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Abstract

The fitness impact of loss-of-function mutations is generally assumed to reflect the loss of specific molecular
functions associated with the perturbed gene. Here, we propose that rewiring of the transcriptome upon dele-
terious gene inactivation is frequently nonspecific and mimics stereotypic responses to external environmental
change. Consequently, transcriptional response to gene deletion could be suboptimal and incur an extra fitness
cost. Analysis of the transcriptomes of �1,500 single-gene deletion Saccharomyces cerevisiae strains supported
this scenario. First, most transcriptomic changes are not specific to the deleted gene but are rather triggered by
perturbations in functionally diverse genes. Second, gene deletions that alter the expression of dosage-sensitive
genes are especially harmful. Third, by elevating the expression level of downregulated genes, we could experi-
mentally mitigate the fitness defect of gene deletions. Our work shows that rewiring of genomic expression upon
gene inactivation shapes the harmful effects of mutations.
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Introduction
Genetic perturbations, such as gene deletions, are fundamen-
tal for the biological sciences both as natural phenomena and
as tools to gain insight into the function of the perturbed
genes. The latter approach, reverse genetics, assumes that the
cellular response to the perturbation reflects the function of
the perturbed gene. More specifically, fitness loss upon delet-
ing a gene is generally interpreted as evidence for the impor-
tance of the gene’s specific function in the particular
environment (Giaever et al. 2002). Several lines of reasoning
suggest that the fitness impact of gene disruption is further
molded by the cell’s response to the absence of the gene. One
theory suggests that the cell’s regulatory network increases
the level of a functionally redundant protein upon gene in-
activation and thereby ameliorates its fitness effect (Kafri et al.

2016). Earlier studies found anecdotal evidence for such
adaptive regulatory responses in paralog gene pairs
(Kafri et al. 2005), but their prevalence remains contentious
(He and Zhang 2005; Wong and Roth 2005).

Alternatively, a suboptimal regulatory response to gene
deletion might aggravate its fitness cost. Mounting evidence
indicates that response to environmental changes often
results in suboptimal gene expression patterns in microbes
(e.g., Price et al. 2013; Keren et al. 2016). Several molecular
mechanisms may underlie suboptimal regulation. First, the
majority of expression changes appear to result from global
effects and not from specific regulation directly related to the
gene’s function (Keren et al. 2013; Price et al. 2013). One
prominent form of such global indirect effect is growth rate
correlated expression, shaping the transcription of about a
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quarter of the protein coding genes in yeast (Brauer et al.
2008), a large part of which can be attributed to shifted res-
idence times in different phases of the cell cycle (O’Duibhir
et al. 2014). Second, instead of using accurate regulation when
responding to changes in nutrient conditions, bacteria tend
to apply general heuristic rules that are beneficial in most, but
not all conditions (Towbin et al. 2017). Overall, these obser-
vations suggest that regulatory networks have only a limited
number of ways to rewire gene expression patterns upon
environmental changes. From an evolutionary perspective,
responses to environmental changes could be suboptimal
because highly accurate and direct regulation might be too
costly or too difficult to evolve (Price et al. 2013; Towbin et al.
2017). It is thus feasible that suboptimal gene expression
patterns are especially frequent upon genetic perturbations.
As most individual mutational events—including deletions of
specific genes—are exceedingly rare, natural selection for op-
timal genomic expression changes upon such mutations is
expected to be generally weak under realistic population ge-
netic conditions (Proulx and Phillips 2005). Despite these
considerations, it remains unclear how specific the cell’s
gene expression response to genetic perturbations is and
whether the response itself contributes to the fitness defect.

In this study, we investigate the hypothesis that subopti-
mal gene expression response increases the severity of genetic
perturbations. First, by analyzing the transcriptome of hun-
dreds of gene knockouts in the budding yeast Saccharomyces
cerevisiae, we show that the regulatory circuits of yeast exhibit
only a limited number of ways by which the transcriptome
can be rewired, thereby gene deletion-specific transcriptomic
changes are unlikely to occur. These nonspecific expression
responses resemble those displayed upon environmental
changes, including, but not limited to, the general environ-
mental stress response (Gasch 2003). Second, we found that
gene deletion strains in which the expression level of dosage-
sensitive genes (i.e., those sensitive to changed dosage) are
altered show an especially low fitness, suggesting suboptimal

