
then compared between differential subtypes; our results indicate that the expression
of several phagocytosis regulators varied between differential gene expression subtypes
(Figure 7G).
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Figure 7. Validation of regulatory mechanisms among different phagocytosis subtypes. (A–D) Functional
enrichment analysis of differentially expressed genes (DEGs). We screened for DEGs between
subtypes based on protein-coding genes, obtained 661 DEGs based on thresholds, and then performed
functional enrichment analysis on DEGs. (A) Functional analysis of biological process. (B) Functional
analysis of cellular component. (C) Functional analysis of molecular function. (D) Functional analysis
of KEGG. (E,F) Unsupervised clustering based on DEGs. (E) Expression heat map of DEGs. (F) Kaplan-
Meier curves between differential genetic subtypes. Among them, cluster 1 contains 248 samples and
cluster 2 contains 209 samples. (G) Heat map of the expression of phagocytosis regulators among
differential genetic subtypes. Our results showed significant differences in the expression of many
phagocytosis regulators between subtypes.

3.4. Phagocytosis Regulator-Related System (PRRS)

We started by constructing the PRRS. We screened 582 survival-related DEGs using
univariate Cox regression based on DEGs in TCGA data, then performed PCA on these
582 genes to obtain PC1 and PC2 for summation, attained PRRS scores, and then divided
them into high and low PRRS groups with the median (the high and low PRRS groups are
the different groups with PRRS scores above and below the median). The result showed
that the difference in KM curves between the two groups was significant. Then, we used
the sample risk score as the model prediction result and combined it with the survival data
to calculate the AUC of the model. The AUCs at one, three, and five years were greater
than 0.6, indicating good model efficacy (Figure 8A–E). We validated the model’s efficacy
in GSE54467. In addition, we performed PCA based on the expression matrix of survival-
related DEGs in GSE54467, attaining PC1 and PC2 and calculating their sum to obtain the
PRRS. The median was used as the division to develop the high and low PRRS groups. The
KM curves of the two groups differed substantially, and the AUC values calculated from
the time ROC curves were all greater than 0.6 (Figure 8F–J). To further validate the efficacy
of our PRRS, we conducted further validation in two datasets, GSE19234 and GSE65904,
and both results showed statistically significant differences (p < 0.05), demonstrating the
excellent performance of PRRS (Supplementary Figure S3A,B).
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Figure 8. Phagocytosis regulator-related system (PRRS) construction. (A–E) Model effectiveness
validation of PRRS for TCGA data. We performed univariate Cox regression based on DEGs in TCGA
to screen 582 DEGs associated with survival and then performed PCA to obtain PRRS scores based
on these genes. (A) Build model Kaplan-Meier curve validation. (B) Receiver operating characteristic
(ROC) curve validation. The areas under the curve (AUC) were all greater than 0.6, indicating good
model efficacy. (C) PRRS score graphs for all samples. (D) Scatter plot of survival time for all samples.
(E) Heat map of gene expression in the model. (F–J) Model effectiveness validation of PRRS for
GSE54467 data. (F) Build model Kaplan–Meier curve validation. (G) ROC curve validation. The
AUCs were all greater than 0.6, indicating good model efficacy. (H) PRRS score graphs for all samples.
(I) Scatter plot of survival time for all samples. (J) Heat map of gene expression in the model.

We further examined the independent prognostic effect of the PRRS subgroups using
TCGA data. Our results revealed that PRRS subgroup, age subgroup, and stage subgroup
all had greater prognostic efficacy (Figure 9A,B). Similarly, we combined age, gender, and
stage to verify whether PRRS score subgroup was an independent prognostic factor in
the GSE54467 data. Our results demonstrated that the PRRS score subgroups had better
prognostic efficacy (Figure 9C,D).

