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Somatic mutations reported in large-scale breast cancer (BC) sequencing studies primarily consist of
protein coding mutations. mRNA splicing mutation analyses have been limited in scope, despite their
prevalence in Mendelian genetic disorders. We predicted splicing mutations in 442 BC tumour and matched
normal exomes from The Cancer Genome Atlas Consortium (TCGA). These splicing defects were validated
by abnormal expression changes in these tumours. Of the 5,206 putative mutations identified, exon
skipping, leaky or cryptic splicing was confirmed for 988 variants. Pathway enrichment analysis of the
mutated genes revealed mutations in 9 NCAM1-related pathways, which were significantly increased in
samples with evidence of lymph node metastasis, but not in lymph node-negative tumours. We suggest that
comprehensive reporting of DNA sequencing data should include non-trivial splicing analyses to avoid
missing clinically-significant deleterious splicing mutations, which may reveal novel mutated pathways
present in genetic disorders.

L
arge-scale DNA sequencing studies have attempted to elucidate the genomic landscapes of breast cancer
tumours to identify mutated genes and genomic variation that contribute to tumour development and
progression1–5. Typically, somatic mutations within gene coding regions are identified and then filtered

for rare or novel variants predicted to affect protein structure or function6–9. Frequently mutated genes are
cataloged, with the goal of inferring defective genes that are more likely to contribute to tumour phenotypes.
However, there does not appear to be a consistent set of somatic driver mutations in most breast cancer cases. For
instance, in 100 cases, 73 different combinations of abnormal gene sequences were reported4.

Some established cancer genes are enriched for mutations (i.e. TP53, PIK3CA, PTEN, MAP3K1, AKT1, CDH1,
GATA3, MLL3 and RB1), in addition to genes that were not previously associated with breast cancer (including
CBFB, RUNX1, TBX3, NF1 and SF3B1)1–5. At least 49 genes (including known breast cancer genes) have been
found to be significantly mutated, 16 of these reproducibly across multiple studies, and the majority were mutated
in ,10% of tumours.

Inconsistencies in mutation composition among different tumours present significant challenges to under-
standing the underlying etiology of tumour phenotypes. As a result of epistasis, mutations in genes with linked
biochemical functions would be expected to reveal dysfunctional pathways in tumours10. Focusing analyses to one
molecular subtype of breast cancer can also be useful in delineating dysregulated pathways that define the basis of
tumour phenotypes3. Significant insight into tumour biology has come from selecting tumours with specific
clinical identifiers, for example, by limiting mutation catalogs in metastatic tumours10,11.

Somatic mutation analyses of tumour exomes have focused on alteration of amino acid sequences, or highly
conserved dinucleotides adjacent to exons, which usually impact mRNA splicing. Since these variants most likely
comprise only a fraction of the total mutational load, the pathways inferred to be dysregulated in these tumours
may be incomplete. For example, in familial breast cancer, variants of unknown significance have been explained
by both experimental validation and in silico predictions of defects in BRCA 1/2 mRNA splicing12,13. Typically,
genomic studies have used tools that predict splicing mutations based on the highly conserved dinucleotide
sequences at mRNA 59 donor and 39 acceptor sites8,14. There are other well established methods that can identify
splicing mutations beyond those directly at natural sites15–17, but these approaches have not been applied to
genome-scale cancer studies, until recently18. Published studies have revealed only a small fraction of reported
somatic mutations in cancer to be splicing mutations, accounting for only 2% of those reported1–5. The present
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study considers the possibility that many somatic splicing mutations
may be overlooked or are undetected by the conservative approaches
currently used in analyses of tumour genomes.

Splicing mutations frequently lead to changes in the sequence and
structure of the encoded protein, which are usually distinguishable
from those generated by normal alternative splice isoforms.
Constitutive splicing mutations are frequently deleterious and are a
major cause of inherited and acquired diseases19. In cancer, aberrant
splicing (including alternative isoforms that are not a result of cis
mutation) is known to cause or promote tumour propagation20, and
has been described as an additional hallmark of the disease21. RNA
analyses can detect the effect of many splicing mutations directly22,23.
In this paper, we comprehensively analyze predicted splicing muta-
tions in breast cancer tumours using DNA sequencing data from The
Cancer Genome Atlas (TCGA)5. We then use tumour-matched RNA
sequencing data to statistically validate aberrant splicing patterns of
expressed genes in these tumours that result from these mutations24.
We extended our splicing mutation analyses beyond molecular
breast cancer subtypes and identified other clinical parameters assoc-
iated with specific mutation pathways. We suggest that DNA sequen-
cing analyses that incorporate in-depth splicing mutation studies
reveal additional mutant genes and biochemical pathways, which
may contribute to breast cancer etiology.

