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Abstract

Neurodegenerative diseases are characterized by progressive dysfunction of specific populations of neurons, determining clinical 
presentation. Neuronal loss is associated with extra and intracellular accumulation of misfolded proteins, the hallmarks of many neu-
rodegenerative proteinopathies. Major basic processes include abnormal protein dynamics due to deficiency of the ubiqui-
tin–proteosome–autophagy system, oxidative stress and free radical formation, mitochondrial dysfunction, impaired bioenergetics,
dysfunction of neurotrophins, ‘neuroinflammatory’ processes and (secondary) disruptions of neuronal Golgi apparatus and axonal
transport. These interrelated mechanisms lead to programmed cell death is a long run over many years. Neurodegenerative disorders
are classified according to known genetic mechanisms or to major components of protein deposits, but recent studies showed both
overlap and intraindividual diversities between different phenotypes. Synergistic mechanisms between pathological proteins suggest
common pathogenic mechanisms. Animal models and other studies have provided insight into the basic neurodegeneration and cell
death programs, offering new ways for future prevention/treatment strategies.
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Introduction

Neurodegenerative disorders (NDD) constitute a set of pathologi-
cal conditions originating from slow progressive and irreversible
dysfunction and loss of neurons and synapses in selected areas of
the nervous system which determine clinical presentation and
course. The major basic mechanisms leading to neurodegenera-
tion (ND) are considered multifactorial caused by genetic, environ-
mental and endogenous factors related to aging, but their patho-
genic role and their basic molecular mechanisms are not fully

understood [1, 2]. NDDs currently are classified according to
known genetic mechanisms and/or to the major compounds of
their protein deposits (Fig. 1). Based on critical conformational
changes of proteins, these disorders are denoted as ‘protein mis-
folding’ diseases or proteinopathies [3, 4]. Recent progress with
respect to the triggers of most NDDs is illustrated by the number
of citations in PubMed (December 4, 2009): ND 37,019; NDDs
168,827; pathogenesis 89,008.
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Common pathogenic mechanisms underlying many NDDs include:
1. Abnormal protein dynamics with misfolding, defective degra-

dation, proteasomal dysfunction and aggregation; often with
actions and mutations of molecular chaperones;

2. Oxidative stress (OS) and formation of free radicals/reactive
oxygen species (ROS);

3. Impaired bioenergetics, mitochondrial dysfunctions and DNA
damage;

4. Fragmentation of neuronal Golgi apparatus;
5. Disruption of cellular/axonal transport (4 and 5 may be regarded

as secondary effects);
6. Dysfunction of neurotrophins (NTFs) and
7. ‘Neuroinflammatory’/neuroimmune processes.

These mechanisms are interrelated in complex vicious circles
finally leading to cell dysfunction and death, the basic molecular
cascades of which under discussion.

Protein aggregation

Abnormal interactions between proteins that result in aberrant
intra and extracellular deposition of self-aggregating misfolded

proteins with formation of high-ordered insoluble fibrils are patho-
logical hallmarks of many, albeit diverse, NDDs [see 1, 2, 5, 6]. In
general, the identity of the underlying protein determines which
neurons are affected and, hence, the clinical manifestation of each
disease [7, 8]. However, the same neuronal populations can be
affected by different disorders. The same neurodegenerative
process and the same mutation in the genes encoding protein
constituents may be associated with a variety of clinico-patholog-
ical phenotypes, whereas similar or identical phenotypes may be
related to different genetic defects, resulting from complex
gene–gene and gene-environmental interplay [9]. Abnormal pro-
tein–protein interactions and/or the lesions that result from them
trigger vicious circles leading to dysfunction and death of neuronal
and glial cells with ensuing disintegration of neuronal networks
[10, 11]. Abnormal interaction between normal, highly soluble
brain proteins alters their conformation, and misfolding gradually
converts them into insoluble polymers with the aggregates adopt-
ing either highly ordered (cross-pleated �-sheet structures) or
disordered (amorphous) forms [12]. Since deposits of natively
unfolded proteins aggregated into defined fibrillar structures often
display the properties of amyloid (i.e. ~10-nm-wide fibrils with
crossed �-pleated sheet structures), these disorders are grouped
together as brain amyloidoses [2, 13].
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Fig. 1 Algorithm for classification of neurodegenerative diseases with protein deposits (proteinopathies) (from [1]).
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‘Toxic oligomer’ hypothesis

A causative link between the formation of protein aggregates and
ND is suggested to be a result of the toxic action of substances
produced during early phases, i.e. soluble oligomers and protofib-
rillar derivatives of misfolded proteins [14–16]. However, the pre-
cise biochemical mechanisms are poorly understood.

The ‘toxic oligomer’ hypothesis is supported by the finding that
a single-domain antibody can recognize a common conforma-
tional epitope that is displayed by several disease-associated pro-
teins, including �-amyloid (A�), �-synuclein (�Syn), � protein,
prions and polyglutamine (polyQ) peptides [17–20] (Fig. 2).
Soluble A� oligomers are increased in Alzheimer’s disease (AD) in
both brain tissue and plasma [21], and their levels correlate with
cognitive dysfunction [22]. The analysis of the assembly pathway
of A� in vitro and biochemical characterization of A� deposits iso-
lated from AD brains indicate that A� oligomerization occurs via
distinct intermediates. Recent studies suggest the existence of dif-
ferent types of A�42 strains, some causing toxic effects and oth-
ers aggregation into oligomers without adapting toxic conforma-
tions [23]. A�40 inhibits amyloid deposition in vivo [24], but 3D
reconstruction of A�1–40 and A�1–42 amyloid fibrils revealed sim-
ilar protofibril structures [25]. The cellular prion protein (PrPC)
and amyloid precursor protein (APP)-like protein 1 (APLP1) were
suggested as possible mediators of A�-induced synaptic dysfunc-
tion [26]. A� oligomers isolated from the brains of AD patients
and injected into rodents are capable to disrupt N-methyl D-asper-
tate acid receptors and impairing memory [27]. A� peptides have
a crucial role in regulation of synapse vesicle release and might
point to the primary pathological events that lead to compensatory
synaptic loss in AD [28]. APLP1 forming heterodimers with APP

and being mainly present on the cell surface, is a strong candidate
receptor for (toxic) A� oligomers [29]. They affect the presynaptic
and terminal post-synaptic region [30, 31, 424–426], synaptic 
plasticity and transmission [32] correlating with synaptic loss [33],
and perturbated APP synaptic adhesion activity may contribute to
synaptic dysfunction and AD pathogenesis [34, 35]. Native amylos-
pheroids isolated from AD brains with a distinct toxic surface induce
neuronal loss through a mechanism different from other A� assem-
blies, which have been reported to perturbate glutamatergic
synapse transmission [36]. The amount of A� is determined by the
balance between its production by proteolytic processing of APP via
�- and �-secretases and its clearance. Apolipoprotein E �4 has been
identified as an AD risk factor, partly explained by its reduced ability
to crosslink A� [37]. Increased A� production and/or aggregation
likely contribute to progression of AD [38], while suppression of A�

deposition leads to long-term reduction of AD pathology [39, 40].
Recent results provide a unifying mechanism in which A�

oligomers induce � hyperphosphorylation in AD, while an antibody
that targets soluble A� oligomers blocks their attachment to synap-
tic binding sites and prevents � hyperphosphorylation [41].
Autoantibodies against A� are common in AD brain and help con-
trol the plaque burden [42]. The fraction of the soluble, mainly toxic
A� pool is intracellular and is recognized and targeted by conforma-
tion-sensitive antibodies [43]. Single-domain antibodies recognize
selectively small oligomeric forms of A�, prevent A�-induced neu-
rotoxicity, and inhibit fibril formation [18]. Lipid surfaces promote
aggregation of A� proteins and subsequent permeability changes
on lipid membranes [44], but there is a dynamic relationship
between intra and extracellular pools of A� [45], intraneuronal A�

accumulation particularly contributing to AD progression [46], to
which changes at neuronal networks may strongly contribute [47].
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Fig. 2 Cascade of neurotoxic
effects of protein oligomeres
leading to neuronal dysfunc-
tion/ND; illustrated by the sug-
gested relationship between
A� and �Syn oligomers.
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A prion-like spread has been shown for A� aggregates in a tg mouse
model [427], and extrusion of A� aggregates may seed extracel-
lular amyloid plaque formation during AD pathogenesis [428].

Oligomeric and pre-aggregated forms of � protein have been
shown to be toxic in vitro, but the mechanisms underlying its
structural changes leading to human tauopathies still remain elu-
sive [48, 49]. The natively unfolded character of � and its aggre-
gation to Alzheimer-like paired helical filaments and the link
between A� and � in this relationship in AD and other NDDs have
been discussed conversely (coexistence of both, axonal connec-
tion; ‘dual pathway’ model – [40, 50]. Granular � oligomers slowly
evolve to larger structures and eventually to filaments having a
size smaller than those for PHFs purified from AD [51]. Recent
studies with � that has been believed to reside within the cyto-
plasm, suggested � aggregates spreading through cell-to-cell
transmission of misfolded protein [52–54], and aggregation inter-
mediates are linked to ND [48, 55].

�Syn assembling into highly soluble special oligomers may
proceed to insoluble aggregates and plays a central role in ND in
Parkinson disease (PD) [56]; it is potentially prone to misfold [57]
and may lead to neuronal death, but other modes of toxicity have
been proposed [58], suggesting interaction of �Syn and A�

resulting in ND [59]. The lysosomal protease cathepsin D influ-
ences �Syn processing, aggregation and toxicity in vivo [60], and
�Syn contributes to glycogen synthase kinase 3� catalysed �

phosphorylation in PD models [61]. Interaction with synphilin-1
promotes inclusion formation of �Syn providing new insights in
to the inclusion body formation in Lewy body disorders [429].
Elevated levels of soluble �Syn oligomers have been detected in
post-mortem brains of DLB patients [62]. Seeding induced by
�Syn oligomers may lead to spreading of �Syn pathology [63]
and to the formation of Lewy body (LB)-like intracellular inclu-
sions [64], with cell-to-cell transmission of �Syn aggregates via
endocytosis, leading to nuclear fragmentation and caspase-3 acti-
vation [65]. NMR spectroscopy provided information about struc-
ture and aggregation of �Syn [66]. Methods to detect morpholog-
ically distinct oligomeric forms of �Syn have been described [67].

In polyQ diseases, the protein context of expanded polyQ
and its soluble mutant conformers are critical for the disease
specificity [20]. Structural and dynamic aspects related to
oligomerization of superoxide dismutase 1 (SOD1) and its
mutants have provided better insight into SOD1 pathway in rela-
tion to familial amyotrophic lateral sclerosis (fALS) [68], which
is linked to the two genes TARDBP (TDP-43, which encodes
TAR-DNA binding protein) and FUS (RNA binding protein fusion)
[69, 70], whereas in sporadic amyotrophic lateral sclerosis
(sALS) there is lack of evidence of monomer/misfolded SOD1
[71]. As most NDDs, ALS features deposits of SOD1, TARDBP
and FUS aggregates.

The discovery of new prions expands the spectrum of their bio-
logical functioning [72]. It further promotes the assembly of these
pathological conformers into filaments that progressively accu-
mulate in a disease- and protein-specific manner in the cytosol or
nuclei of affected brain cells (neurons and/or glia) or in the extra-
cellular space [16, 73]. The relationship between A� and PrPC and

the role of PrPC in the pathogenesis of AD are under discussion
[74]. In spinocerebellar ataxia (SCA), protein aggregation, alter-
ation of the CO2 homeostasis and others are important pathogenic
factors [75].