Moreover, we counted the PRRS differences in age, gender, pathologic M, pathologic
N, pathologic T, tumor stage, Breslow depth, Clark level, and molecular subtype groups.
Our results showed that the PRRS score of pathologic T decreased gradually with increasing
grade; the PRRS score of patients with Clark levels IV–V was significantly lower, the PRRS
score of patients with tumor stage II was significantly lower than that of stage I, and the
PRRS score of patients with cluster 2 in subtype classification was higher (Figure 9E).
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Figure 9. PRRS correlates with tumor prognosis and clinical features. (A,B) We used TCGA-SKCM
data to verify whether PRRS grouping is an independent prognostic factor. Our results demonstrated
that PRRS subgroup (p < 0.001), age subgroup (p = 0.005) and stage subgroup (p = 0.008) had better
prognostic efficacy and were independent of each other. (A) TCGA-SKCM univariate cox regression
analysis. (B) TCGA-SKCM multivariate cox regression analysis. (C,D) We used GSE54467 data to
verify whether PRRS grouping is an independent prognostic factor. Our results demonstrated a
better prognostic efficacy for PRRS subgroup grouping (p = 0.003). (C) GSE54467 univariate cox
regression analysis. (D) GSE54467 multivariate cox regression analysis. (E) Differences in PRRS in
clinical characteristic groupings (ns, not significant, *** p < 0.001, **** p < 0.0001).

3.5. Analysis of the Molecular Mechanisms of Different PRRS

We further examined the relationships between PRRS and cancer hallmark enrichment
scores. Our results showed that most pathways were significantly correlated with PRRS,
particularly HALLMARK TNFA SIGNALING VIA NFKB and HALLMARK APOPTOSIS,
which were significantly positively correlated with PRRS, while HALLMARK DNA REPAIR
and HALLMARK MYC TARGETS V2 were significantly negatively correlated with PRRS
(Figure 10A).
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Figure 10. Analysis of the molecular mechanisms of different PRRS. (A) Correlation display of PRRS
and hallmarks. Our results demonstrated that most of the pathways were significantly correlated
with PRRS (* p < 0.05, ** p < 0.01, *** p < 0.001). (B,C) Functional differences between PRRS subgroups.
(B) Display of GO function enrichment results for PRRS grouping. (C) Display of KEGG function
enrichment results for PRRS grouping. (D–H) Differences in immune infiltrating cells between high
and low PRRS subgroups (* p < 0.05, ** p < 0.01, **** p < 0.0001). (D) Differences in ImmuneScore
in subgroups. (E) Differences in ESTIMATEScore in subgroups. (F) Differences in StromalScore in
subgroups. (G) Differences in TumorPurity in subgroups. (H) Differences in immune-infiltrating cell
enrichment scores between high and low PRRS subgroups were demonstrated. Our results showed
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significant differences in all immune-infiltrating cells in the PRRS grouping. (I–K) Gene copy number
variations (CNV) profiles among PRRS subgroups. Our results showed that the frequency of CNV
changes was significantly lower in high PRRS samples than in low PRRS samples, and there were
5202 genes with significant differences in CNV between the two groups (p < 0.001). (I) CNV profile in
high PRRS samples. (J) CNV profile in low PRRS samples. (K) CNV frequency statistics between
the two groups. (L,M) Gene mutations among PRRS subgroups. Our results showed a slightly
higher mutation rate in high PRRS samples than in low PRRS samples, with 325 genes significantly
different between the two groups (p < 0.001). (L) Mutation of high PRRS samples. (M) Mutation of
low PRRS samples.

Afterwards, we performed further GSEA-based GO and KEGG enrichment analysis
based on PRRS grouping. For the GO enrichment results, the main enrichment pathways
were activation of the innate and adaptive immune responses. Additionally, for the KEGG
enrichment results the main enrichment pathways included cytokine–cytokine receptor
interaction and endocytosis (Figure 10B,C).

Following that, we recorded the TME for each PRRS grouping. Our results showed
that samples with a high PRRS had substantially higher StromalScore, ImmuneScore, and
ESTIMATEScore than those with a low PRRS. However, for the TumorPurity score the
results showed the inverse (Figure 10D–G). In addition, we counted the enrichment scores
of 28 immune infiltrating cells between different PRRS groups. Our results indicated a
statistically significant difference in the number of immune-infiltrating cells in the different
PRRS groups. We concluded that all immune-infiltrating cell enrichment scores in high
PRRS samples were considerably higher than in low PRRS samples (Figure 10H). Addition-
ally, we evaluated the differences in immune-infiltrating cell proportions between high and
low PRRS subgroups using CIBERSORT and online TIMER data. The corresponding box
plots are depicted in Supplementary Figure S4A,B.