Results
Derivation of mutations. Somatic mutations in 472 breast cancer
tumours from 445 breast cancer patients were called using matched
tumour-normal DNA exome sequencing data from TCGA5

(Supplementary Table S1). There were 149,959 single-nucleotide
variants (SNVs) and 10,000 insertion/deletions (indels) detected using
the variant caller, Strelka6 (see Supplementary Material section I for
results from an alternative variant caller and reasons for our selection
of Strelka). Protein coding mutations were annotated by ANNOVAR8

and splicing mutations with the Shannon Human Splicing Pipeline18

(Table 1, see Supplementary Tables S2–4 for a list of all mutations). The
Shannon Pipeline predicted significantly more splicing mutations than
reported by TCGA, because the information-theoretic method
employed enables analyses of variants beyond exon boundaries that
alter mRNA splicing. 948 variants were found to affect both protein
coding and splicing in 747 genes, among 319 tumours. DYNC2H1,
TP53 and PASD were the most commonly mutated of this group,
containing 21, 11, and 9 exonic variants, respectively. Alteration of
mRNA splicing was predicted as a result of 213 substitutions at

synonymous codons among 139 tumours. Reanalysis of coding
changes confirmed high concordance with the validated TCGA
SNVs, however indels were less reproducible (Supplementary Table
S5). Overall, 82.1% (n 5 21,041) of protein coding mutations, and
86.5% (n 5 371) of splicing mutations reported by TCGA were
confirmed. A small subset of protein coding TCGA substitutions that
were missed occurred within genes commonly mutated in breast cancer
(35 TP53, 13 MLL3, 22 GATA3, 25 MAP3K1, 11 CDH1 and 10
PIK3CA; see Supplementary Table S6), however all splicing-associated
SNVs found by TCGA in cancer-related genes were detected.

Significantly mutated genes. Significantly mutated genes were
identified with the Mutational Significance in Cancer (MuSiC)
software suite25. There were 225 genes with false discovery rates
(FDR) of ,0.05, based on the Fisher’s combined P-value (FCPT),
convolution (CT) and likelihood ratio (LRT) tests. These results were
compared with the 49 genes previously identified as significantly
mutated1–5 (Supplementary Table S7). Among the previous genes
reported by TCGA, TP53, CDH1, MAP3K1, and MLL3 were
significantly mutated in this study by all tests, and AFF2, SF3B1, and
CBFB were significant for the CT and LRT tests only. We additionally
identified ARID1A as significantly mutated, concordant with an
independent, large-scale, breast cancer genomics study4.

Validating predicted splicing mutations. Changes in mRNA
splicing from the predicted mutations were validated with
Veridical24, which corroborates predicted, aberrant splice isoforms by
assessing mutation-derived sequence reads in tumour RNA relative to
their abundance in controls lacking the mutation. Controls comprised
tumours lacking a particular mutation (usually, n 5 414) plus
additional normal samples (n 5 106). Of all variants analyzed from
the 415 tumours with RNA-Seq data (n 5 4,952), 988 variants (,20%)
in 819 genes caused one or more splicing aberrations at significantly
higher levels than in controls (p # 0.05; i.e. intron inclusion, exon
skipping, or cryptic splicing). Predicted natural splice site mutations
(822 of 3,863, or 21.3%), were validated by abnormal mRNA isoforms
more often than cryptic splice site mutations (166 of 1,089 or 15.2%
variants). A total of 309 mutations were found to cause exon skipping,
of which 163 (53%) led to expected frameshift mutations.

Sufficient expression levels for each gene, based on RNA-Seq cov-
erage, were required for validation of mutations. An expression heat
map, clustered by BC subtype, is shown in Supplementary Fig. S1.
Variants occurring within significantly expressed genes (defined as
an average of $20 reads per base) were statistically validated for 862
(27%) of 3,156 variants (p # 0.05). Of 263 variants reported by
TCGA in genes with at least this level of expression, 156 (59%) were
validated by exon skipping (26 variants), by intron inclusion (80
variants), and by the combination of both types of evidence (50
variants, p # 0.05).