response. Next, we experimentally probed the fitness impact
of gene downregulation by increasing the expression level of
specific downregulated genes in slow-growing gene deletion
strains. These experiments establish the existence of subopti-
mally expressed genes in genetically perturbed cells and dem-
onstrate that misregulation of even a single gene can incur a
substantial fitness cost. Together, these findings offer a con-
ceptual model to explain why genomic expression changes
could be suboptimal upon gene deletion. According to the
“stereotypic response” model, the yeast regulatory network
has only a limited number of transcriptional response modes
(TRMs) that have likely evolved to deal with common envi-
ronmental perturbations. These response modes are also uti-
lized to cope with genetic perturbations, for lack of a better
alternative, often resulting in suboptimal transcriptional
states that may incur an extra fitness cost.

Results

Extensive Transcriptional Response upon Deleterious
Gene Inactivations
We started by assessing the extent of transcript level changes
across deletion strains using data from a previous systematic
study (Kemmeren et al. 2014). This unique resource provides
genome-wide transcriptome profiles for �1,500 single-gene
deletion yeast strains. Although this set covers only one quar-
ter of protein coding genes in yeast, it is overrepresented in
genes having a regulatory role (Kemmeren et al. 2014) and
hence expected to capture well null mutations with large
transcriptomic effects. Nevertheless, 69% of the investigated
genes have no established role in transcriptional regulation
and represent various functional categories, including metab-
olism, protein trafficking, and DNA repair (Kemmeren et al.
2014).

There is a wide variation in the number of genes with
significantly altered transcription level across single-gene de-
letion yeast strains, ranging from 0 to 1,009 (fig. 1A).
Approximately, 60% of the gene deletion strains have less
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FIG. 1. Extent of transcriptome changes upon gene deletions. (A) Distribution of the number of transcript level changes across the�1,500 single-
gene deletion strains. A transcript level change was defined by fold-change (FC> 1.7) and statistical significance thresholds (P< 0.05), following
Kemmeren et al. (2014). The inset shows number of transcript level changes for the subset of gene deletions causing �5% growth defect. (B)
Growth rate is highly correlated with the number of changing transcripts (Spearman’s q¼�0.49, P< 10�15). Blue line indicates a loess curve fitted
on log(number of transcript level changesþ 1), with parameters span¼ 1, degree¼ 2. Relative growth rate of deletion strains was obtained from
O’Duibhir et al. (2014).
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than six transcripts affected, whereas 16% of deletion strains
show more than 50 altered transcripts. Importantly, even
deletion of genes having no established transcriptional regu-
latory roles can yield extensive transcriptomic changes affect-
ing numerous genes (supplementary fig. S1, Supplementary
Material online). For example, deletion of ERG2, a gene encod-
ing a sterol isomerase enzyme involved in ergosterol biosyn-
thesis, triggers transcriptional changes in 91 genes.

The extent of transcriptional rewiring shows a markedly
different distribution among gene deletions causing at least a
mild (�5%) growth defect (fig. 1A, inset). Notably, the ma-
jority (65%) of such deletions affect the expression of more
than ten genes and 35% of them alter more than 50 genes,
suggesting that deleterious gene inactivations frequently in-
duce global transcriptome rewiring. Indeed, deletions affect-
ing numerous transcripts have a strong tendency to reduce
fitness (Spearman’s q ¼ �0.49, P< 10�15, fig. 1B), a finding
consistent with previous studies (Hughes et al. 2000;
Kemmeren et al. 2014). One may argue that such a strong
correlation between transcriptomic and fitness effects might
simply reflect regulation through growth rate. Indeed, the
expression of numerous yeast genes is strongly influenced
by cellular growth rate, independent of the specific environ-
mental factors (Castrillo et al. 2007; Brauer et al. 2008). Shifts
in the proportions of cells in different cell cycle phases in
slow-growing yeast deletion strains produces a common
gene expression signature proportional to the degree of
slow growth (O’Duibhir et al. 2014). However, the strong
correlation between mutant fitness and the number of al-
tered transcripts remains after removing the shared gene ex-
pression signature exhibited by slow-growing mutants
(O’Duibhir et al. 2014) (Spearman’s q ¼ �0.45, P< 10�15,
supplementary fig. S2, Supplementary Material online). Thus,
extensive gene expression rewiring is not simply the conse-
quence of the cell cycle phase distribution change of slow-
growing strains. Although this finding is consistent with the
notion that strongly deleterious gene disruptions are highly
pleiotropic, that is, affect many phenotypic traits and molec-
ular processes (Cooper et al. 2007; Szappanos et al. 2011), it
also raises the possibility that the transcriptomic response
itself may contribute to the observed growth defect. We
test this latter possibility below.