Furthermore, we investigated the differences in genomic changes between PRRS
subgroups. The frequency of CNV changes was calculated between PRRS subgroups; our
results indicate that CNV changes were much lower in high PRRS samples than in low
PRRS samples (Figure 10I–K). Additionally, we counted the differences in CNV between
genes in the PRRS subgroups and found 5202 genes with substantial CNV differences
between the two groups. We investigated gene mutations in different PRRS groupings and
discovered that the mutation rate was slightly higher in high PRRS samples than in low
PRRS samples (Figure 10L,M). We further counted the genes that had significantly different
mutations between the two groups of samples. Our findings indicated that 325 genes had
significantly different mutations between the two groups.

3.6. Potential Treatment Strategies Based on PRRS

We predicted the reactions to 138 medications of samples in the high and low PRRS
groups. We then used box plots to demonstrate the six with both substantial differences
and common medications. Our results indicate that the high PRRS samples were more
medication-resistant (Supplementary Figure S5A–F).

In addition, we collected IMvigor210 bladder cancer data and generated sample PRRS
scores based on gene expression data within the model. The KM curves indicated no
significant differences between the high and low PRRS groups. However, PRRS scores
were considerably higher in complete response (CR) samples than in partial response
(PR) or progressive disease (PD) samples, implying that PRRS scores may be related
to immunotherapy response (Supplementary Figure S5G–K). Supplementary Figure S5L
summarizes the endogenous processes of SKCM and their impact on the antitumor immune
response.

3.7. Validation of Expression-Based Regulators of Survival Significantly Associated with Phagocytosis

We verified the expression levels of these nine highly associated phagocytosis regu-
lators using qRT-PCR in human tissues and cell lines. Supplementary Tables S2 and S3
display the primer sequences and basic information about the patient specimens we used.
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Our results showed that ACTR3, AXL, CIITA, DOCK2, FCGR2A, FCRL3 were up-regulated
in SKCM (Supplementary Figure S6A,B,E–H), as well as that BIN2, CD38, and FCGR1B
were down-regulated in SKCM (Supplementary Figure S6C,D,I).

4. Discussion

SKCM is one of the most immunogenic tumors because of its high tumor mutation
burden (TMB). Therefore, it has a high potential to respond to immunotherapy [43]. How-
ever, SKCM often remains resistant to immunotherapy, and the five-year survival rate for
stage IV SKCM remains below 19% [44]. Immune cell infiltration (ICI) has recently been
established as a robust and predictive biomarker of prognostic value in several types of
malignancies, including SKCM [45–47]. Despite many clinical trial results highlighting
the efficacy of immunotherapy in advanced metastatic melanoma, SKCM patients exhibit
substantial heterogeneity in their response to immunotherapy. 35–60% of patients show a
resistant response to PD-1 blocking immunotherapy [48], 40–65% exhibit mild resistance,
and 43% develop acquired resistance [49]. In recent years, ICI have propelled SKCM to
a new level of oncology treatment. Numerous studies have confirmed that the immuno-
biological components within the TME play a crucial role in immunotherapy response
rates, patient prognosis, and tumor progression [50]. Therefore, a better elucidation of
the TME immunophenotype can help reveal the biological mechanisms of tumor devel-
opment. Previously, SKCM was divided into several immunological subtypes based on
various levels of research. A study by Liu et al. constructed ICI scores based on PCA
of immune signature genes of DEGs and identified three ICI gene clusters associated
with different immune subtypes and survival outcomes. Their results showed that high
ICI scores exhibited an activated immune profile and better prognosis [51]. Meanwhile,
Hu et al.’s study used hierarchical clustering analysis to macroscopically classify SKCM
into two stable subtypes, namely, the high immune and low immune groups, based on
the heterogeneity of immune infiltration in patients. The high immune group expressed
more HLA genes, robust immunogenicity, and longer survival time [52]. The CIBERSORT
and ESTIMATE algorithms were employed in Zhao et al.’s work together with the TCGA
and GEO datasets to define two immunophenotypes of uveal melanoma (UVM). UVM is
considered an immune-cold tumor due to its low TMB (non-synonymous variants) and
unique TME. The high ICI subtype has a poor prognosis [53]. A study by Chen et al.
classified SKCM into four subtypes using epigenetic DNA methylation-correlated (METcor)
genes and CNV-correlated (CNVcor) genes as the core. Immune cell scores were markedly
elevated in the iC1 subtype, which had the best prognosis. The iC3 subtype, associated
with the most aggressive SKCM cases, exhibited immune cell infiltration and significantly
lower scores [54]. Our study is the first to focus on TAMs to delineate immune subtypes
by phagocytosis regulators and construct a PRRS score based on TME to assess patient
prognosis and the benefit of immunotherapy.