Predicted cryptic splicing mutations were confirmed based on the
presence of unique junction-spanning reads corresponding the ectopi-
cally spliced isoforms in GATA3, PALB2, CBFB, ABL1, C2CD2L, ENSA,
NASP, NOP9, and TFE3 (Supplementary Fig. S2). Four of these genes
have been linked to tumourigenesis: ABL1, an oncogene, GATA3 and
PALB2, which are associated with familial breast cancer26,27, and CBFB
has been recently implicated in breast cancer by TCGA5 and others1,2.
These cryptic splicing mutations lead to short exonic deletions that alter
the reading frame, and likely affect the activity of the gene products
(Fig. 1). The GATA3 cryptic isoform is the only detectable transcript in
the majority of controls, although it is substantially more abundant in
the tumour sample (Supplementary Fig. S3).

The most commonly mutated genes with splicing mutations were
also found by MuSiC to be significantly mutated in these tumours
(n 5 13, FDR , 0.05), and at least one third of the mutations were
validated with RNA-Seq data (Table 2). In TP53, which exhibited the
highest density of splicing mutations (Fig. 2), 18 of 23 (78%) pre-
dicted variants were validated to cause aberrant splicing (p # 0.05).

Table 1 | Single nucleotide variant summaries by mutation type

Type Mutation Count

Protein coding
Synonymous 14,717
Nonsynonymous 40,649
Stop gain or loss 2,587
Total protein coding variants 57,953
Splicing
Cryptic 1,130
Inactivating 1,355
Leaky 2,721
Total splicing variants 5,206
Protein coding mutations also predicted to

affect splicing
Synonymous 213
Nonsynonymous 664
Stop gain or loss 71
Total 948
Synonymous also splicing 1.4473%
Nonsynonymous also splicing 1.6335%
Stop gain or loss also splicing 2.7445%
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All of the validated mutations exhibited statistically significant
intron inclusion, and, in three instances, also resulted in exon
skipping.

Copy number analysis of mutated genes. The validated mutations
are organized and segregated by tumour subtype on a Circos plot28

(Fig. 3). Copy number changes portray the genomic locations of
deletions or amplifications that coincide with these variants.
Validated splicing mutations exhibit a relatively uniform genomic
distribution, except for significantly mutated genes, such as TP53 on
chromosome 17 and HMCN1 on chromosome 1. We investigated
variants in regions showing copy number losses, which may
constitute the ‘‘second hit’’ in oncogenesis. Of the 49 genes found
to be significantly mutated in breast cancer1–5, five contained splicing
mutations (BRCA1 (2 tumours), PTEN (2 tumours), MAP2K4 (4
tumours), MAP3K1 (4 tumours) and KMT2C (7 tumours; also
known as MLL3)) and also recurred within commonly deleted
intervals. Of all genes with validated mutations in deleted regions,
9 harbored more than 2 variants: 1 had three, 4 had four, and only
KMT2C possessed more than 4 variants.

Analysis of pathways enriched in mutant genes. Mutated genes
were clustered by pathway overrepresentation analysis29 for protein
coding (Supplementary Table S8, n 5 202) and splicing mutations
(Supplementary Table S9, n 5 452). There were 100 pathways were
common to both mutation sets (Supplementary Table S10).
Pathways associated with all types of mRNA splicing mutations
include those that affect collagen structural genes and enzymes
that modify or metabolize collagen (n 5 14, Supplementary Table
S11 #1–14), and several that involve the extracellular matrix (ECM,
n 5 4, Table S11 #15–18). Many of these pathways (n 5 17, Table S11

#1–13,15–18) are also overrepresented by pathway analysis of
protein coding mutations.

Relationship of mutation spectra to clinical findings. Segregating
splicing mutations by patient lymph node status revealed significant
differences in mutated pathways between the two groups.
Biochemical pathways with overrepresented mutant genes in
lymph node-negative (LN2) vs. lymph node-positive (LN1)
tumours are indicated in Supplementary Tables S12 and S13, and
compared in Supplementary Table S14. There are 94 pathways
overrepresented in both LN1 and LN2 (Table S14 #421–514),

Figure 1 | Cancer genes with validated cryptic splicing. mRNA of ABL1, CBFB, GATA3 and PALB2, which each have validated cryptic splicing mutations

confirmed using tumour-matched RNA-Seq data. Full gene lengths are displayed with vertical black bars outlining exon boundaries. The location of the

cryptic variant is denoted by the red V, and the variant consequence is highlighted by white (wild type), dark grey (exonic deletion), and red

(frameshift mutation). Conserved domains and protein interactions are labeled by the yellow and blue horizontal bars. In ABL1, the catalytic and C-

terminal F-actin binding domains are disrupted. In PALB2, the region that interacts with BRCA2 is truncated. In the GATA3 aberrant transcript, the

second zinc finger domain and a conserved motif crucial for DNA binding and protein function are affected by the altered reading frame.