Yeast Has a Limited Repertoire of TRMs upon Gene
Deletion
Are most transcriptional changes specific to the deleted gene?
It has been previously reported that beyond specific expres-
sion changes, many gene deletion strains show recurrent ex-
pression patterns (O’Duibhir et al. 2014). We hypothesized
that yeast has evolved a limited number of fundamentally
distinct genome-wide transcriptional responses, likely
through adaptation to environmental changes. Such tran-
scriptional responses are recurrently and nonspecifically trig-
gered by gene deletions that lack a more specific response.
This “stereotypic response” hypothesis predicts that 1) yeast
should exhibit a limited number of TRMs that account for a
substantial part of gene expression variation across mutants,

and 2) responses to gene deletions should mimic those to
environmental changes.

To assess the extent to which gene expression changes can
be attributed to stereotypic responses shared across null
mutations, we applied principal component analysis (PCA)
on the transcriptome profiles of all �1,500 gene deletion
strains. Our analysis expands on the work of O’Duibhir
et al. (2014), where the first principal component was ana-
lyzed in detail. It has been reported that the first principal
component, which we refer to transcriptional response mode
#1 (TRM #1), accounts for 24% of all transcriptomic variation
in the data set and represents a recurrent expression response
common to slow-growing strains. We aimed at systematically
identifying additional TRMs, that is, recurrent expression pat-
terns shared by multiple gene deletions. To this end, we ap-
plied PCA to both the actual transcriptome data set and to
randomized ones and identified those principal components
that explain more variation than expected by chance (fig. 2A,
Materials and Methods). This analysis revealed 15 uncorre-
lated TRMs, each of them explaining more gene expression
variance than expected by chance, hence capturing recurrent
expression responses (fig. 2B). Importantly, together these 15
TRMs explain 58.1% of all transcriptional variation across the
entire set of gene knockouts (fig. 2B). These results indicate
that a large fraction of genomic expression changes is not
specific to individual gene deletions.

We next characterized the functional diversity of gene
deletions that trigger each TRM. To this end, we identified
sets of genes whose deletion correlates or anticorrelates with
a particular TRM (see Materials and Methods and supple-
mentary table S1, Supplementary Material online). Note that
a single null mutation can trigger multiple TRMs, however,
those cases are not common (26% of all deleted genes). We
first focused on TRM #1, which has been studied previously
(O’Duibhir et al. 2014). In line with previous observations, the
large majority of null mutations triggering TRM #1 act in one
particular direction, that is, they induce a common slow
growth signature, and tend to cause a large fitness drop (sup-
plementary fig. S3, Supplementary Material online).
Importantly, deletion in diverse gene functions, including ri-
bosome biogenesis, cell cycle, signaling and DNA repair initi-
ate this expression signature (supplementary fig. S4 and table
S2, Supplementary Material online). Inspecting the functional
categories of deletions triggering the other 14 TRMs revealed
a similar pattern (supplementary fig. S4 and table S2,
Supplementary Material online). Most TRMs are correlated
or anticorrelated with deletions in genes spanning multiple
functional categories. For example, TRM #2 is triggered by
deletions of genes involved in protein alkylation, pseudohy-
phal/invasive growth, histone modification, or tRNA process-
ing (supplementary fig. S4, Supplementary Material online).

To more systematically investigate the functional diversity
of gene deletions triggering the same TRMs, we next
employed genetic interaction profile similarity as an unbiased,
quantitative measure of functional relationships between
genes (Costanzo et al. 2016). For each TRM, we calculated
genetic interaction profile correlations between pairs of genes
triggering a given TRM when deleted (separately for gene