This study aimed to determine the function of phagocytosis regulators and their
effect on the development of SKCM. We discovered that phagocytosis regulators can in-
fluence the number of phagocytes, while their expression or mutation can alter prognosis.
We subsequently subtyped the samples based on prognosis-related phagocytosis regula-
tors, discovered disparities in prognosis between subtypes, and established a correlation
between phagocytosis regulators and survival through survival analysis of molecular
subtypes. After that, we identified DEGs between subtypes, performed differential gene
subtype identification and functional enrichment analysis, and looked for other differences
between phagocytosis-related subtypes. Using DEGs between subtypes, we screened for
prognostic factors to create a survival model. We established PRRS, a scoring system for pre-
dicting survival in patients. We validated the model’s efficacy numerous times and coupled
pathway analysis, immune infiltration analysis, and mutation analysis to investigate the
effects of phagocytosis regulators on SKCM samples. In addition, we probed potential treat-
ment options using chemotherapy drug response and clinical cohort treatment response
and described the model by linking it to known clinical characteristics. Moreover, we used
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qRT-PCR to re-validate expression-based regulators of survival significantly associated
with phagocytosis. Our findings suggest the following: (i) phagocytosis regulators can be
used to assess PRRS patterns in SKCM patients; (ii) there is a correlation between low PRRS
scores and poor prognosis; (iii) there is a correlation between gene mutations and prognosis
in SKCM, and (iv) there is a correlation between PRRS scores and ICB treatment response.

Numerous previous studies have confirmed the presence of three main immune phe-
notypes in tumors, namely, the immune-desert, immune-excluded, and immune-inflamed
phenotypes [55]. We first applied unsupervised clustering to define two immune subtypes
based on the phagocytosis regulators’ expression matrix. Cluster 1 had an immune-desert
phenotype, with low levels of immune infiltrating cells in the tumor parenchyma and
stroma as well as low immunological and stromal scores [56]. Cluster 2 exhibited an
immune-inflamed phenotype, with high levels of CD4+ T cells and CD8+ T cells in the
tumor parenchyma. This phenotype tends to have high expression of immune checkpoints
and benefits more from immunotherapy [57]. TILs such as CD4+ T cells and CD8+ T cells
play an essential role in tumor metastasis, recurrence, and response rate to immunother-
apy. [58,59]. CD8+ T cells perform tumor-killing functions based on cell differentiation and
infiltration [60]. Naive CD8+ T cells initiate a differentiation program after infiltration and
further differentiate into cytotoxic and effector CD8+ T cells for anti-tumor functions [61].
CD4+ T cells have long been recognized as an important component of tumor immunother-
apy, as they are capable of promoting or suppressing anti-tumor cytotoxic CD8+ T cell
responses in secondary lymphoid organs or tumors, hence modulating the tumor immune
microenvironment [62]. Cluster 1 resembles tertiary lymphoid structures and is found in
the margins and interstitium of aggressive tumors, which are sites of immune cell activation
and recruitment [55]. In addition, the number of TILs in cluster 1 TME is significantly less
than in cluster 2. These features may explain the high expression of the tumor-associated
Hallmark pathway in cluster 1, the low expression of immune checkpoints, and the overall
poor prognosis. Our study showed that cluster 2 is correlated with better overall survival
as an immune-inflamed phenotype and that its immune checkpoint expression is higher.
We discovered that high levels of ICIs are predictive of better prognosis, which is consistent
with previous research [63]. Next, we screened for DEGs among cluster subtypes and
applied unsupervised clustering to define two DEG subtypes based on the DEG expression
matrix. Similar to the immune subtype results, the DEG subtypes with a better progno-
sis and longer survival exhibited characteristics similar to cluster 2. These DEGs could
potentially be independent and robust biomarkers in the future.