Table 2 | Genes Most Commonly Mutated with Splicing Mutations

Gene
Symbol*

# Splicing
Mutations # Validated % Validated

TP53 24 18 75
HMCN1 19 9 47
KMT2C (MLL3) 19 7 37
FHAD1 12 4 33
RAB3GAP1 11 4 36
BCLAF1 11 3 27
ANKEF1 10 6 60
RRM1 8 4 50
RPRD1A 7 2 29
SCAMP5 7 2 29
CDH1 6 4 67
ACTR3 6 2 33

*FDR , 0.05 for all genes from MuSiC (Fisher’s combined P-value, convolution and likelihood ratio
tests).
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including 17 collagen (Table S14 #421–437), and 3 ECM (Table S14
#438–440) pathways. Ontologically-related pathways29,30 were
grouped (Supplementary Table S15) and visualized as Word
Clouds (Fig. 4). Pathway groups overrepresented (p , 0.05) in
both tumour subsets included 17 pathways involving collagen-
ECM protein phosphorylation pathways, metabolism, cell cycle,
DNA repair, and cellular response to stress. However, 13 pathways
involving collagen (Table S14 #1–13), and 9 pathways involving
NCAM1 (Table S14 #17–25) were overrepresented uniquely in
LN1 tumors, but not in LN2 tumours.

NCAM1, or the neural cell adhesion molecule, is a member of the
immunoglobulin super family with a role in cell-cell and cell-matrix
interactions during development and cellular differentiation.
Mutations in NCAM1 signaling genes for neurite outgrowth
(Supplementary Table S16 #1) were still overrepresented in tumours
with lymph node invasiveness, even after genes common to both
tumour subsets were masked from the analysis, i.e. primarily col-
lagen and ECM genes (Supplementary Tables S16–17). These include
defects in NCAM1 interactions with FYN and GRB2, a ternary com-
plex that participates in the conversion of RAS5GDP to RAS5GTP,
which subsequently initiates the RAF/MAP kinase cascade.

We then reanalyzed these data after conservatively limiting the set
of mutant genes to those containing the most deleterious mutations
(Supplementary Table S18; stop-gain, stop-loss, frameshift/indel
mutations, and validated splicing mutations). Four of the 8 sub-path-
ways of NCAM1 signaling for neurite outgrowth were overrepre-
sented solely in LN1 tumours. Autophosphorylation/
dephosphorylation of NCAM1- bound Fyn, as well as NCAM1-
interactions with collagens were overrepresented. The most com-
monly mutated genes within these pathways are SPTA1,
CACNA1D, COL6A5, NCAM1, and COL6A6 (Supplementary
Table S19). CACNA1D is a voltage-dependent Ca21 channel
(VDCC) that associates with NCAM1 in growth cones at the sites
of NCAM1 clustering29,30. In addition, 6 other channel genes that are
expressed in breast tissue31 were found to be frequently mutated
(CACNA1C, CACNA1D, CACNA1G, CACNA1H, CACNB1,
CACNB3). Mutations interrupting these VDCC interactions may
alter the NCAM-dependent Ca21 influx. Collagen VI is expressed
as supramolecular aggregates of composite structures of different
chains and is among the most abundant components of the
ECM32. Knockdown of NCAM significantly reduces expression of
ECM components33, including collagen, weakening the ECM.

Figure 2 | Significantly mutated breast cancer genes with validated splicing mutations. TP53, KMT2C and CDH1 gene lengths are displayed with both

exons (thick lines/boxes) and introns (thin horizontal lines), along with the location of all splicing mutations. Diamond markers denote cryptic

mutations, natural splice site mutations are indicated by a circle and the colour of the marker corresponds with breast cancer tumour subtype. Mutations

validated by Veridical are found above the gene, and those mutations not assessed or not validated are below.

www.nature.com/scientificreports
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Mutations in these ECM components may also diminish matrix
integrity, possibly resulting in more porous structures34.