Protein (mis)folding

Proteins are a heterogeneous population of different conformers
which, due to their flexibility, are in a dynamic state between
 various conformational substrates maintained by synthesis and
degradation [76]. Folding, part of the normal process that
 converts newly synthesized proteins to physiologically functional
molecules, is controlled by molecular chaperones that prevent
inappropriate interaction between non-native polypeptides, and
promote the refolding of proteins that have become misfolded as
a result of cellular stress [77]. Protein aggregation occurs in vivo
as a result of improper folding or misfolding leading to a structural
change of a normal, functional protein, inducing the formation of
protein aggregates with various supramolecular organizations
(Fig. 3). Aberrant proteins, the result of production errors, inher-
ited or acquired amino acid substitutions or damage, often cannot
fold correctly and will be trapped in misfolded conformations. The
pathogenic pathways involve membrane permeabilization through
a channel mechanism or hydrophobic interaction of prefibrillary
oligomers with various cellular targets [78]. To get rid of mis-
folded proteins, the living cell contains a large number of intracel-
lular proteases, which, together with the chaperones, comprise
the cellular protein quality-control systems in the endoplasmic
reticulum (ER). Quality control against misfolded proteins is the
cytosole in a network for cell survival [79], and ER protein quality
control in NDD is disordered [80].

Many proteins associated with NDDs are intrinsically disor-
dered under physiological conditions [4, 81]. Progressive 
intracellular protein accumulation can result from various patho-
logical processes: (i) abnormal synthesis and folding, (ii ) abnormal
interaction with other proteins, (iii ) overproduction of protein 
constituents, (iv ) impaired degradation and turnover, (v) altered
post-translational modifications of newly synthesized proteins,
(vi ) protein oxidation, (vii ) nucleic acid-induced structural con-
versions, (viii ) abnormal proteolytic cleavage, (ix ) improper
expression or altered gene splicing, (x) insufficient molecular
chaperone activity and (xi ) impaired intracellular transport of
proteins. Recent studies with mutant huntingtin (mhtt), � protein
and �Syn demonstrated propagation of misfolded protein aggre-
gates through cell-to-cell transmission in cultured cells and 
tg mouse models [430–432]. Due to the central role of these 
phenomena in cell biology, protein misfolding and aberrant disor-
der-to-order conformational transitions in protein structure are
associated with a large number of NDDs [82]. Causes are genetic
deficits producing a single amino acid substantiation or expan-
sion of a repeating amino acid tract, as occurs in familial 
diseases. However, for most NDDs that occur sporadically or in
non-Mendelian familial fashion, other factors may induce the
pathogenic cascade.
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Proteostasis and molecular chaperones

Protein formation is regulated by the proteostasis network, an
integrated biological system that generates and protects the pro-
tein fold [83]. Many inherited disorders due to amino acid substi-
tutions exhibit loss-of-function (LOF) pathogenesis because the
aberrant protein is eliminated by one of the control systems.
However, not all aberrant proteins can be eliminated and the mis-
folded protein may accumulate and form toxic oligomeric and/or
aggregates. In this case, the loss of function may be accompanied
by a gain-of-function (GOF) pathogenesis, which often determines
the pathological and clinical features [84]. Many diseases of pro-
tein homeostasis, or ‘proteostasis’, due to misregulation of pro-
tein maintenance, include LOF and gain-of-toxic-function diseases
(AD, PD, Huntington disease/HD). The conformational change
may promote diseases either by gain of toxic activity or by the lack
of biological function of the natively folded protein under adverse
conditions, including OS, ER stress and aging by accumulation of
damaged proteins in the cell [85]. In AD, there is no consensus as
yet whether the disease acts through a LOF or GOF mechanism.
On the other hand, larger protein aggregates may represent an
inherent protective or defensive mechanism by sequestering or
inactivating toxic oligomers and protofibrils [see 1, 6] and A�

monomers have been shown to be neuroprotective. This ‘abnor-
mal protein–protein interaction’ or ‘fatal attractions’ hypothesis
describes plausible unifying mechanisms to account for the onset
and progression of neurodegenerative proteinopathies.

Proteostasis is maintained by a network, which comprises
pathways that control protein synthesis, folding, trafficking,

aggregation, disaggregation and degradation, including the
unfolded protein response (UPR), the heat-shock response, the
ubiquitin proteasome system (UPS) and epigenetic programs
[86]. Decreased ability of this network to cope with inherited mis-
folding-prone proteins, aging, and/or metabolic/environmental
stress appears to trigger or exacerbate proteostasis diseases
[86]. This is influenced by genes that control aging, thus linking
stress and protein homeostasis with the health and life span of
the organism. Small molecules can enhance proteostasis by
binding to and stabilizing specific proteins (chaperones) or by
increasing the proteostasis network capacity (proteostasis regu-
lators) [87]. Adaptation and survival requires the ability to coor-
dinate the activities of protective stress response pathways and
chaperone networks.

Molecular chaperones have essential roles in many cellular
processes at the folding/degradation interface in mammalian cells
[88]. Cellular molecular chaperones, which are ubiquitous, stress-
induced proteins, have been found to be effective in preventing
misfolding of different disease-causing proteins, essentially
reducing the severity of several NDDs and other proteinopathies.
Chaperones are engaged in suppressing the effect of protein
 misfolding-induced consequences [89, 90] inhibiting amyloid
 formation in the extracellular space [433] and to protect against
OS [91]. They play an important role in the deterrence of protein
damage during aging and in ND [92]. Conditions of stress are
characterized by a robust increase in the synthesis of heat shock
proteins (HSPs) that are crucial for recovery from stress-induced
protein damage [93]. Almost all HSPs function as molecular chap-
erones, and the number of diseases that are known to be caused
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Fig. 3 Model of protein misfolding and fibrillation leading to deposition of aggregated proteins in cells and extracellular spaces via actions of the UPS,
phagosomes and aggresomes, either causing cell death or cytoprotection.
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by their mutations is increasing. Accumulation of aggregation-
prone proteins activates signal transduction pathways that control
cell viability in various models of PD, HD and ALS [57, 77, 94] and
there is an emerging role of chaperones in the pathogenesis of PD
[434]. Several chaperone actions might be required to impede tis-
sue pathogenesis in vivo, and molecular chaperones may increas-
ingly become new targets for the therapy of NDDs [77].

Protein misfolding and endoplasmic reticulum
stress

In neurons, the ER is important for the synthesis, folding and
post-translational modification of transmembrane and secreted
proteins. The ER response is characterized by changes in specific
proteins, causing translational attenuation, induction of ER chap-
erones and degradation of misfolded proteins, while in prolonged
or aggravated ER stress, cellular signals leading to cell death are
activated. ER stress may be involved in some human neuronal dis-
eases, such as AD, PD, prion diseases, etc. [95]. The exact mech-
anisms and causal effects of ER stress and the proteins involved,
however, are poorly understood [96].

The mechanism by which �Syn, � and A� protein make fibrils
is an example of conformational plasticity, because these polypep-
tides can visit a coil or helical structure, but otherwise they con-
vert into a pathogenic �-sheet structure highly suitable for poly-
merization and fibre formation [57]. Misfolding of �Syn, which is
involved in neuronal functions, and can act as molecular chaper-
one, is a critical factor of synucleinopathies [97]. It can affect the
function of several key PD-linked genes such as DJ-1, PINK-1, and
perhaps also LRRK2, and parkin, which like �Syn, is also prone to
misfolding, especially in the presence of age-related stress [98].
Both conformational folding of previously unfolded � protein and
cleavage causing aggregation lead to neuronal dysfunction by
interference with axonal transport, neurotoxicity of early aggre-
gated state, contributing to disruption of neuronal circuits due to
synapse loss and cell death [99–101]. Extracellular �, �Syn and
prion aggregates can transmit a misfolded state from the outside
to the inside of a cell, indicating propagation of protein misfolding
[52, 64, 65].

The role that polyQ-induced aggregates, e.g. in HD, plays in
disease is not yet fully determined. N-terminal mutant huntingtin
(mhtt) proteins activate cellular pathways linked to ER stress and
cause protein misfolding inside the cells and form toxic amyloid-
like aggregates, preceded by a series of protein misfolding steps
termed poly-Q-fibrillation as a prerequisite for the underlying
mechanisms of ND [102]. They could be part of a compensatory
detoxification process by the cell in which pathogenic oligomers
are sequestered [103], suggesting that compounds targeting ER
stress may be considered in designing novel approaches for treat-
ment of HD and possibly other polyQ diseases [104].

In vivo, these changes develop insidiously over the lifetime of
an individual, even though they usually do not manifest clinically
until middle or late life. The causes of this prolonged process due

to progressive damage of specific vulnerable brain regions or neu-
ronal networks before clinical manifestation are poorly under-
stood. A crucial unanswered question is whether these aggregates
contribute to the onset and progression of ND are mere
bystanders resulting from an alternative pathway, or even may be
a neuroprotective response [1, 105]. Although mutations in the
genes encoding the fibrillizing proteins segregate familial forms of
the corresponding diseases, the same brain lesions also can be
formed by the corresponding wild-type protein in a sporadic form
of the disease. Since protein misfolding may also result in altering
their normal function, e.g. physiological proteins, fibrils may be
inactive endproducts of a common pathogenic cascade of an oth-
erwise deleterious process, but, in general, detection of fibrillar
assemblies indicates that neurons have been exposed to a wide
array of noxious agents. It becomes apparent that the pathology of
AD and other proteinopathies represents effect rather than cause,
or a host response to injury equaling neuroprotection [106].

Unfolded protein response

Proteins are synthesized and folded in the mitochiondria as well as
in cytosol and in the ER. Alterations in cellular homeostasis that
affect protein folding in the ER trigger a signalling pathway known
as the UPR [107]. There are three pathways to relieve ER stress
and to thus promote survival of the neuron: (i) activation of PRK-
like endoplasmic reticulum kinase (PERK) inhibitory cellular pro-
tein translation, preventing further protein synthesis; (ii) increased
capacity of the ER to handle unfolded proteins, mediated by the
activating transcription factor 6, and inoritol-requiring kinase-1
and (iii) removal of misfolded proteins from ER by enhancing pro-
teolytic degradation [108]. The molecular mechanisms underlying
these and related processes are unclear, but recent studies sug-
gested that the pathway starts with stress detection in the mito-
chondrial matrix followed by activation of UPR mitochondrial tar-
gets in the nucleus. ER stress is caused by disturbances in its
structure and function with accumulation of misfolded proteins
and alterations in calcium homeostasis [109]. During aging and in
NDDs, cellular Ca2�-regulating systems are compromised result-
ing in synaptic dysfunction, impaired plasticity and ND. OS, per-
turbated energy metabolism and aggregation of disease-related
proteins adversely affect Ca2� homeostasis by mechanisms that
have been elucidated [109, 110]. The UPR is activated in pretan-
gle neurons in AD hippocampus [111] and increased levels of
molecular chaperones in cytologically normal appearing neurons
suggest its early role. Although its initial participation in AD patho-
genesis could be neuroprotective, its sustained activation might
initiate or mediate ND [112].