Suboptimal Global Transcriptional Response . doi:10.1093/molbev/msaa280 MBE

1139



deletions correlating positively and negatively with a partic-
ular TRM). According to Costanzo et al. (2016), Pearson cor-
relation coefficients above 0.2 indicate functional similarity,
whereas values above 0.4 indicate that the two genes share
the same specific protein complex or pathway. In contrast,
the randomly expected correlation coefficient between all
possible gene pairs in our gene set is 0.007. Remarkably, the
average correlation coefficient within TRMs is 0.01, which is
very close to random expectation. Furthermore, only 0.5% of
within-TRM gene pairs show clear signs of functional similar-
ity (i.e., values >0.2). This result is consistent with the above
finding that, in general, multiple unrelated gene ontology
(GO) categories are enriched in gene deletions triggering a

given TRM (supplementary fig. S4, Supplementary Material
online). Furthermore, it shows that despite such GO enrich-
ments, the vast majority of genes whose null mutations trig-
ger a given TRM are functionally unrelated to each other. This
conclusion holds for almost all TRMs (fig. 2C). One notable
exception is TRM #11, where a substantial fraction of gene
pairs with genetic interaction data (27/62) encode subunits of
the histone deacetylase complex, Rpd3L. Notably, excluding
these within-complex pairs yields an average correlation co-
efficient close to random expectation (0.013) for TRM #11
too.

Finally, we note that 70% of the genes that trigger at least
one TRM when deleted have no established direct role in

FIG. 2. A handful of TRMs explain most gene expression responses to knockouts. (A) Overview of the approach to estimate the number of
significant independent TRMs. PCA is performed over the original expression data set, as well as over randomized instances of it (Materials and
Methods). The threshold for estimating the number of TRMs is set as the meanþ 2 SD in the variance explained by TRM #1 in 600 randomized data
sets. (B) Results obtained on the transcriptomes of�1,500 gene deletion strains, in which we estimate that each one of the first 15 TRMs explains
more variance than expected by chance. Results are shown for the first 100 TRMs, y-axis showing the explained percentage of variance for the
randomized (POVexp) and observed (POVobs) data. (C) Functionally diverse gene deletions trigger the same TRMs. Functional relatedness between
all gene pairs (N¼ 98,438) triggering the same TRM is calculated as the Pearson correlation of their genetic interaction profiles (Costanzo et al.
2016). Violin plots show the density distributions of these Pearson correlation coefficients for each TRM, and black dots indicate their mean. Red
line shows the randomly expected correlation in our set of genes (0.007), whereas blue and green lines show correlation coefficients indicating
functional relatedness (0.2) and shared complex/pathway memberships (0.4), respectively (Costanzo et al. 2016). Only TRMs with more than ten
data points are shown.
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transcriptional regulation (Materials and Methods). This ob-
servation suggests that more distant regulatory events or in-
direct control of gene expression (Price et al. 2013; Chagoyen
and Poyatos 2019) dominate TRMs.

Overall, we conclude that most of the expression changes
across �1,500 deletion strains can be explained by only a
handful of TRMs that are triggered by functionally diverse
gene deletions.

Gene Deletions Trigger Transcriptional Responses
That Mimic Environmental Responses
Next, we systematically tested whether TRMs upon gene de-
letion resemble expression responses displayed upon environ-
mental changes. To this end, we calculated correlations
between each TRM and published environmental expression
profiles from a large compendium of microarrays (Hibbs et al.
2007). We found that the large majority (12 out of 15) of
TRMs correlates with at least one environmental response
profile at a threshold of Spearman’s q > 0.2 (fig. 3A and
supplementary table S3, Supplementary Material online, see
Materials and Methods). Crucially, correlations observed
above this threshold are much stronger than expected based

on randomized data (fig. 3A), indicating genuine similarities
between TRMs upon gene deletion and environmental ex-
pression profiles. Reassuringly, TRM #1 correlates with up to
two-thirds of the tested environmental response profiles
(fig. 3A). This is consistent with an earlier report (O’Duibhir
et al. 2014) that the slow growth signature captured by this
TRM is highly similar to the gene expression response com-
mon to diverse environmental perturbations, referred to as
the environmental stress response (Gasch 2003). Previously,
expression response to heat shock (“Heat shock 20 min after
shift from 29�C to 37�C” in Gasch [2003]) was used as a proxy
for environmental stress response (O’Duibhir et al. 2014).
Importantly, although this environment shows the highest
correlation with TRM #1 (Spearman’s q ¼ 0.68), no other
TRM shows a correlation higher than our threshold with this
environment, (supplementary table S3, Supplementary
Material online) suggesting that other TRMs are largely
uncorrelated with the environmental stress response
program.