Elevation of NCAM1-related gene pathway mutations in lymph
node-positive tumours. NCAM1, collagen, and ECM pathway
mutations were assessed in tumours, stratifying by lymph node
status and tumour stage (Fig. 5). The percentage of tumours with
NCAM1-related pathway splicing mutations was increased in N0
(110 localized tumours) and N1 (84 tumours with lymph node
involvement), as well as Stage I (37) and II tumours (140).
Advanced lymph node involvement and tumour stage were not
associated with increased numbers of collagen and ECM pathway
splicing mutations, but rather a decrease in the percent of tumours

with these pathways mutations in advanced stages was observed.
A multiple factor analysis (MFA; Table 3) was performed to assess
contributions of the number of NCAM1-related pathway
mutations per tumour (both protein coding and splicing),
clinical parameters including stage (AJCC tumour stage, lymph
node status and metastasis stage), receptor status (HER2, PR, and
ER positivity), and patient outcome (relapsed, living/deceased).
NCAM1-related pathway mutations were either absent (n 5

213), harbored a single mutation (n 5 117), or two or more
mutations (n 5 112) per tumour. The MFA components
containing NCAM1-related pathway mutations were moderately
correlated with both tumour stage and receptor status, and
accounted for 11% of the variance.

Figure 3 | Circos plot of validated splicing mutations. From the outermost ring in, chromosomes are labeled clockwise with copy number data inside

them that displays deletions in red and amplifications in blue, mutations validated by Veridical (indicated by black ticks) are then plotted by subtype

with basal-like in the outer white ring, HER2-enriched in the outer grey ring, then luminal A (inner white) and luminal B (inner grey).
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Analysis of tumour subtypes. Splicing mutation analysis in different
tumour subtypes revealed between 9–15 mutations per tumour,
which generally accounted for 8–9% of all mutations detected
(Supplementary Table S20) and are similar levels to those
previously reported18. Pathway analyses for each subtype, stratified
by lymph node status, indicated higher enrichment of NCAM1-
related gene mutations in basal-like and HER2/ERBB2-enriched
LN1 tumours (Supplementary Table S21, Supplementary Fig. S5:
see word clouds). LN1 basal-like and HER2-enriched tumours were
the only tumours found to have significant enrichment in ‘‘NCAM
signaling for neurite out-growth’’, identifying those tumour subtypes
and pathways that may play a role in tumour migration. No single
gene was significantly mutated within the NCAM1 pathways that
were overrepresented in LN1 tumours. This suggests that a general
defect in NCAM1-pathway signaling may be associated with lymph
node metastasis in breast cancer.

Discussion
Breast carcinoma tumour exomes contain more deleterious muta-
tions than previously recognized. Using Shannon information the-
ory, we have predicted an expanded set of mutations that affect
post-transcriptional mRNA processing that either reside in non-cod-
ing regions, or overlap known codons. We then employed Veridical24,
a high-throughput, genome-scale method, to statistically validate
mRNA splicing consequences that result from the predicted variants.
This study complements the analyses performed by TCGA5, which
comprehensively reported protein-coding mutations, along with gene
expression, epigenetic, and copy number changes. Together with
known deleterious coding sequence variants, the identification of such
splicing mutations can refine and impact our understanding as to
which biochemical pathways are dysregulated in these tumours.

Pathway overrepresentation analyses reproduced many of the
same pathways identified by TCGA. In our analysis, a number of
these attained or increased significance when genes with previously
unrecognized splicing mutations were included. Both splicing muta-
tions alone and the complete variant set from all tumours were

enriched for genes in pathways known to play a role in tumour
development and progression including signaling by growth factors,
cell cycle, ECM organization, and cell-to-cell communication.
Stratifying the tumours by lymph node status revealed that splicing
mutations were enriched for genes within NCAM1 pathways in LN1

tumours, exclusively. Splicing mutations in these pathways were
much rarer and sparsely distributed in LN2 tumours, with 11 muta-
tions in 92 LN2 tumours and 25 mutations in 118 LN1 tumours.
Interestingly, this enrichment was not observed when all protein
coding substitutions were analyzed, but was significant when asses-
sing all variants that were likely to be deleterious (i.e. validated splic-
ing mutations, stop codon gain or losses and frameshift
substitutions). We did not attempt to differentiate loss versus gain
of function, however splicing mutations and nonsense codons usu-
ally result in loss of function. The percent of tumours with NCAM1-
related pathway mutations increased by 6% from lymph node stage
N0 to N1 and N3 and by 7% from stage I to III. The lower fraction of
tumours with collagen pathway mutations at higher lymph node
stages (N3, N4), and with ECM-related mutations in tumour stages
III and IV could be related to clonal selection of distinct metastatic
phenotypes35, however it is also possible that the decreases may not
be significant due to the lower numbers of tumours in these
categories.