Interaction of proteins

Despite differences in the molecular composition of these filamen-
tous lesions, the brain regions and cell types they affect, growing
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evidence supports the notion that they engage common down-
stream pathogenic targets. Although the different localizations of
hallmark protein aggregations (extracellular A� deposits in AD,
cytoplasmic LBs in PD, TDP-43 intracytoplasmic and intranuclear
inclusions in AD, frontotemporal lobar degeneration, ALS, intranu-
clear inclusions in HD) may suggest that each protein strikes a
single cellular domain, recent studies indicate the possibility of
common pathogenesis. In addition to showing common morpho-
logical and chemical features, the inclusion bodies co-localize with
several other proteins that are not structural elements of abnormal
fibres, but are binding to them, including various chaperones,
proteins implicated in cellular responses, signal transduction,
cytoskeletal, cell cycle and others [105, 113]. Proteomic analysis
of cortical LBs revealed 296 proteins [114], while in brainstem
LBs 90 proteins were identified, differing from Pick bodies and
suggesting a complex formation process [115]. In vivo protein
aggregation exhibits a remarkable specificity, suggesting that 
conserved mechanisms underlie it depending on selective interac-
tions and result in the formation of fibrillary structures. This might
reflect an irreversible sequestration and subsequent loss of functions
and/or a failed attempt to refold and degrade aggregated proteins.

The cellular response to these aggregates includes (1) the
recruitment of chaperones or proteins involved in the folding of
nascent translational products and in the resolubilization of
aggregated polypeptides, and (2) the ubiquitination of aggre-
gates, suggesting cellular attempts to degrade deposits of these
mutant proteins via the UPS [116].

The frequent co-occurrence of AD and PD and of inclusions
characteristic of both disorders in several other NDDs suggests
the involvement of a common underlying process [117–119],
which may be caused by hybrid oligomer interactions [120]. A col-
lision of two or more processes may occur in the same brain
region or even within single cells, e.g. in rare familial forms of DLB
[121]. A direct link between � and synaptic pathology is supported
by accumulation of abnormally phosphorylated � and �Syn within
synaptic terminals in AD brains and APP Swedish mutant tg mice
[122, 123]. Induction of hyperphosphorylation of � by �Syn in the
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of
parkinsonism [124], co-location of phospho-� and �Syn in both
neurofibrillary tangles (NFTs) and LBs [125], and co-occurrence of
abnormal deposition of �, �Syn and TDP-43 in AD, DLB and other
NDDs, probably related to genetic factors [118, 126], highlight the
interface between these two and other misfolded proteins.
Oxidatively modified �Syn degraded by the proteasome promotes
the recruitment of � to protein inclusions in oligodendroglia cells
in synucleinopathies [127]. Accumulation of A� and phospho-�
are thought to be coexistent, A� initiating hyperphosphorylation of
� [40]. Both can be linked by separate mechanisms driven by a
common upstream driver [50]. Interactions between A�, �Syn
and � may be a molecular mechanism in the overlapping pathol-
ogy of AD and PD/DLB [128, 129], probably generated by the
same stimulus with the outcome possibly having an inverse
 relationship depending on genetic background or environmental
factors. Although recent data documented co-localization of A�

and phospho-� in synaptosomes [130], and A� and � protein
show synergistic, age-associated effects in triple tg AD mice
[131]. Why � and A� pathologies are so intimately associated,
remains one of the major unresolved questions of AD pathophys-
iology. TDP-43 proteinopathies are distinct from most other NDDs
because they are due to protein misfolding without amyloidosis,
while TDP-43� inclusions show abnormal hyperphosphorylation,
ubiquitination and C-terminal fragments [132]. It is unclear,
whether there is a common underlying pathogenic mechanism
inducing both ND and fibrillary protein aggregates that are typical
for different disease processes (double or triple amyloidosis) or if
they represent a common final pathology leading to ND.

The ubiquitin proteasome system

All cellular components are subjected to continuous surveillance
by intracellular control systems. The UPS, the major non-lysoso-
mal system for regulating protein turnover, and the autophagy-
lysosome pathway (ALP) are the two most important mechanisms
for regulating protein handling [133]. These cellular protein qual-
ity control systems in the ER are important in the pathogenesis of
NDDs, but also in neuroprotection [80, 134]. The presence of
ubiquitinated proteins within neuronal inclusions is one of the hall-
marks of ND. The inclusions contain various components of the
UPS which operates as an intracellular protein-clearing system.

The UPS is a substrate-specific non-lysosomal, ATP-depend-
ent proteolytic system that plays a major role controlling the initial
steps of gene expression, DNA repair, nuclear quality-control, cell
cycle and signalling control [133, 135]. It appears to be at the
intersection of whether a toxic protein is degraded or whether it is
packed into an inclusion which may be one of the strategies of the
cell to process damaged and/or mutated potentially toxic proteins
and that, given a chance, the cell will recover from such stress.
Proteasome regulators (activators and inhibitors) have been
reviewed recently [136]. Proteasomal dysfunction may be caused
by misexpression of one or more of its subunits. The UPS
becomes activated during OS and works to process misfolded
protein-mediating reactions that link abnormal proteins with mul-
tiple ubiquitine (Ub) molecules as a signal for degradation
domains and may promote their degradation by Ub ligases [137,
138]. Aggregated proteins are transported to perinuclear micro-
tubule-organizing centres (centrosomes), where they are encap-
sulated by intermediary filaments to form aggressomes, subse-
quently subjected to proteolysis and removed by autophagy [139].
Ubiquitylation and endocytosis of plasma membrane proteins are
regulated by Ub ligase adaptors [140] mediated by Ub ligase Ubr1
[141]. The proteasome also contains deubiquitinating enzymes
that can remove Ub before substrate degradation initiates, thus
allowing some substrates to escape degradation [142]. The UPS
becomes abnormally activated also during abnormal protein
cleavage, and altered or inappropriate gene splicing. In these con-
ditions, it may not be able to degrade damaged proteins produc-
ing their aggregation in the cell and ultimately causing neuronal
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dysfunction (Fig. 3). A reduction in its efficacy increases the stor-
age of aggregation-prone proteins and could explain the accumu-
lation of Ub and substrates in diseased neurons, which disrupt
normal cell activity [116]. However, ubiquitination of protein sub-
strates without proteolysis and proteasome-independent function
of Ub in endocytosis and signalling, and Ub-independent prote-
olytic degradation of proteins have been described [133]. Thus,
derangements in the Ub could potentially lead to alterations in
processes that are unrelated to protein degradation.

Ubiquitination, the hallmark of protein degradation by the 26S
proteasome, is a multistep process, in which Ub-activating
enzymes (E1s, E2s and E3s) are key mediators and are able to reg-
ulate the chain formation as downstream signalling pathways
[137, 143]. Mono-Ub and Ub dimers may regulate the enzymatic
functions of UB carboxy-terminal hydrolase L1 (UCH-L1) and L3,
two of the deubiquitinating enzymes expressed in the brain, 
in vivo [144]. The family of proteins containing Ub-like and 
Ub-associated domains has been implicated in proteasomal
degradation, thus regulating the proper turnover of proteins [133]
[145]. Control of iron homeostasis is performed by Fe-regulated
ubiquitin ligase [146]. Through a process termed sumoylation,
SUMO (small Ub-like modifier) monomers are conjugated to tar-
get proteins. In some cases they may act to protect proteins from
Ub-dependent degradation or appear to trigger polyubiquitination,
and there are relationships between Ub, SUMO and DNA repair
pathways. Monoubiquitination of the p53 tumour suppressor pro-
tein causes it to be transported from the nucleus to the cytoplasm
by multifaceted effects of SUMO [133, 147, 148]. p53 protein
requires multiple layers of regulatory control to ensure correct
functions [435], and p53 proteasomal degradation may be Ub-
 independent [436]. The complexity of the Ub system in protein
regulation and its role in the regulation of cell death are still not
fully elucidated [149, 437], but quantitative proteomics gave
insight into the functionof unconventional Ub chains in proteaso-
mal degradation [150].

Inhibition of lysosomal functions by higher levels of chaper-
ones reduces proteasomal activity [151]. Under conditions 
of proteolytic stress, the cell may switch to a non-proteolytic
form of ubiquitination to help divert misfolded proteins away
from an overloaded proteasome, and thus can preserve its
 proteasomal functions over prolonged periods of stress and
recover thereafter [152].

Many expanded proteins are resistant to proteolysis by the
UPS, and the lack of its efficacy may be responsible for accumu-
lating expanded proteins within affected cells, leading to 
neuronal inclusions. Ubiquitinated protein aggregates provide a
nuclear centre for the formation of inclusion bodies, but there
are several differences that distinguish these inclusions, some
being aggregated in the cytoplasm, others are prevalent in the
nucleus [105]. Differential activities of the UPS in neurons 
versus glia may account for the preferential accumulation of
misfolded proteins [153].

Misregulation of degradation of misfolded proteins leads to
their accumulation with inhibition of axonal transport, thus facili-

tating the accumulation of ubiquitinated proteins in the cell body
and cell dysfunction. This interaction may involve (1) a loss of
function, (2) a gain of function or (3) an inflammatory stimulus.

Autophagy and neurodegeneration

Another pathway for cytosolic protein clearance and organelle
degradation through lysosomes is autophagy [154–156], a
cytosolic, non-specific bulk degradation system, important as a
clearance route for many cytosolic, aggregate-prone proteins.
Model systems in increasing numbers are available to study the
role of autophagy in the central nervous system (CNS) [154, 157].
Proteins are transferred to the lysosomal membrane and, through
binding to a receptor lysosome-associated membrane protein
(autophagosome), they are translocated into the lysosomal lumen
and degraded [158]. Ub has a role in selective autophagy [139].
The molecular mechanism involved in the three autophagic path-
ways: chaperone-mediated autophagy (CMA), microautophagy
(without vesicles) and macroautophagy, the most common type
associated with mitochondria and cell death [159, 160].
Macroautophagy is responsible for clearing of aggregated or
aggregate-prone proteins, microautophagy for degradation of
organelles, and CMA uses the lysosomal protein LAMP2a as a
receptor that recognizes proteins with a specific pentapeptide for
lysosomal degradation. Their relevance in ND has been reviewed
recently [159, 161]. The autophagy machinery is regulated by dif-
ferent types of stress at various levels, from transcriptional activa-
tion to post-translation of protein modification [162].
Dysregulation of macroautophagy has been implicated in synaptic
dysfunction, cellular stress and neuronal cell death [163] with
superoxide being the major ROS regulator [164], and contributes
to the pathogenesis of several human diseases, including NDDs
[158], while its activation seems to be protective in certain NDDs
[165]. The process, known as microautophagy, is poorly under-
stood [166, 167]. Degradation of mutated �Syn by the CMA is
impaired, which could explain the selective degeneration of PD
dopaminergic neurons [168, 169]. The autophagy-related protein
beclin-1 does not only play an important role in the intracellular
degradation of �Syn either directly or indirectly through the
autophagy pathway [170], thus ameliorating the ND in �Syn mod-
els of PD, but also shows reduced expression in early AD [171],
while x-box-binding protein, a key UPR transcription factor that
regulates genes involved in protein folding and quality control,
protects against ALS by increasing autophagy [172]. Tissue-spe-
cific impairment of autophagy in the CNS tissue causes massive
loss of neurons resulting in ND [173]. Emerging evidence sup-
ports the view that induction of autophagy is a neuroprotective
process and that inadequate or defective autophagy, rather than
excessive autophagy, compromises degradation of UPS sub-
strates and, thus, promotes cell death [174, 175]. The UPS and
autophagy are two signalling pathways that can provide protection
against ND [138]. However, how autophagy protects cells from
damage leading to ND is not yet clear [176, 177].
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UPS in neurodegenerative disorders

Dysregulation in the UPS appears to be both a cause and a result
of ND processes. Its dysfunction has already been implicated in
the pathogenesis of PD [178, 179], and the demonstration that
�Syn is degraded by both proteasome and autophagy indicates a
possible linkage between the UPS and ALP [168]. Mutated �Syn
inhibits ALP by binding to the receptor on the lysosomal mem-
brane for autophagy (Greek: self-digestion) pathway supporting
the assumption that the ALP may be related to the development of
PD [180]. LBs, the morphological hallmark of PD and DLB, have a
distinct central parkin and Ub� domain, with �Syn in the periph-
ery, but it is incorporated into LBs and dystrophic neurites before
ubiquitination [181]. Co-localization of �Syn and parkin within
LBs suggests that parkin plays a role in ubiquitination and post-
translational modification of �Syn [182]. The Parkinson-associated
protein PINK1 interacts with Beclin1 and promotes autophagy
[438]; on the other hand, PARKIN is cytoprotective, partially by
increasing the removal of cellular A� through a proteasome-
dependent pathway [439]. There is conflicting evidence concern-
ing the pathogenesis of �Syn aggregation [66]. A functional Ub-
3-ligase complex consisting of early-onset familial PD associated
Parkin, PINK-1 (PARK-6) and DJ-1 (PARK-7) mutations promotes
degradation of un- or misfolded proteins and may constitute a
pathogenic mechanism for recessive forms of inherited PD [81,
183]. LRRK2 mutations (PARK8), a major cause of late inset
parkinsonism, have clinical features comparable to sporadic PD
[184, 185], display variable neuropathology, including �Syn and �
inclusions [186, 187], thus suggesting an upstream role of LRRK2
in protein aggregation [188].