This result indicates that other TRMs mimic less general
responses to environmental perturbations. For example, the
global expression profile of TRM #2 is similar to that observed

FIG. 3. TRMs mimic genomic expression response to environmental change. (A) Upper panel: number and relative proportion of environmental
expression responses correlating with TRMs above our threshold (jSpearman qj> 0.2). Lower panel: TRMs mimicking environmental expression
responses above the same correlation threshold. Boxplot shows the distribution of correlation coefficients between TRM #1 and the most similar
environmental profiles for 600 randomized data sets (box indicates the interquartile range [IQR], hinges represent third quartileþ 1.5 IQR and first
quartile � 1.5 IQR). (B) Heatmap showing transcripts (column) with largest absolute fold-change in TRM #2 (top and bottom 8%) and two
relevant environments: comparison between anaerobic and anaerobic conditions under nitrogen limitation (Knijnenburg et al. 2007) and citrinin
treatment (Iwahashi et al. 2007). For visual clarity, rank-transformed values are shown.(C) GO Slim category enrichment in the genes significantly
affected by TRM #2 (Materials and Methods). Sign of the enrichment indicates expression direction in the signature profile (i.e., expression profile
of the deletion strain with the highest amount of expression change in TRM #2, see Materials and Methods). Only those categories are shown
where the enrichment is significant (Fisher’s test, FDR-adjusted P < 0.001.
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in responses to changes in oxygen supply or inhibition of
respiration (Iwahashi et al. 2007) (fig. 3B). As a further support,
genes that show large expression fold-changes in TRM #2 are
enriched in respiration and mitochondria-related functions
(fig. 3C and supplementary fig. S5, Supplementary Material
online, see Materials and Methods). Together, these results
suggest that TRM #2 is linked to transcriptional regulation of
aerobiosis. In a similar vein, TRM #4 shows strong correlations
with environmental profiles related to leucine/sulfate or his-
tidine limitation (Saldanha et al. 2004; Levy et al. 2007) (sup-
plementary table S3, Supplementary Material online) Indeed,
genes affected by TRM #4 are enriched in functions related to
cellular amino acid metabolic processes (supplementary fig.
S5, Supplementary Material online). Finally, we speculate that
those three TRMs showing no clear similarity to environmen-
tal response profiles might have evolved as responses to en-
vironmental perturbations that remain to be sampled.

To assess whether TRMs may represent regulatory units,
we next asked whether genes altered in each TRM are
enriched in regulation by any particular transcription factor
(TF) or group thereof. As might be expected, TRM #2 shows
enrichment in regulation by oxic state-related TFs, such as
Skn7p, Sko1p, Hap1p, or the complex formed by Hap2p–
Hap5p, which is a global regulator of respiratory gene expres-
sion (Pinkham and Guarente 1985). Similarly, TRM #4 shows
enrichment in regulation by Met32p, Dal81p, or Gcn4p, con-
sistent with the link of this TRM to amino acid metabolism
(supplementary fig. S6, Supplementary Material online).
Importantly, TRMs are associated with multiple TFs and
vice versa, suggesting a lack of simple correspondence be-
tween regulatory units and TRMs in general (supplementary
fig. S6, Supplementary Material online).

Taken together, these findings demonstrate that TRMs
triggered by gene deletions mimic responses to environmen-
tal changes. This further suggests that the regulatory network
of yeast might not be able to produce highly specific
responses that would be beneficial upon loss of particular
gene functions.

Evidence for Nonadaptive Transcriptional Rewiring
Our results so far indicate that a substantial fraction of ex-
pression changes upon gene deletion are not gene specific.
However, it remains unclear whether these nonspecific
responses are beneficial, neutral, or harmful for fitness.

First, we tested whether transcriptional upregulation upon
gene disruption might be beneficial by compensating for the
lost function. To this end, we integrated the transcriptional
response data with the most recent and comprehensive
genome-wide map of genetic interactions in yeast
(Costanzo et al. 2016). Specifically, we focused on synthetic
sick or lethal genetic interaction, that is, when the single
mutants are nearly as fit as the wild-type, but the double
mutants display slow growth. As noted earlier, synthetic
sick or lethal genetic interaction between null mutations
indicates functional compensation (i.e., functional backup)
between the gene pair (Hartman et al. 2001). However, only
�2% of upregulations provides backup for the deletion
(fig. 4A), a figure only slightly higher than expected by chance