Our results indicate that NCAM1 pathways are more likely to be
dysregulated in tumours that have migrated to lymph nodes. We
found the enrichment of NCAM1-related pathway splicing muta-
tions in LN1 tumours was specifically present in HER2-enriched
and basal-like tumours. Basal-like, specifically triple-negative,
tumours have been associated with poor prognosis and survival36.
Early and metastatic HER2 positive tumours were associated with
poor prognoses37 until the more recent introduction of HER2-tar-
geted therapies38. In these tumour subtypes, the presence of
NCAM1-related pathway mutations may indicate a propensity to
migrate and/or form distant metastases.

Dysregulated expression of NCAM1 has been suggested to con-
tribute to tumour migration in other cancers: (i) gene silencing and

Figure 4 | Word Clouds demonstrating differences between overrepresented mutated pathways in lymph node-positive (a) and lymph node-negative
(b) tumours. The abstracted pathways (see methods) were plotted if present two or more times. The size of the words as well as the corresponding colours

of the pathway names indicates the frequency of that abstracted pathway, and can be compared within and between the word clouds of each tumour

subset.
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localization studies have suggested that ‘‘NCAM is both necessary
and sufficient to promote a migratory and invasive phenotype in
EOC cells, with no major effect on cell proliferation’’34, (ii) over-
expression of NCAM1 has been linked to high ovarian carcinoma
tumour grade34 and greater metastatic potential in melanoma cells39;
(iii) preserved NCAM1 expression in differentiated thyroid carcin-
oma has been cited as an indicator for tumours with as increased risk
of forming distant metastases40 and (iv) blocking NCAM1 function
in murine lung tumour cells led to cell vulnerability to apoptosis.
More generally, NCAM1 is known to play a role in apoptotic evasion
and matrix degradation, and has potential roles in directional cell
migration, cell polarity, extravasation and immunological escape41.
NCAM1-mediated stimulation of FGFR activity is causally linked to
tumour malignancy, suggesting that this NCAM1-FGFR interaction
may be an effective therapeutic target. It is notable that we find
mutations in breast tumours that affect the NCAM1-FGFR inter-
action occur in pathways that are overrepresented in LN1, but not
LN2 tumour genomes.

NCAM1 homophilic clusters form within lipid rafts on the cell
membrane. Spectrin, an NCAM1-binding cytoskeletal protein, colo-
calizes with NCAM1 and is codistributed within lipid rafts42.
Frequent mutations in spectrin (SPTA1) may prevent its association
with RPTPa, thereby impeding its subsequent association with the
cytoplasmic NCAM1 domain, redistribution of NCAM1 and cluster

formation. This could abrogate downstream interactions with FYN
and GRB2, ultimately affecting activation of RAS. These findings
merit further investigation into how dysregulation in these different
partners (i.e. NCAM1, FGFR and the other interacting proteins),
acting as an ensemble, may promote tumour metastasis.

The number of aberrant mRNA splicing mutations reported by
TCGA5 is ,10% of those reported here, and the variants were not
functionally validated in the previous study. We predict that 8% of all
cis-activating point mutations detected in these tumours will signifi-
cantly reduce the strength of the corresponding natural splice sites.
The 5,206 splicing mutations reported here nearly double the num-
ber of mutations that lead to stop-gains or losses (2,587 variants in
1,907 genes), and the number of insertions/deletions leading to fra-
meshift substitutions (2,707 variants in 1,848 genes) in this set of
tumours. It is not surprising that these analyses revealed previously
unrecognized pathways that may be dysregulated, in addition to
those already known in these tumours.

Our analysis of significantly mutated genes based on the protein
coding and splicing mutations reproduced many of the genes
reported by TCGA, and revealed one additional gene, ARID1A.
ARID1A has been implicated in breast cancer in a large-scale geno-
mic study4 and has also been mutated in 57% of ovarian clear-cell
carcinoma tumours43. Thirteen genes identified as significantly
mutated in breast cancer by the TCGA did not reach statistical

Figure 5 | Percent of tumours with mutations by pathway group and clinical factors. The percent of tumours with NCAM1 (red square), collagen

(blue diamond), and ECM (green triangle) pathway mutations were plotted by lymph node status and tumour stage for all mutations (solid lines), and

splicing mutations alone (dashed line).