The role of UPS pathology in AD has been reviewed [133, 189].
A� inhibits the proteasome and enhances amyloid and � accumu-
lation [190], but proteasome inhibition increases accumulation
and insolubility of � protein independent of � phosphorylation, and
JNK inhibition may be partially responsible for the relatively
decreased phosphorylation of � in tg models [191]. ATPase sub-
unit 6b (S6b) transcript up-regulation may be related to
tauopathies, while in synucleinopathies it appears not to be
involved [192]. The importance of decreased UPS function has
been observed also in other NDDs, e.g. in HD, where protein qual-
ity control regulates polyQ-induced toxicity [20], but its global sta-
tus in HD brain is not yet fully elucidated [193]. Neuronal polyQ
protein inclusions are present predominantly in the nucleus, which
is not accessible to autophagy. Intracellular degradation of polyQ
aggregates by the UPS is triggered by some nuclear Ub ligases
[194], and inclusion bodies are suggested to have a protective cel-
lular response to mhtt mediated by improving intracellular protein
degradation [195], while UPS activity in synapses of HD is
impaired [196].

Dysfunction of the UPS is also important in ALS showing
skein-like inclusions in motor neurons rich in Ub proteasome and
some chaperone proteins, in SCAs, with neuronal intranuclear
inclusions containing ataxin-1 and several chaperones [197], 
in ALS-parkinsonism-dementia complex of Guam (ALS/PDS),

neuronal intranuclear inclusion disease, and other NDDs (for
review see [133]. However, despite the notion that inclusions
might be protective, involved neurons ultimately fail to compen-
sate for the abnormal and/or toxic protein accumulation and,
finally, die. While inhibition of the UPS might be expected to
worsen most NDDs, its augmentation possesses unique chal-
lenges, such as delivery of its components to the nervous system
or identification of drugs that enhance the degradation of toxic
proteins without compromising normal UPS function [116].

Aggresomes

When the capacity of the proteasome system to degrade mis-
folded proteins is overwhelmed, aggregation occurs and proteins
are moved to a Ub-rich structure termed the ‘aggresome’ [198]. It
forms part of the cellular response to aggregated proteins and
appears as inclusions in a number of proteinopathies.
Aggresomes have been reported for SOD, parkin, �Syn [181] and
prion proteins, the formation of which has been associated with
activation of caspases and apoptosis. Ubiquitination and seques-
tration of protein (e.g. �Syn, synphilin-1) in aggresomes and cyto-
plasmic inclusions may represent a mechanism of cell protection.
On the other hand, �Syn aggregation is associated with decline in
proteasome and lysosome, which may be involved in the patho-
genesis of cell degeneration in PD [199]. However, it is not clear
whether aggresome formation is causative or protective [200],
although data suggested that they serve a cytoprotective function,
facilitating the degradation of toxic proteins.

Oxidative injury

OS occurs when the production of free radicals or their products
are in excess of antioxidant defence mechanisms. It can damage
biological molecules and initiate a cascade of events, including
dysfunction of mitochondrial respiration, excitotoxicity, and a fatal
rise in cytosolic calcium leading to cellular dysfunction together
with nitric oxide and reactive nitrogen species. Thus, it is a major
factor of the cytopathology of many diseases including NDDs and
their models [see 201–204]. The generation of ROS during early-
stage protein aggregation is a common fundamental molecular
mechanism underlying their pathogenesis. A major source of ROS
in neurons may result from escaping electrons from the respira-
tory chain reacting with oxygen. Other contributors are metal-iron-
associated Fenton reactions, lipid peroxidation and nitric oxide
induced protein nitrosylation [203, 205]. Generation of excessive
nitric oxide and ROS can mediate protein misfolding in the
absence of genetic predisposition [206]. Among the various free
radicals generated in the living organism, hydroxyl radical and
peroxynitrite are the most potent and can damage cells via non-
selective oxidation of proteins, lipids, fatty acids and nucleic acid
[204]. They are formed via the Haber-Weiss and Fenton reaction
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between H2O2 and reduced transition metals. Hydrogen peroxide
is subsequently converted to hydroxyl radicals by the addition of
Fe(II) by Fenton’s reaction, one of the fundamental mechanisms
underlying neurodegenerative processes. The accumulation and
precipitation of proteins may be aggravated by OS, and may, in
turn, cause more oxidative damage by interfering with the function
of the proteasome, that increases levels of OS not only to proteins
but also to other biomolecules [203].

Proteins are initial targets of ROS, and protein radicals gener-
ated by ROS can oxidize reduced glutathione, which triggers dys-
regulation of calcium homeostasis, reactive astrogliosis and other
changes observed in ND [207, 208]. Superoxide (O2�) is sug-
gested to be the major reactive OS regulating autophagy [164].
Cells which fail to compensate for oxidative imbalance (stress)
enter apoptosis with rapid cell death, while those with compensa-
tory response to ROS (antioxidant enzymes, low molecular weight
reductants, etc.) may show long-term survival. There is no clear
and defined mechanism showing how OS plays a key role in the
regulation of cell survival and death in NDDs, but sublethal RNA
oxidation may be a pathogenic mechanism for NDDs [209].

Increased levels of oxidative damage to DNA, lipids and pro-
teins have been detected in post-mortem tissues from patients
with PD, AD, ALS, progressive supranuclear pals (PSP) and aging,
some of which are environment-induced [210]. Oxidative damage
to nuclear and mitochondrial DNA (mtDNA) occurs in the earliest
detectable phase of AD, PD and HD, but also in normal aging [202,
204, 211–213]. Although the precise sources of increased oxida-
tive damage are not fully clear, increased localization of redox-
active transition metals in brain regions most affected by ND is
consistent with their contribution to OS. Free radical oxygen
chemistry plays an important pathogenic role in all these condi-
tions, though it is as yet undetermined what types of oxidative
damage occur early in the pathogenic cascade and which ones are
secondary manifestation of dying neurons [214, 215]. HSPs have
been shown to protect against OS [91].

Metals and oxidative stress

Alterations in metal homeostasis inducing increased production of
free radicals, suggests a direct cause-effect relationship between
disruption in metal homeostasis and the increased oxidative dam-
age. In addition to the generation of O2� and H2O2, the availability
of redox-active Fe is a major determinant of ROS-mediated cellu-
lar damage. Elevated levels of redox-active Fe, derived from
degenerating mitochondria, accumulate in in the normal aging
brain and in several NDDs [216].

Iron is a powerful promoter of free radical damage, able to
catalyse generation of highly reactive radicals from H2O2 and lipid
peroxides, generating OS. Although most iron in the brain is
stored in ferritin, ‘catalytic’ iron is readily mobilized from injured
brain tissue. In AD, aberrant metal homeostasis may contribute to
the formation of ROS and toxic A� oligomers, and increased lipid
peroxidation precedes A� plaque formation in animal models of
AD. Imbalance in iron homeostasis is a precursor of the ND

process leading to AD [440]. Conditions such as neuroferritinopa-
thy [217] and Friedreich ataxia are associated with mutations in
genes that encode proteins involved in iron metabolism [218],
inducing OS and cell death [441] the brain ages, iron accumu-
lates in regions that are affected by AD and PD [219], and
dopamine (DA) complexes of iron are important in the pathogen-
esis of PD [220].

Oxidative stress in Alzheimer disease

The role of OS in various NDDs, including AD and PD, has recently
been reviewed [see 1, 221]. Here, only some essentials will be
summarized.

In both human AD and transgenic (tg) mouse models of AD,
oxidative damage occurs preceding A� deposition that further
contributes to OS and ND [222]. In the initial stages of AD, A�

deposition and phospho-� may represent compensatory
responses to ensure that neurons may not succumb to oxidative
damage. OS induces macroautophagy of A� protein and ensuing
apoptosis [223]. Mutant APP and its derivates are involved in the
generation of free radicals in mitochondria and cause mitochondr-
ial oxidative damage, linking A�, generation of free radicals and
oxidative damage in the pathogenesis of AD [224]. OS or neuro-
toxic by-products of lipid peroxidation may damage DNA and lead
to programmed cell death (PCD) in AD. In AD and other NDDs, the
production of advanced glycation end products (AGEs) and their
receptors has been observed [225–227]. Being both markers of
transitional metal-induced OS and inducers of protein crosslinking
and free radical formation, they may reflect early disease-specific
changes rather than late epiphenomena. AGEs co-localize with
inducible nitric oxide synthase in AD, supporting an AGE-induced
OS [227]; and contribution of AGE receptors (RAGE) to A� cyto-
toxicity [228], while infusion of soluble RAGE in tg animals
decreases A� content and amyloid load [225]. Oxidative imbal-
ance is met by a series of complex reactions (mitochondrial dys-
function, impaired synaptic transmission, disruption of membrane
integrity, etc.) to establish a disease-related homeostasis balance
[204]. Excess A� may induce OS and/or disturb cellular calcium
homeostasis through disproportionate PrPC-receptor crosslink-
ing, but the precise mechanism between mitochondrial oxidative
damage and the role of oligomeric A� has not yet been explicated
[229]. Oxidative damage to DNA and RNA repair is particularly
severe in the hippocampus, the earliest and most severely
involved brain area, and nitrated brain proteins are seen in both
early and late stages of AD [230]. In AD RNA is extensively modi-
fied and, while clearly damaged, its rapid turnover may also serve
a protective function [204]. Stress-activated protein kinase path-
ways triggered by OS, are excessively activated in AD, even in
early stages, deregulating cyclin-dependent kinase 5, compromis-
ing the cellular antioxidant defence system and causing mitochon-
drial damage [231]. S-nitrosylation of dynamin-related protein 1
(Drp1) that is increased in AD brains, mediates A�-related mito-
chondrial fission and neuronal injury [232]. Antioxidants may pro-
tect neurons in AD and PD, reducing the risk of ND [233].
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Oxidative stress in Parkinson disease