(1.3-fold enrichment, P¼ 0.005, Materials and Methods). This
result holds even when knockouts of TFs are removed from
the data set (supplementary fig. S7, Supplementary Material

**

NS

**

all

high
fitness

low
fitness

0 0.005 0.01 0.015 0.02 0.025
Fraction of upregulations

in synthetic sick/lethal interaction

−0.50

−0.25

0.00

0.25

0.50

0 1 2 3−5
Number of upregulated

overexpression−sensitive genes
R

es
id

ua
l f

itn
es

s

−0.50

−0.25

0.00

0.25

0.50

0 1 2−5 6−15
Number of downregulated

haploinsufficient genes

R
es

id
ua

l f
itn

es
s

−0.25

0.00

0 1 2 3 4 5

−0.50

−0.25

0.00

0.25

0 5 10 15

A

B

C

FIG. 4. Nonadaptive gene expression changes in response to gene deletion.
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online) or when considering only high-fitness knockouts,
which might be especially well compensated (fig. 4A).
Together, our findings are consistent with earlier works sug-
gesting that transcriptional responses rarely compensate for
the lost gene functions (Wong and Roth 2005). Thus, most of
the expression changes upon gene deletion are unlikely to be
beneficial for the cell.

Next, we looked for signatures of harmful responses in the
transcriptome data set. We hypothesize that altered expres-
sion of dosage-sensitive genes in gene deletion backgrounds is
especially likely to reduce fitness. Previous systematic works
identified a set of overexpression-sensitive (Makanae et al.
2013) and haploinsufficient (Deutschbauer et al. 2005) genes
that are known to have deleterious effects when their dosage
is increased and decreased, respectively. The set of
overexpression-sensitive genes identified by Makanae et al.
is especially well suited for our study as it includes genes for
which a mild increase in copy number causes a growth defect.
Notably, expression changes in dosage-sensitive genes trig-
gered by gene deletions are also predominantly unspecific
(supplementary note, Supplementary Material online), there-
fore we expect these genes to show signatures of harmful
responses.

To test the hypothesis, we examined whether deletion
strains with upregulated overexpression-sensitive genes or
downregulated haploinsufficient genes have especially low
fitness. Gene knockouts with numerous transcriptionally al-
tered genes both have a higher chance that some of those
genes are dosage sensitive and also tend to have a low fitness
in general (Hughes et al. 2000; Regenberg et al. 2006).
Therefore, we controlled for the number of transcriptionally
altered genes, by calculating residual fitness values (Materials
and Methods). In line with expectation, we found a highly
significant negative correlation between the number of upre-
gulated overexpression-sensitive genes in a deletion strain
and its residual fitness (fig. 4B and supplementary fig. S8A,
Supplementary Material online, Spearman’s q ¼ �0.39,
P¼ 10�16). Analogously, the number of downregulated hap-
loinsufficient genes is also negatively correlated with the re-
sidual fitness of the gene knockout (fig. 4C and
supplementary fig. S8B, Supplementary Material online,
Spearman’s q ¼ �0.23, P¼ 2 � 10�10). Moreover, these
correlations remain significant even when considering only
those strains with at least one upregulated overexpression-
sensitive gene (Spearman’s q¼ �0.37, P¼ 4� 10�7) or one
downregulated haploinsufficient gene (Spearman’s q ¼
�0.39, P¼ 6 � 10�4). Thus, not only the presence but also
the number of rewired dosage-sensitive genes is associated
with lower fitness. Furthermore, in line with expectations, the
number of downregulated overexpression-sensitive genes
does not show a negative correlation with the residual fitness.
Rather, a weak positive trend was found between the two
variables (q¼ 0.18, P¼ 2� 10�7). In contrast, the number of
upregulated haploinsufficient genes shows a weak, but signif-
icant negative correlation with residual fitness (q¼�0.12,
P¼ 0.002). The latter result is in line with a recent finding
indicating an asymmetrical relationship between haploinsuf-
ficiency and overexpression phenotype. Although most

haploinsufficient genes are sensitive to overexpression, the
converse is not true: Most overexpression-sensitive genes
are not haploinsufficient (Morrill and Amon 2019).

Overall, these results support the hypothesis that subopti-
mal transcriptional changes of dosage-sensitive genes contrib-
ute to the fitness impact of gene deletions.