Table 3 | Multiple factor analysis of NCAM1 related pathway mutations and clinical parameters per tumour

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5

A. No. Mutations in NCAM Pathways* 0.103 0.892 0.910 0.367 0.321
Stages 0.804 0.459 0.381 0.833 0.725
Receptor status 0.379 0.356 0.406 0.471 0.641
Patient status 0.868 0.159 0.050 0.106 0.159
% Variance explained 7.618 5.699 5.635 4.944 4.694

B. No. Mutations Unique to NCAM Pathways‘ 0.264 0.899 0.894 0.304 0.300
Stage 0.791 0.413 0.380 0.877 0.752
Receptor status 0.389 0.427 0.411 0.429 0.610
Patient status 0.851 0.083 0.158 0.168 0.221
% Variance explained 7.716 5.816 5.534 4.941 4.743

*mutation count for all genes in NCAM pathways.
‘mutation count for genes unique to NCAM pathways, and not in collagen or ECM pathways.

www.nature.com/scientificreports
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significance within our study (Table S4). This can be explained by a
number of different factors: differences in variant callers, variant
annotation, the number of tumours analyzed and differences in the
filtering of variants, once the gene set was derived. In addition,
TCGA initially analyzed all variants (SNVs and indels) by tumour
subtype, unlike our study, which considered mutations in all
tumours, then reanalyzed overrepresented pathways with mutations
by subtype. Mutations that lead to a significant level of aberrant
splicing can alter or improve genomic signatures, which are import-
ant when assessing potential biomarkers, diagnosis and prognosis,
and metastatic or treatment-resistant tumour phenotypes.

Methods
This study involved a reanalysis of controlled-access data from The Cancer Genome
Atlas Project (NCBI dbGaP Project #988: Predicting common genetic variants that
alter the splicing of human gene transcripts, PI: PK Rogan). DNA and RNA breast
cancer sequencing data was obtained for 445 tumours from 442 patients
(Supplementary Table S1; July, 2012 DNA-Seq download; July, 2013 RNA-Seq
Download)5. The tumour-normal pairs used mirrored those published by the TCGA
in the Level 2 mutation data. Duplicate mutations in the same patient from two
different tumour-normal pairs are reported, but were treated as one tumour for the
mutation summaries reported by tumour. Somatic mutations were predicted from
the same DNA sequencing data using two different algorithms: Strelka (v1.0.10)6 and
SomaticSniper (v1.0.2)44 (See Supplementary Material section I). Realignment was
not necessary before running Strelka because of the program’s internal realignment
capabilities, so Strelka was run on the raw BAM files downloaded from TCGA.
Default parameters were used with the provided Burrows-Wheeler Aligner (BWA)
configuration file, since BWA was used in the initial exome alignments. Additionally,
the isSkipDepthFilters configuration option was changed to true, since such depth
filters are designed for use on whole-genome data and would erroneously filter out
most data when used with exome sequencing data. Strelka’s BWA quality control
script was run to remove variants considered low quality. Variants that were found to
be common SNPs, defined by those that were annotated with dbSNP135 in over 1% of
the population, were filtered out from the variant set before any subsequent analyses.

Somatic mutations, including single-nucleotide variants (SNVs) and insertion/
deletions (indels) were used to predict the coding and non-coding genic effects of the
variants. Annovar (August 23, 2013 release)8 was used with default parameters to
predict which variants are likely to affect amino acid sequence and splicing at the
natural splice sites. The Shannon Human Splicing Pipeline Version 2.0 (Shannon
Pipeline)18 was used to complete a more in-depth analysis of splicing mutations,
which predicts variants that will alter the binding affinity of the natural site or cause
cryptic splicing (i.e. extension or truncation of an exon). The Shannon Pipeline results
were subsequently filtered to prioritize which variants are most likely to have the
greatest effect on mRNA splicing, using the filtering criteria outlined in
Supplementary Fig. S6.

Multiple factor analyses used the R package FactoMineR (version 1.25)45. Clinical
parameters were obtained from the TCGA including AJCC tumour staging (meta-
stasis stage code, neoplasm disease lymph node stage, and neoplasm disease stage),
receptor statuses (estrogen, progesterone, and HER2/neu immunohistochemistry
receptor statuses) as well as patient status (neoplasm cancer status and vital status).
These clinical parameters were input into FactoMineR as qualitative groups, as listed
above, along with the number of NCAM1 pathway mutations. Within the program,
options were set to perform clustering after MFA, and to automatically determine the
choice of the number of clusters. A second MFA was performed based on the number
of NCAM1 pathway mutations per tumour in genes present only in the NCAM1
related pathways that were also not present in the collagen or extracellular matrix
pathways.