In PD, many biochemical changes indicate compromised antioxi-
dant systems suggested to underlie cellular vulnerability to pro-
gressive OS which generates excessive ROS or free radicals in
substantia nigra (SN) with subsequent cell damage [see
234–237]. Increase of iron in the SNp with a shift of Fe(II):Fe(III)
of 2:1 as compared to 1:2 in controls and aggregation of �, can
promote DA synthesis with accompanying increased generation of
reactive metabolites, leading to degeneration. Protein misfolding
of sporadic PD has been associated with ROS formed as products
of O2 reduction by combination of DA and Fe [220]. In pigmented
DAergic neurons of human substantia nigra pars compacta (SNc)
recent proteomics have identified L-ferritin in neuromelanin gran-
ules, suggesting it as an important player in the complicated net-
work governing Fe homeostasis in human DA neurons [238]. Both
reduced glutathione, and glutathione peroxidase activity are
decreased in SN of PD and in incidental LB disease (preclinical
PD), probably preceding both complex I and DA loss [239].
Peroxynitrite, formed by reduced SOD, induces aggregation of
�Syn in situ, and nitrated �Syn is found in the core of LBs indicat-
ing their in damaging structural proteins [236]. Cross-linking of
�Syn by AGEs in PD and in incidental LB disease suggests that
AGE-promoted LB formation may reflect early disease-specific
changes, accelerating inclusion body formation [240]. Protein
misfolding in sPD has been associated with ROS as products of O2

reduction by combination of DA and Fe [220]. Abnormal �Syn as
found in LBs produces hydrogen peroxide and the neurons are
capable of dissecting antioxidant enzymes to regions of OS, and
that glutathione peroxidase-positive microglia are involved in neu-
roprotection in PD and DLB [241]. �Syn is up-regulated in a sub-
set of neurons in response to chronic OS and is associated with
neuroprotection from relatively low levels of OS. Formation of
�Syn protofibrils is stimulated by translational modifications that
occur under conditions of OS, while its aggregation is inhibited by
antioxidants and various proteins with chaperone activity [242].
Many of the above factors demonstrated in Human PD and animal
models indicate a multicomponent process in this NDD [see 243]
and cell death pathways in PD are caused by many interacting fac-
tors [244, 245].

Oxidative stress in other neurodegenerative 
disorders

OS is also recognized as a major pathogenic factor in other NDDs
[see 1]. In HD, where in both human brain and in tg mouse mod-
els, increased indices of OS markers have been reported, the cru-
cial initiation mechanism induced by mhtt is still unclear, but early
and critical involvement of defects in mitochondrial function and
CNS energy metabolism may trigger the disease. Proteomic and
OS analyses in human brain samples of HD indicate that OS and
damage to specific macromolecules would participate in disease
progression [246].

In PSP, increased lipid peroxidation in cerebral cortex [247] is
proportional to the extent of � pathology, increased activity of
antioxidant systems, e.g. SOD and glutathione, is seen in multi-
ple brain areas, and oxidative damage affects regions vulnerable
to PSP and argyrophilic grain disease [248]. Increased OS is
important in both sALS and fALS. The two principal hypotheses
on the pathogenesis of ALS are: (i) oxidative damage stemming
from aberrant SOD1 redox chemistry, and (ii) misfolding of the
mutant protein. Enhanced basal oxidoradical products, lipid per-
oxide, perturbed calcium homeostasis and increased nitrotyro-
sine in lower motoneurons of both tg mice and human ALS are
present. At terminal stages disruption of glutathione peroxidase
PrxII/GPxI-overexpression mechanism was observed, suggesting
that the breakdown of this redox system accelerates neuronal
degeneration and/or death. Because only a subset of ALS cases
can be attributed to one particular deficit, e.g. mutation of SOD1,
ALS aetiology is likely to be multifactorial [249]. Mutant SOD1
localized in the intermembrane space of mitochondria is sufficient
to determine mitochondrial abnormalities and neuronal toxicity,
thus contributing to ALS pathogenesis [250, 251]. Extracellular
mutant SOD1 induces microglial-mediated motoneuron injury
[442]. Two genes have recently be linked to fALS–TARDPD (TDP-
43) and FUS (RNA binding protein fusion [69, 70], which com-
prises 3% and 4% of fALS, respectively. sALS has been associ-
ated with ECP3 gene, which encodes the catalytic subunit of the
histone acetyltransferase complex elongator protein [69].
Identification of mutations in the gene encoding TDP-43, identi-
fied in both fALS and sALS stress the importance of TDP-43 in
the pathogenesis of both types of ALS [252], but the precise
mechanisms by which SOD1 leads to ND have not been defined.
OS and cytoskeletal abnormalities causing increased protein
 glutathionylation leading to abnormalities in neuronal function
are essential in Friedreich’s ataxia [218].

In summary, free radical-mediated damage to lipids, proteins
and nucleic acids is at least a part of the pathogenic events in the
majority of NDDs. OS should be considered a window to view both
some of the basic pathogenic cascades leading to ND as a means
to design strategies to modify fundamental abnormalities,
 preventing or delaying disease progress. Induction of heat shock
proteins has recently been suggested for protection against OS [91].

Impaired bioenergetics 
and mitochondrial dysfunction

Mitochondria, the ‘energy powerhouse of the cell’, are key cyto-
plasmic organelles vital for the function and survival of neurons.
They provide energy from aerobic metabolism; oxidative phospho-
rylation via the oxidative phosphorylation system (OXPHOS) is the
principal source of high-energy compounds [253]. These proteins
link mitochondrial function and dynamics to the regulation of
metabolism, cell-cycle control, development and cell death, giving
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evidence that provide molecular definition to mitochondria as a
central platform in the execution of diverse cellular events, includ-
ing cell death [254, 255].

Mitochondria are both targets and important sources of ROS.
Generation of reactive oxidants, including ROS, is increased in
damaged mitochondria and in cells with compromised mitochon-
drial function. Due to the heterogeneity of NS mitochondria and
variations in mitochondrial functioning related to regionally dis-
tinct regulatory influences and dependence of their energy pro-
duction to local demands, they show selective vulnerability to
injury [256]. Recent studies have shown that healthy aging is
associated with reduced neuronal mitochondrial metabolism and
altered glial mitochondrial metabolism, which may be in part
responsible for decline in brain function [443]. High levels of oxi-
dants can induce the mitochondrial permeability transition, uncou-
ple oxidative phosphorylation with catastrophic effects on mito-
chondrial energetics, and contribute to cytotoxicity via necrosis
and/or apoptosis. Two major mechanisms of mitochondrial dam-
age are the respiratory chain enzyme and mitochondrial DNA. OS
and damage to mtDNA during aging impair mitochondrial energy
metabolism and ion homeostasis in neurons, thereby rendering
them vulnerable to degeneration [253, 257]. Disturbances of the
mitochondrial proteolytic system affect neuronal maintenance and
axonal function [444]. In NDD, there is a reciprocal interaction
between mitochondrial fusion, fission, transport and mitophagy
[258]. Impaired bioenergetics and dysfunction of mitochondrial
energy metabolism lead to reduced ATP production, impaired cal-
cium buffering and generation of ROS, representing a ‘deadly triad
in ND’ [259]. Mitochondrial dysfunction initiates and propagates
neuronal dysfunction in all age-associated NDDs [445].

In a variety of tissues, cumulative OS, disrupted mitochondrial
respiration and oxidative mitochondrial damage are associated
with, and may promote cell death [203, 253–255, 259].
Dysfunctions of mitochondria disturb cell function, cause mtDNA
damage, sensitize cells to neurotoxic insults and may initiate cell
death, all significant phenomena in the pathogenesis of NDDs
[253, 257, 260]. The mtDNA may play an essential role in the
pathogenesis of HD, that shows multiple mtDNA deletions in over
60% of HD patients, probably caused by CAG repeats instability
and mhtt [261], that directly and indirectly impairs mitochondrial
function [262].

OXPHOS disorders ranging from Leigh disease to PD and AD
are caused by defects of mitochondrial energy metabolism, related
to complex I deficiency [263]. There are several pathways by
which both mitochondrial dysfunction and protein aggregation
may interact (Fig. 4). Both aggregated SOD and A� in the mito-
chondrial matrix could contribute to cell death. The mitochondrial
permeability transition pore, being crucial in both necrotic and
apoptotic cell death, is controlled by anti-apoptotic members of
the Bax/Bcl-2 family [264]. Mitochondrial Bax interacts with the
voltage-dependent anion channel to accelerate opening of the per-
meability transition pore which is favoured by Ca2� and oxidizing
agents, contributing to cytochrome c release. Calcium regulation
controls mitochondria motility and morphology in steady state,

stressed and pathological conditions [265, 266]. A consequence
of mitochondrial dysfunction is increased generation of free radi-
cals and oxidative damage [254].

A decrease in the DNA base excision repair activity in NDDs
suggests that that the brain might be subjected to the double
insult of increased DNA damage, as well as deficiencies of DNA
repair pathways [267–269]. There is evidence of impaired DNA
repair in both the aging brain and AD [270]. Although the molec-
ular basis underlying the decline in mitochondrial function is not
really understood, recent experimental evidence has shed some
light on the pivotal role of mitochondrial morphology control and
dysregulated mitochondrial fusion and fission events in ND [271].
Whether these changes are a secondary consequence of other fac-
tors or whether they cause eventual cell death is unknown.
However, the identification of mutations in genes that encode pro-
teins functioning in DNA repair and damage establish a mechanis-
tic precedent that clearly links DNA damage and repair anomalies
with progressive ND [268].

The importance of microRNAs, brain-enriched, small non-cod-
ing RNAs that participate in RNA translational and protein expres-
sion regulation, has been emphasized [272], suggesting their
involvement in the emergence or progression of NDDs, including
AD and prion-induced NDD [273–276].

Mitochondrial dysfunction in Alzheimer 
and Parkinson disease

In AD, there is a large body of evidence implicating impaired
energy metabolism and oxidative damage [see 204, 209]. AD
brains show an average 50% reduction in mtRNA content that,
together with other changes, is likely to reduce oxidative phospho-
rylation. The ‘mitochondrial cascade hypothesis’, that has recently
been updated, could explain many of the biochemical, genetic and
pathological features of sporadic AD [277, 278]. Significant
increase in oxidative damage to mtDNA in AD brain may cause
abnormal mitochondrial dynamics and dysfunction that ultimately
damage AD neurons [279]. A� plays a role in the formation of
mitochondrial permeability transition pore (mPTP) [446]. 
A�-induced mitochondrial dysfunction is an early event in AD tg
models [280] and is a trigger of AD pathophysiology [447].
Patterns in protein changes in early AD suggest activation of mito-
chondrial pathways that include proteins responsible for transport
and utilization of ATP. The most prominent changes may occur in
early AD [448]. Despite the evidence of mitochondrial dysfunction
in AD, no causative mutations in the mtDNA have been detected
so far, and results of studies on the role of mtDNA haplogroups in
AD are controversial, although a primary role of the mitochondr-
ial genome is suggested [278]. Both APP and �-secretase, as well
as an isoform of insulin-degrading enzyme, which regulates 
A�  levels, are present in mitochondria [224], and mitochondrial
OS causes hyperphosphorylation of � [281]. Mitochondrial dys-
function in AD is caused by oligomeric A� [449], leading to
impairment of ATP production and increase of OS. It may also be
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caused by impaired axonal transport with proximal collection of
mitochondria which could contribute to loss of distal synapses
[282]. Calcium dysregulation occurring early in AD, related to
PSEN mutations, A� production and tau phosphorylation [450]
leads to synaptic and neuronal dysfunction, underlying dementia
associated with the disease [451]. Caspase-cleaved � expression
results in mitochondrial dysfunction in cortical neurons via
increased calcineurin activity in AD brains [283]. Significant
increase in oxidative damage to mtDNA in AD brain may cause
abnormal mitochondrial dynamics and dysfunction that ultimately
damage AD neurons [279]. Mitochondrial ATP synthase in the
entorhinal cortex is a target of OS in the first, clinically silent peri-
ods of AD pathology [284].