In light of the individual heterogeneity of the TME, it is essential to quantify the pattern
of immune cell infiltration in individual tumors. Considering the correlation between
SKCM immune subtypes and survival, we constructed PRRS scores to assess patient clinical
characteristics, survival prognosis, and response to immunotherapy. As a “hot” tumor
phenotype, the high PRRS score group showed high immunoreactivity and mesenchymal
activity, significantly enriched immune-related pathways, and a better survival prognosis.
In addition, the high PRRS group showed a high TMB. Tumor cells with high TMB have
higher levels of neoantigens, which help the immune system to recognize tumors, thereby
stimulating anti-tumor T cell proliferation and anti-tumor responses. Theoretically, the
higher the TMB, the more neoantigen production can be recognized by T cells and the
better the immunotherapeutic effect [64]. According to Yan et al., the lower TMB in SKCM
patients results in poor survival prognosis and is correlated with an advanced pathological
stage [65]. Our results are identical to previous studies, with a poorer prognosis in the
low TMB group. Furthermore, the high PRRS group showed a lower frequency of CNV
changes. Previous research has linked a high CNV change frequency to the development
of a variety of complex diseases, such as Alzheimer’s disease [66], psoriasis [67], and
congenital generalized hypertrichosis terminalis (CGHT) [68]. Therefore, we hypothesize
that a high frequency of CNV changes in SKCM patients would lead to a poorer prognosis.
However, more clinical data are needed to support the current conclusions. Based on our
comprehensive analysis of SKCM phagocytosis regulators’ mutation profiles, we found
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that ZDBF2 has the highest mutation rate. Its mutation and methylation are associated with
various diseases, including multilocus imprinting disturbances such as Temple syndrome
(TS14) and Kagami–Ogata syndrome (KOS14) [69]. In contrast, an association between its
deletion and Nasopalpebral lipoma-coloboma syndrome, a rare malformation, has been
reported [70]. RRAGA (Rag A GTPase) is the most frequent deletion. Its mutations can
affect lysosomal function and relocalization, autophagy, altered cell growth, and promoter
activity. Mutations in RRAGA as a critical regulator of mTORC1 (mechanistic rapamycin
complex 1) are closely associated with autosomal dominant cataracts [71]. These genes may
be a breakthrough point for future SKCM immunotherapy.

Our findings suggest that PRRS scores can be used as independent and robust biomark-
ers to predict prognosis in SKCM patients. Ascierto et al.’s study revealed that higher
levels of TILs such as CD8+ T cells and CD4+ T cells in the TME contribute to improved
disease-free survival (DFS) with immunotherapy [72]. We evaluated IMvigor210 data in
patients receiving immunotherapy and found that PRRS scores were significantly higher in
effective clinical remission with immunotherapy patients. This indicates that the high PRRS
group has an activated immune system and may benefit more from immunotherapy, which
is consistent with previous studies. By analyzing the main clinical characteristics, patients
with high PRRS scores had a better prognosis than those with low scores. The PRRS score
accurately predicted the prognosis of patients in the pathological T-stage, tumor stage, and
Clark stage. We discovered that cluster 2, an immune-inflamed phenotype with a higher
PRRS score, was more likely to benefit from immunotherapy, proving the accuracy of our
scoring system once more.

5. Conclusions

In summary, this study has elucidated the dysregulation and regulatory significance of
phagocytosis regulators in SKCM, established their relationship with tumor heterogeneity,
and examined their regulatory patterns in SKCM. This study provides a comprehensive
investigation of multiple databases, pointing the way forward in terms of the tumor
microenvironment, functional analysis, immune response, and drug sensitivity, and has
significant implications for the development of novel immune drugs and the promotion of
personalized immunotherapeutic strategies.
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