Word Clouds were generated to portray the overrepresentation analysis of mutated
pathway results generated with Reactome29,30 and, in particular, the differences
between lymph node-positive and -negative tumour samples. The primary input data
for these graphics was the overrepresented pathways from Reactome, partitioned
according to subtype and lymph status. Additional sets were composed of all subtypes
and all subtypes with only pathways not found within both lymph status partitions.
However, this direct data was not suitable for plotting, as many pathways were vastly
too specific and varied to portray any broader trends. Pathway abstraction was
undertaken to mitigate these difficulties and allow for visual perception of trends in
the data. The full Reactome human pathway hierarchy was downloaded, using the
provided RESTful API46. A query to abstract pathways was performed using the
BaseX XML database engine47. The abstraction was designed to generalize the path-
ways, while still maintaining sufficient specificity to confer biological meaning in this
context. To accomplish this, corresponding pathways of specific depths were
retrieved and abstracted by taking instead higher-order pathways in the hierarchy.
Reactions or black box events that were four or five levels deep, as well as pathways
that were four levels deep, were abstracted by taking the corresponding element of
depth three (i.e. their parent or grandparent). Pathways one level higher in the
hierarchy (i.e. the parent pathway) of all other pathways, reactions, or black box
events (i.e. those not at the aforementioned depths) were retrieved. The resulting
abstracted pathways were then used as input for the word clouds. They were gener-
ated using R (v3.0.2) with the RColorBrewer (v1.0.5 tm, and wordcloud packages

(v2.4)48. Parameters used to generate the word clouds were as follows: scale 5

c(wordFit,0.3), min.freq 5 2, random.order 5 F, colors 5 brewer.
pal(6, ‘‘Dark2’’)[21])), vfont 5 c(‘‘serif’’,‘‘plain’’).

The Mutational Significance in Cancer (v0.4) (MuSiC)25 suite of tools was
employed to identify genes significantly mutated in the breast cancer samples ana-
lyzed with the variant set derived in this study. Three tools from genome MuSiC were
used with all default parameters: bmr calc-bmr, bmr calc-covg, and smg. NCBI
Reference Sequence Genes release 62 (RefSeq)49 were used as the regions of interest
(ROI) file with the Human Feb. 2009 (GRCh37/hg19) assembly reference sequence
for bmr calc-bmr and bmr calc-covg. All FDRs that we report pertaining to the MuSiC
analysis used the Fisher’s combined P-value (FCPT), convolution (CT) and likelihood
ratio (LRT) statistical tests.

The software program Veridical24 was used for in silico validation of all predicted
splicing mutations using its default settings. At the time the program was run,
Veridical rounded p-values to 2 decimal places. Validated results reported were
filtered for cryptic variants using reads demonstrating junction-spanning cryptic
sites, junction-spanning exon skipping, or read-abundance intron inclusion, whereas
reads for predicted natural splice site mutations variants were filtered for all of the
above evidence types, except for cryptic splice site-activating, junction-spanning
reads. Variants were considered validated if at least one of the above categories for the
indicated variant type were excluded from normal controls, but present in the tran-
scriptome containing the predicted mutation (p # 0.05, after transformation of both
sample and control read counts to a normal distribution and use of a parametric Z
test). Validation was not always possible in instances where predicted mutations
occurred in genes or exons with minimal cDNA coverage, resulting from either low
expression in the breast tumours carrying the mutation50, tissue-specificity of gene
expression, or transcript instability from nonsense-mediated decay. Although
Veridical provided experimental validation of predicted splicing mutations, the
impact of these and protein coding mutations on tumour progression and biology
could not be determined from the present analyses. Further laboratory studies with
the original tumour tissues (which were not available), cell line or model organism
studies would be required to prove biological significance.

RSeQC’s (v2.3.7) ReadDist51 script was used to generate the genome-wide intron
inclusion data with the RefSeq gene annotation file to determine intronic genomic
sequences. We ran BedTools multicov (v2.17.0)52 upon the RefSeq49 exome annota-
tion BED file retrieved from the UCSC table browser53 with a minimum map quality
of 1. The returned coverage values were multiplied by the read length, and divided by
the number of exonic bases. In cases of genes with more than one transcript, the
shortest transcript was used such that the coverage values per exonic base were
maximized, which is the most conservative assumption to adopt when excluding
variants due to low coverage. The heat map, provided in Supplementary Fig. S1, was
generated by breast cancer subtype for this data using the R packages Hmisc (v3.14.3)
and gplots (v2.12.1).
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