Mitochondrial alterations and OS are important parts of the
multifactorial pathogenic process of PD [267, 285–288, 452]. In
both sPD and fPD, abnormal mitochondrial paradigms include
impaired function of the electron transport chain, damage to
mtDNA, impaired calcium buffering, and anomalies in mitochon-
drial morphology and dynamics. Mitochondrial dysfunction
 triggers an increased free turbulin, which destabilizes the micro-
tubule network and promotes �Syn oligomerization [453]. Since
the UPS requires ATP at several steps, impaired mitochondrial

function may impair its activity. More importantly, increased
 production of ROS leads to damaged misfolded proteins requir-
ing degradation by the UPS. Parkin plays a role in maintaining
mitochondrial homeostasis [289]. It improves mitochondrial
 dysfunction, alters the intrinsic threshold for mitochondrial
cytochrome c release, regulates their remodelling, promotes their
autophagy, promotes DNA repair and protects against genotoxic-
ity, promotes intracellular A�42 clearance [289–293] and regu-
lates DNA repair [294], while PINK1 (PARK6), a fPD-associated
gene, modulates mitochondrial morphogenesis and distribution
[295]. Both are causes of autosomal recessive PD and induce the
autophagic pathway (mitophagy) or defective oxidative phospho-
rylation [454, 455].

A specific protein–protein interaction of �Syn and COX, a key
enzyme of the mitochondrial respiratory chain, suggests that
�Syn aggregation may contribute to enhanced mitochondrial dys-
function [296].

Acute action of rotenone induces mitochondrial ROS produc-
tion disrupting Ca2� homeostasis in SNc but not in substantia
nigra pars reticulata (SNr) neurons [297]. Both rotenone and
chronic MPTP result in oxidative damage [298, 299] and �Syn
aggregates closely resembling LBs, which were not reproduced by
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Fig. 4 Schematic interaction
of proteins in neurodegenera-
tive diseases and mitochon-
dria. Accumulation of mito-
chondrial DNA mutations may
induce ROS production and
cause oxidative damage in
aging. In AD, ROS production
and decreased ATP may con-
tribute to production of A�

peptides that may enter mito-
chondria, induce free radicals,
decrease cytochrome oxidase
activity and inhibit ATP gener-
ation. APP is transported to
outer mitochondrial mem-
branes, blocks import of
nuclear cytchrome oxidase
proteins to mitchondria, and
may decrease cytochrome oxi-
dase activity. In AD and mod-
els, A� is found in mitochon-
drial matrix, produces free
radicals and causes mitochon-
drial dysfunction. N-terminal
portion of ApoE4, �-secretase
complex proteins, e.g. prese-
nilins and nicastrin, associated
with mitochondria, may contribute to A� production and cause oxidative damage. In HD neurons, Htt binds to outer mitochondrial membrane und
induces free radical production; H2O2 may also interrupt calcium uptake. In PD neurons, mutant proteins of �Syn, Parkin, PINK1 and DJ1 are associ-
ated with mitochondria and cause their dysfunction. In ALS, mutant SOD1, localized in inner and outer mitochondrial membranes and matrix, induces
oxidative damage; associated with impairment of complexes II and IV. Frataxin, a gene product in FRA, is a mitochondrial protein responsible for heme
biosynthesis and formation of iron-sulfur clusters, facilitating the accumulation of iron and inducing free radicals (modified from [257]).
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others [300, 301]. Mitochondrial complex I inhibition is not
required in the models for DAergic cell death [302]. Subacute
rotenone treatment of SH-SY5Y neuroblastoma cells reproduced
Lewy neurites but not LB inclusions, reduces mitochondrial
movement and slowly kills neural cells [303]. Mutations in parkin
which cause recessive early-onset PD, are associated with
marked mitochondrial abnormalities and less resistance to OS
induced by paraquat. Reduction of cerebral mitochondrial metab-
olism is seen in early PD, but whether mitochondrial dysfunction
is a primary or secondary event, or part of a multifactorial patho-
genic process remains to be elucidated [267]. mtDNA abnormal-
ities and mitochondrial dysfunction are implicated in PD
 pathogenesis, and a link between mitochondrial dysfunction, OS,
protein misfolding and abnormal autophagy is becoming increas-
ingly prominent [304].

For clarification of NDDs with genetic causes of bioenergetic
deficits see [1]. Energetic defects in major NDDs only in part have
been proven by the identification of genetic defects that are
causally linked to mitochondrial dysfunction. If this has a
causative role to disease pathogenesis, then a number of thera-
peutic targets are implicated, including the permeability transition
pore, cytochrome c release, free radical scavengers that could
result in novel treatments. Mhtt causes calcium homeostasis and
mitochondrial dysfunction in striatal neurons and excitotoxic neu-
ronal death [305, 306, 456], and in models of Machado-Joseph
disease, decreased synthesis of the protein Hsp27 and increased
mitochondrial DNA damage are seen [307, 308]. Mitochondrial
dysfunction has been linked to the ALS variants of SOD1 which is
preferentially associated with mitochondria and subsequently
impairs mitochondrial function [457] via the mitochondrial perme-
ability transition pore (mPTP) [458].

Fragmentation of neuronal Golgi 
apparatus

Fragmentation of the neuronal Golgi apparatus–probably a sec-
ondary effect of the above mentioned basic mechanisms – was
reported in ALS, corticobasal degeneration, AD, PD, Creutzfeldt-
Jakob disease, and in SCA type 2 (SCA2) [309]. Mechanisms
involved in Golgi fragmentation include: (i ) dysregulation by
mutant SOD1 of the microtubule-destabilizing protein Stathmin,
(ii ) disruption by mutant SOD1 of the neuronal cytoplasmic
dynein, (iii ) coprecipitation of mutant SOD1 with Hsp25 and
Hsp27, (iv ) reduction of detyrosinated microtubules by aggre-
gated � which resulted in non-apoptotic cell death and (v ) dis-
ruption by mutant growth hormone of the trafficking from the
rough ER to the Golgi apparatus [310]. �Syn has been shown to
block ER Golgi traffic causing Golgi fragmentation and neuronal
Golgi fragmentation is an early and probably irreversible lesion
in ND in nigral neurons with �Syn� inclusions in PD [311],
caused by a variety of mechanisms including accumulation of
misfolded proteins.

Disruption of cellular/axonal transport

There is growing evidence that defective neuronal and axonal
transport due to early axonal dysfunction play a mechanistic role
in most NDDs [282, 312, 313]. Whether misregulation of axonal
transport has a direct role in the pathogenesis of these disorders
or is a secondary phenomenon remains to be elucidated. Most of
the transport uses the microtubule system that is stabilized by
dystrophin [314] and forms a network of trafficking highways.
Cargo is linked to the cytoskeleton by unidirectional proteins made
of a motor domain that reversibly interacts with the cytoskeleton
and converts chemical energy into motion. All axonal components
are synthesized in the cell body and transported from there into
the axonal processes (anterograde transport). A complementary
mechanism transports cargo in the opposite direction, i.e. away
from the axon into the cell body (retrograde transport). It is 
powered by members of the kinesin protein transport family, fast
retrograde and slow anterograde transport, e.g. of neurofilament
proteins, by dynein and is regulated by neurofilament subunit
head domain phosphorylation [315–317]. Slow transport is a
function of neuronal intermediate neurofilaments [318]. For
intracellular transport which is fundamental for cellular func-
tions, survival and morphogenesis, the kinesin superfamily
transport proteins are important [319]. Neurofilament light chain
head domain phosphorylation regulates axonal transport of neu-
rofilaments [315].

Three mechanisms highlight the significance of disrupted cel-
lular/axonal transport in human NDDs: (i ) human motor protein
mutations in these disorders, (ii ) axonal transport defects in ani-
mal and in vitro cellular models harbouring human mutations and
(iii ) roles for pathogenic proteins like APP, �, presenilin and synu-
clein, in the regulation of axonal transport [320]. The main patho-
genic stimuli of these conditions, though often not definitely deter-
mined, result in an initial perturbation of the axon and its
cytoskeleton, which then results in slow neuronal degeneration
and loss of connectivity [312]. Mitochondrial transport in axons
uses motors of kinesin families and cytoplasmic dynein, to
translocate along microtubules, and bidirectional movement may
be coordinated through interaction between dynein and kinesin-1.
Protein defects that are directly or indirectly linked to axonal trans-
port could be reversed by specific interventions stabilizing micro-
tubules and repair or protect axons. The axonal transport of �

occurs via a mechanism utilizing fast transport motors, including
the kinesin family of proteins, and that �Syn transport in neurons
may involve both kinesin and dynein proteins [313].

Axonal transport in tauopathies

Axonal transport is impaired in AD and other tauopathies [321,
322], probably early in their pathogenesis. Proteolytic cleavage of
APP occurs before its sorting into axonal transport vesicles [323].
It travels via fast axonal transport and in vesicular complexes con-
taining presenilin and �-site APP-cleaving enzyme 1 (BACE1) and
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acts as a receptor for the anterograde motor kinesin. Decreased
retrograde transport of nerve growth factor (NGF) in human brain
and mouse models leads to loss of neuronal markers and shrink-
age of neurons in the cholinergic basal forebrain, rather than due
to decreased synthesis. Misregulation of APP can transduce into
misregulation of fast axonal transport, which is a pathogenic
mechanism for intraneuronal A� [324]. There are multiple initiat-
ing factors converging upon pathways of amyloid induced defects
in neuronal transport [325]. �, is a microtubule-binding protein
that, after its hyperphosphorylation and segregation into tangles,
is unable to bind microtubuli, causing their destabilization 
and, thereby, disrupting axonal transport movement. The 3- and 
4-repeat � proteins show differential effects on mitochondrial
axonal transport [326]. Interfering with axonal transport may acti-
vate stress kinase pathways initiating a biochemical cascade that
drives normal � proteins into a pathogenic state [327]. However,
axonal transport rates in vivo are unaffected by � deletion, or
hyperexpression, in mice [328].

Axonal transport in synucleinopathies

�Syn is a highly conserved protein, strongly expressed in neurons
and enriched in presynaptic terminals. It is mainly transported in
the slow, but a part also in fast transport. Significant age-related
transport retardation may lead to accumulation of �Syn over time
and produces pathology suggesting axonal transport abnormali-
ties in synucleinopathies [329]. Accumulations of small �Syn
aggregates in presynaptic terminals in the cortex of DLB and PD
associated with loss of dendritic spines suggest a pathological
impact on synaptic functions leading to ND, implicating PD as a
synaptopathy [330].

Axonal transport in other neurodegenerative 
diseases

In SOD-1 tg models of ALS show retarded transport of neurofila-
ment proteins and deficits in the delivery of mitochondria to the
axon by fast transport, even before symptom onset implicated
impaired transport as an early defect in the progress of ND, but,
to date, no motor protein gene mutation in human ALS has been
reported [331]. Mutant SOD1 interfering with axonal transport and
protein turnover may influence the function and viability of motor
neurons in ALS [332].

HD shows striatal degeneration with aggregation of huntingtin
(htt) within vesicles and moves in the fast axonal transport com-
ponent. In animal models, this was inhibited by infusion with
pathological polyQ repeats and by disruption of the Drosophila htt
gene. Htt plays a role in protein trafficking, vesicle transport, post-
synaptic signalling, transcriptional regulation and apoptosis. A
loss of function of the normal protein and a toxic gain of function
of mhtt contribute to the disruption of multiple intracellular
 pathways [193]. An htt-binding protein HAP1 interacts with the

dynactin complex, important for dynein and possibly kinesin fast
movements, and accumulated vesicles and organelles in dys-
trophic axons from human HD patients suggest that aggregates of
polyQ repeats disrupt fast axonal transport, and there is enhanced
sensibility of striatal neurons to axonal transport defects induced
by mhtt [333].

Dysfunction of neurotrophins

There is growing evidence that reduced neurotrophic support is a
significant factor in the pathogenesis of NDDs [334]. NTFs affect
neuronal survival; influence synaptic function and plasticity. NTFs
bind to different receptors, to a common receptor, and each of
them also binds to one of the family of Trk receptors. Since NTFs
in neurons are subject to retrograde and to anterograde transport
from and to targeting neurons, their effects may be related to syn-
thesis in local or remote sites or to changes in axonal transport. In
CNS disorders, such as AD, PD and HD, OS appears linked to the
loss of neurotrophic support [201]; it can cause down-regulation
of NTFs which, in turn, up-regulates antioxidant enzymes and pro-
motes the expression of antioxidant proteins. Brain-derived neu-
rotrophic factor (BDNF) levels in tg mouse models of AD are neg-
atively correlated with A� levels, suggesting that the effect of A�

on decreased BDNF expression is specific to the aggregation state
of A� and is dependent on large oligomers [335]. AD brain shows
increase of the precursor form of NTF and decrease in BDNF in
surviving neurons of hippocampus and neocortex, and decrease
of TrkA in cortex and nucleus basalis [321]. A� may induce the
TrkA pathway activation and promote NGF secretion [336, 337].
A� may act as a neurotrophic factor that mimics the activity of
NGF. However, at higher concentrations, the amyloid behaves as
an antagonist of NGF, contributing to the advent of AD [338]. A�42

may induce neuronal death through the p75 NTF receptor, and
p75-A�-PrPC complexes could provide reactive OS and elevated
intracellular calcium required for p75 signalling [339]. Post-
mortem studies point to a lack of NGF action in early AD stages,
whereas NGF is found in enhanced concentrations in brains with
severe AD partly due to a pathologically altered axonal transport of
NGF in the neurons [340]. Advanced glycation and lipoxidation
end-products modification of pro-NGF offers a novel pathway in
the etiopathogenesis of AD [459]. Inhibition of soluble NTF
 signalling in a mouse model of AD prevents/slows pre-plaque
amyloid-associated neuropathology, and potentially the progres-
sive neuron ‘loss’ in AD [341, 342].

New steps and targets in the pathogenesis of AD may be: NGF
and BDNF signalling through neurotrophic tyrosine kinases pre-
vent the cleavage of APP by BACE1, which, together with �-secre-
tase, converts APP into toxic forming A� fragments, and a soluble
N-terminal fragment (N-APP). In AD, this extracellular fragment of
APP, and death receptor G may engage tumour necrosis factor
(TNF) receptor family member 21 (TNFRSF21) which activates a
widespread caspase-dependent self-destructing process – via
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activating caspase-6 apoptosis-related cystein peptidase (casp6,
MCH2)-related enzymes–as a major culprit behind AD [343]. This
pro-apoptotic pathway proposed by these data may be relevant for
other NDDs.

Studies in rodent and primate models of AD showed that BDNF
prevents lesion-induced death of entorhinal neurons, reverses
neuronal atrophy and ameliorates age-related cognitive impair-
ment. A�-induced NGF dysmetabolism in AD may explain the par-
adoxical up-regulation of the precursor form of NGF (pro-NGF) in
AD accompanied by atrophy of forebrain cholinergic neurons
[344]. Protectional effects of BDNF on cortical neuronal circuitry
involving AD, acting through amyloid-independent mechanisms
[345], indicate a prominent role of NGF in both the aetiology and
treatment of AD [346].

In PD, decreased neuronal content and their receptors in SN
indicate a reduction of neurotrophic support and alterations in
axon guidance in early stages of cellular stress, leading to
dopaminergic cell death [334]. In HD, the mhtt induces a down-
regulation of BDNF in the basal ganglia, leading to neuronal loss,
opening up the possibility of BDNF therapy. Transcription from
BDNF promoter II and IV is down-regulated in human HD cortex
from an early symptomatic stage. In addition to the reduction in
BDNF mRNA, there may be unbalanced neurotrophic receptor
signalling in HD [347]. In ALS, NGF concentrations and BDNF
are up-regulated in early stages of the disease, whereas the lev-
els of other NGFs gradually increase during the course of the dis-
order. In ALS spinal cords, TrkA was up-regulated, but the
results of trials in both animal models and human patients were
controversial. Therefore, comparative in situ data for transcrip-
tion levels and protein contents in NTFs and their receptors in
both sites of neuronal origin and termination in human brain are
needed to understand their potential role in new treatment
strategies [201, 345].

‘Neuroinflammatory’ processes

Chronic inflammatory reactions and signs of immune activation in
the CNS, with major histocompatibility complex (MHC) class II
expression, glial reaction, T-cell infiltration, and blood-brain bar-
rier dysfunction are prominent pathological features in the patho-
genesis and progression of NDDs [348]. Iron has various pro- and
anti-inflammatory activities, and inappropriate iron chelation may
be a major pathogenic contributor to inflammatory and NDDs
[349]. AD ‘inflammation’ has been considered toxic or, on the con-
trary, useful [350]. However, a better knowledge about the inter-
play between the nervous system and the local and systemic
immune system will be important for the understanding of patho-
genic mechanisms of ND [351], the role of innate ‘protective
autoimmunity’ and of reparative functions of autoimmunity in
NDDs [352]. It has been suggested that immune alterations may
occur prior to amyloid deposition and neuronal degeneration.
Complement activation exacerbates the pathology of AD, and it

has been discussed whether it could be the outcome of the innate
immunity defence in the brain [353]. A central question is whether
immune and inflammatory pathways become hyperactivated with
age and promote ND or whether insufficient immune responses,
which fail to cope with age-related stress, may contribute to NDDs
[354]. Age-related neuroinflammatory changes negatively impact
neuronal function [460]. Breakdown of the normal blood-brain
barrier with influx of blood-born molecules (plasma proteins) have
been suggested to cause local damage as starting mechanisms of
some NDDs [348]. A leaky BBB, fibrinogen infiltration and
microglial activity may cause neuronal damage in 'inflamed' AD
brain [461].

Activated microglia may be both neurotoxic and neuroprotec-
tive, depending on several factors including aging, but the causes
for transformation between the two actions remains largely
unknown [355]. Microglia form the brain’s innate immune cell
type, but also are associated with constant phagocytotic clearance
of cell debris, representing an essential link between degeneration
and regeneration. Insufficient clearance by microglia, present in
several NDDs and declining with aging, is associated with an inad-
equate regenerative response [356], while astrocytes produce
anti-inflammatory and neuroprotective agents [357].

Components related to AD neuroinflammation include
microglia and astrocytes, the classic and alternate pathways of
the complement system, the pentraxins, acute-phase proteins,
neuronal-type nicotinic acetylcholine receptors, peroxisomal pro-
liferation-activated receptors, as well as ‘pro-inflammatory’
cytokines and chemokines. In animal models and human brains,
both the microglia and astrocytes may generate A�, which itself
may act as a pro-inflammatory agent inducing the activation of
glia and many inflammatory components [358]. The patterns of
cytochemokine involvement strengthen the inflammatory theory
of AD and raise a pathophysiological role for selective alteration
of this network [359]. Footprints of radicals and peroxynitrite
attack have been detected in post-mortem AD brain, which, at
least in part, are produced by activated microglia, and, together
with anomalous release of cytokines and chemokines, but also
systemic inflammation with increase in serum TNF�, may be a
progression factor in AD [350, 360, 361]. In both aged and AD
brain and in animal models, deposition of A� is likely to trigger
inflammatory cascades with increased production of pro-inflam-
matory factors, part of which are localized in the A� plaques and
in the surrounding activated glia [355]. Inflammation potentially
increases brain levels of A� by three mechanisms: increased
influx, decreased efflux, and increased neuronal production
[362]. JNK-AP1 signalling pathway may be responsible for A�-
induced neuroinflammation in cultured human brain endothelial
cells and AD brain and this signalling pathway may serve as a
therapeutic target for relieving A�-induced inflammation [363],
and TNF� gene polymorphism may affect the risk of developing
AD [364]. A� oligomers and fibrils stimulate differential activa-
tion of microglia [358]. Inactivation of pro-inflammatory
cytokines such as TNF, despite known adverse effects, makes it
an attractive target for therapeutic development to treat NDDs
[365]. Inhibiting p53 pathways in microglia alternates microglial
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evolved neurotoxicity following exposure to Alzheimer peptides
[462]. The problems of AD and tg animal models treated by
immunotherapy causing plaque removal and increase in severity
of cerebral amyloid angiopathy, but not preventing progressive
ND, are not discussed here [see 366–368].

On the other hand, in human AD brain deposits of A� devoid of
�

� structures were found to be co-localized with non-activated,
ramified dystrophic microglia suggesting that A� does not trigger
microglial activation [369]. These findings and recent experimen-
tal evidence [370] argue against the hypothesis that neuroinflam-
matory changes contribute to AD. They support the idea that pro-
gressive, age-related microglial degeneration and loss of
microglial neuroprotection rather than induction of microglial acti-
vation contribute to the onset of sporadic AD [369].

In PD, SN cell degeneration is accompanied by astroglial reac-
tion and proliferation of MHC class II positive microglia releasing
pro-inflammatory cytokines, nitric oxide, complements, and OS
that may be both inducing factors or sequelae of neuronal death
[371, 463]. The pattern of humoural immune reactivity is consis-
tent with activation of microglia leading to the targeting of DA
nigral neurons for the destruction in both idiopathic and genetic
cases of PD [372]. Parkin deficiency increases vulnerability to
inflammation-related nigral degeneration, while human neurome-
lanin induces neuroinflammation and degeneration in the rat SN
[373], and aggregated �Syn activates microglia. DA cell death is
probably influenced by the innate immune system, and in an
MPTP mouse model T cell-mediated DAergic toxicity is almost
exclusively arbitrated by CD4� T cells and requires the Fas/FasL
but not the IFNc cytotoxic pathway [374]. Intrastriatal lipopolysac-
charide injection served as a model for inflammatory-induced
mitochondrial dysfunction causing NDD in the nigrostriatal sys-
tem [375]. Microglial activation and corresponding DAergic termi-
nal loss in early PD support the notion that neuroinflammatory
responses by intrinsic microglia contribute to the progressive
degeneration in PD and related diseases [376]. Part of the specific
vulnerability of the SN could be a consequence of h-TNF�

hypomethylation [377], TNF� overexpression inducing apoptosis
of neuronal cells. On the other hand, microglia may be affected by
the disease process and may therefore not be capable of exerting
sufficient neuroprotective function, such as glutathione peroxi-
dase expression [241].

Microglia activation in HD has been shown to correlate with
severity of the disease [378], with a close spatial and temporal
relationship to neuronal dysfunction, and has already been
detected in presymptomatic HD gene carriers [379]. BDNF and its
receptor levels have been assessed in human cortices affected by
HD [347]. Alterations of the adaptative immune system in sALS
suggest early involvement of a ‘neuroinflammative’ process in the
pathobiology of ALS [350, 380]. The role of inflammation in tg
models of NDDs, in particular in mouse models of AD, have been
reviewed recently [381]. In conclusion, whereas recent studies
provide evidence for microglial abnormalities in several NDDs
including ALS, HD and Creutzfeldt-Jakob disease [382, 383], the
involvement of microglia in the pathogenesis of AD and PD
remains controversial [369, 384].

The final pathway: multifaceted 
neuronal death

Neurons undergo diverse forms of cell death depending on the
nature and severity of the stress. The nature, time course and
molecular causes of cell death in NDDs and their relations to basic
processes are still a matter of discussion [see 1]. Based on dis-
tinct morphologic criteria and biochemical features, PCD is classi-
fied into three major types: apoptosis (PCD type I), autophagy
(PCD type II) and oncotic necrosis, a passive killing of the cell
(PCD type III) [385–387]. Morphologically, apoptotis, dependent
on caspase activation, is characterized by chromatin condensation
(pyknosis), nuclear fragmentation, cell shrinkage and plasma
membrane blabbing. The cell breaks into small membrane-sur-
rounded fragments (apoptotic bodies), which are cleared by
phagocytosis in vivo without inciting an inflammatory response,
phagocytotic activity being balanced by positive and negative sig-
nals. Apoptosis can occur locally, without damaging healthy adja-
cent cells. This is in contrast to necrosis, an accidental and uncon-
trolled mode of cell death (PCD type III, not dependent on caspase
activation), but triggered by OS [388], which exhibits rapid cell
swelling and subsequent rupture of the plasma membrane that,
due to an inflammatory response, usually induces substantial sec-
ondary cell damage in the surrounding tissue [389]. Autophagy
(PCD type II), known as the process by which molecules and
organelles undergoe lysosomal clearance/degradation in order to
help maintain cellular homeostasis [160], also depends on cas-
pase activation and a number of autophagy-related proteins and
genes such as LC3 (light chain 3) and beclin-1 [171, 172].
Hundreds of caspase substartes have been described but only for
a few of them the function of their cleavage by caspasin is well
understood in the pathogenesis of NDDs [390]. There are many
reasons and ways for a neuron to die, among which apoptosis is
a specific form that is processed in two major signalling pathways,
the extrinsic (death receptor) pathway and the intrinsic (mitochon-
dria based) pathways, with several avenues of cross-talk between
them (Fig. 5).

Many of the morphological differences between apoptotic and
necrotic processes are thought to be a consequence of the action
of cysteine proteases, while caspase and calpain functions in cell
death are bridging the gap between apoptosis and necrosis.
However, caspase-independent cell death also exists [388].
Tissue-specific impairment of autophagy in CNS tissue causes
massive loss of neurons resulting in ND. Autophagic cell death,
more correctly cell death with autophagy rather than by autophagy
[391], probably represents a failure of neuroprotective mecha-
nisms [392]. The prominence of autophagy in neurons contribut-
ing to the build-up of dysfunctional mitochondria and protein
aggregates may lead to neuronal cell death, either due to an insuf-
ficient autophagic process or to up-regulation of autophagy [391];
both indicating a cross-talk between autophagy and the apoptotic
pathways. Although markers for autophagy have been identified in
different NDDs [393], it is not yet possible to be certain that these
are indicative of the occurrence of autophagic cell death.
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Neuronal cell death may exhibit morphologic features of
autophagy or necrosis, which differs from that of canonical apop-
tosis, or autophagic vacuolation can precede apoptotic cell death;
this argues against the clear distinction between apoptotic and
autophagic cell death [394]. Recent data point to the existence of
multiple non-apoptotic, regulated cell death mechanisms, e.g. in
tauopathies [101], some of which overlap or are mutually exclu-
sive with apoptosis. Increasing evidence suggests that the regula-
tion of neuronal cell death is complex, utilizing multiple pathways
that are dependent on the damaging insult [395], each demon-
strating specificity of function, regulation and pathway involve-
ment, influenced by subtle differences among cell phenotypes
(see Fig. 6).

Whilst post-mortem human brain tissue or those from animal
models of injury or disease provide clues as to the diversity of
neuronal death, the clearest information about molecular mecha-

nisms leading to death comes from laboratory studies at the cel-
lular level using cell models of injury or disease. Detailed studies
of the molecular cell biology of appropriate cultured primary neu-
rones, or immortalized cells with neuronal properties, have
enabled the dissection of cellular responses and death outcome.
There is an initial primary response to the trigger that may be
external (e.g. toxic molecules impinging on the cell) or internal
(e.g. inappropriate intracellular protein aggregation). The primary
distortion of cellular biochemistry and physiology, if not rectified
by the cell promptly and effectively, activates signalling pathways,
both upstream and downstream of mitochondria, causing a
crosstalk of PDC processes [245, 257]. Indeed, dying or dead
cells may simultaneously manifest characteristics of more than
one type of death pathway.

Cell death cascades in major NDDs

Despite demonstration of DNA fragmentation and up-regulation of
pro-apoptotic and cell death regulator proteins, it is still unclear,
whether apoptotic or necrotic modes are responsible for cell death
in NDDs. It is preceded by the activation of caspases and altered
expression of pro-apoptotic members of the Bcl-2 family and
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Fig. 6 Diverse pathways leading to cell death, illustrated by the concept
of the apoptosis-necrosis continuum that integrates the various death
pathways and subsequent intracellular signalling pathways (ER stress,
UPS, ATP loss, etc.) to help explain the complex patterns of neuronal
death (mix of PCD-types I, II and /or III) (modified from [245]).

Fig. 5 Overview of apoptotic signalling through the receptor-mediated
(‘extrinsic’) and mitochondria bases (‘intrinsic’) pathways, showing all
key molecular players of apoptosis, the importance of the caspase 
cascade via interaction with different death domaines, and the role of
effective caspase driving the execution of the cell death program.
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other ARPs. Multiple caspases and elevated caspase mRNAs have
been detected in post-mortem tissue from AD brains [396], while
others observed no apoptotic morphology in AD [397].

Frequent DNA fragmentation and the ‘pro-apoptotic’ environ-
ment in AD brain indicate increased vulnerability of neurons to
metabolic and other noxious factors. Recent data suggest that the
interaction between APP and/or A� and the cell death mediates
p75 (NTR) (the common NTF receptor) and its interaction with
pro-apoptotic ligands cause a selective vulnerability of neurons in
the cholinergic forebrain in APP [341]. Caspase-3 has been found
to be enriched in post-synaptic densities and increased in AD
[398] and activation of caspases by PSEN1 gene and its inhibition
by secretase inhibition were reported [399]. In surviving neurons,
it can be suggested that viability is, in part, maintained by the lack
of distal transmission of the caspase-mediated apoptotic signals.
This phenomenon of apoptotic avoidance termed abortive apopto-
sis or abortosis, may represent an exit from the caspase-induced
death program [400]. That, given the robust survivals of neurons
with NFTs [401] and recent evidence that NFTs in experimental
models do not directly correlate with neuron loss [402] suggests
that affected neurons may be able to withhold NFT formation for a
long time before they degenerate. Despite a lack of clear evidence
linking � aggregates to neuronal loss, the presence of a tangle in
a neuron is likely to be harmful, leading to changes in axonal
transport and loss of synapses [403]. Associations between tan-
gle bearing neurons with caspase activation suggests that tangles
are at least markers of neuronal disease [101]. Although consid-
ered neuroprotective, like other significant intracellular and neu-
ritic protein aggregations they finally contribute to dysfunction
and death of involved neurons.

Recent data indicating a link between the development of A�

and NFT/� pathologies may be due to caspase activation and
cleavage of APP which facilitate production of A� and by cleavage
of � may initiate or accelerate the development of tangle pathology
[404, 405]. In several tg � models, an increased number of
TUNEL� neurons and ultrastructural features of both apoptosis
and necrosis, but no activated caspases were observed [406],
while in aging PS/APP mice a crosstalk between apoptosis and
autophagy was identified, which influences neuronal survival in
AD-related ND [407]. However, many questions remain open
about how changes in � lead to ND and the relationship of NFT
pathology to neuronal death, which recently is proposed to be a
non-apoptotic caspase-associated form of death [101].

Cell death is a significant part of the pathology of PD. Although
the process is mysterious, the prime suspect for a toxic protein is
�Syn and its aberrant forms, including increased expression of
the normal gene [408]. Apoptosis may be involved in PD, although
the molecular mechanisms that initiate dopaminergic neuron loss
are not known. These include, among others, JNK signalling, p53
activation, cell-cycle reactivation and signalling through Bcl-2 pro-
teins [244]. Whether PCD actually occurs within the human PD
brain remains controversial, and this possibility has been neither
confirmed by numerous studies nor definitely excluded [see 1].

The question whether LBs and other �Syn aggregates are harmful
or cytoprotective still remains unresolved. Although their forma-
tion may reflect one of several response patterns by the CNS to
upstream dysregulation of �Syn metabolism, the �Syn pathway
appears to be an essential factor for the selective multisystemic
loss of neurons and glia in many synucleinopaties, e.g. PD, PDD,
DLB, multiple system atrophy (MSA), and related disorders,
showing widespread occurrence of LBs and dystrophic neurites
with neuronal loss in many regions of the central, peripheral and
autonomic nervous system. In sporadic ALS persitent cleavage
and nuclear translocation of AIP in motor neurons in the spinal
cord have been described recently [409].

A specific issue is whether a particular NDD is cell-
autonomous, where neurons form the primary defective entities in
isolation from surrounding cells. Additionally, there are also func-
tional changes in glial cells, such as astrocytes, which normally
sustain neurones. There is a glutamatergic interplay between neu-
rons and astrocytes, disturbances of which may be involved in
neuronal derangement and contribute to disease development
[410–412]. Such glial perturbations (non-cell-autonomous) are
thought to apply in several NDDs [413]. The heterogeneous
astroglial responses in various synucleinopathies, tauopathies and
other NDDs indicate distinct underlying pathogenic mechanisms
in each disorder [414], while in other diseases, e.g. MSA, there is
a definite relation between oligodendrogliopathy and neuronal
degeneration [415, 416]. While astrocytic dysfunction could play
its part in the progression and severity of AD [417], the role of
astrocytes in PD, ALS and related disorders is poorly understood
[414, 418, 419]. Astrocytes display very different biological pro-
files when they become ‘reactive’ and an emergent literature indi-
cates the normal homeostatic or sustenance relationships, are dis-
rupted turning them instead into ‘collaborators in neurotoxicity’
[see 420, 421].

Post-mortem analysis can bridge some but not all of our
knowledge gaps; the results are still controversial, and we need a
better understanding of the molecular basis and pathways that
drive the yin-yang between neuronal survival and death. The com-
bined use of in vitro models and new analytical models should
help to map environmental and toxic pathways in the aetiology of
NDDs [422]. Understanding neuronal death pathways and their
cross-talk not only informs the detailed pathobiology but also sug-
gests novel therapeutic modalities, some of which have been
reviewed recently [2, 91, 133, 154, 198, 201, 254, 366, 405, 423].
An extensive discussion of effective prophylactic and treatment
strategies appears to be outside the goal of the present review.
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