Experimental Evidence for Harmful Downregulation
upon Gene Disruption
To test the causal link between gene expression response and
fitness, we next probed the fitness effect of increasing the
expression level of downregulated genes in multiple slow-
growing gene deletion backgrounds. Under the assumption
that upon gene deletion, downregulation of certain other
genes is harmful, restoration of wild-type expression level of
these genes should partially restore fitness. Accordingly, mild
gene overexpression of specific downregulated genes should
be beneficial in the gene deletion, but not in the wild-type
genetic background. We tested this scenario by increasing the
transcript level of individual genes using a single-copy plasmid
library (Molecular Barcoded Yeast [MoBY]-ORF 1.0, Ho et al.
2009). This overexpression system has been used to study the
impact of single extra copy increase (Ho et al. 2009; Morrill
and Amon 2019) and is well suited to capture mild gene
expression changes that are frequently observed in transcrip-
tomic data.

We selected seven slow-growing gene deletion mutants for
experimental testing. The deleted genes are functionally di-
verse and are involved in metabolism, nuclear transport, sig-
naling, and protein degradation (table 1). Importantly, we
used the same gene knockout strains that had been subjected
to transcriptome profiling and rigorous quality controls in a
previous study (Kemmeren et al. 2014). Next, we selected five
genes for overexpression. Each of these genes is downregu-
lated in at least two strains carrying deletions in functionally
dissimilar genes. Importantly, there is no transcriptional reg-
ulator among the deleted genes and there is no known phys-
ical interaction between the deleted and downregulated
genes (Oughtred et al. 2019). In addition, one of the five
downregulated genes (RPS5) is haploinsufficient
(Deutschbauer et al. 2005). We introduced the corresponding
MoBY-ORF plasmids into two to three single-gene knockout
strains each, testing 11 gene knockout–downregulated gene
combinations in total (table 1). We next estimated fitness
using growth curve measurements (see supplementary
Methods, Supplementary Material online).

Remarkably, out of these 11 combinations, we found five
cases when mild overexpression of the downregulated gene
significantly mitigated the fitness cost of the gene knockout
(Wilcoxon test, table 1, fig. 5, and supplementary table S5,
Supplementary Material online). Quantifying gene expression
by quantitative PCR in three randomly selected cases con-
firmed that the plasmids fully restored the wild-type expres-
sion level of the downregulated genes in the corresponding
deletion strains (supplementary fig. S10, Supplementary
Material online, see supplementary Methods,
Supplementary Material online, for details). Crucially, the fit-
ness gains cannot be explained by a general beneficial effect of
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increased gene dosage for two reasons. First, overexpressions
of the same genes do not increase fitness in the wild-type,
indicating genetic interaction between overexpression and
gene deletion (bootstrap test, Materials and Methods).
Notably, some of the overexpressions were slightly harmful
in wild-type background (supplementary fig. S9,
Supplementary Material online). Second, for most gene over-
expressions, a fitness gain was not observed in all tested de-
letion strains (table 1). Together, these findings indicate that
downregulations of certain genes upon gene deletion are
maladaptive and incur a measurable extra fitness cost.

In total, fitness was improved in four out of the seven
tested gene knockout strains by at least one of the gene
overexpressions (table 1). For example, the metabolic enzyme
S-adenosylmethionine synthase (Sam1p) was downregulated
upon deleting SEH1, a gene involved in regulating the central
growth regulator TOR complex. Elevating SAM1 expression
level increased fitness by 7% (fig. 5). Deleting SEH1 might
indirectly trigger oxidative stress by decreasing the activity

of the TOR complex (Panchaud et al. 2013), mirroring the
oxidative stress-inducing effect of rapamycin (Mülleder et al.
2016). Downregulation of SAM1 in SEH1 knockout genetic
background exacerbates this problem, as it decreases the pro-
duction of the central antioxidant glutathione (Ye et al. 2017).
This hypothesis needs to be tested in detail by future studies.

In summary, our results provide direct experimental evi-
dence that suboptimal expression changes of even a single
gene can incur a substantial fitness cost in gene deletion
strains. We do not wish to claim however, that beneficial
expression changes upon gene deletion do not occur, and
indeed such putative cases appear in our data set (see table 1).
Note that the existence of beneficial transcriptional changes
in a particular gene deletion strain does not contradict the
overall suboptimality of the transcriptional response since we
were able to considerably improve fitness by overexpressing
other genes in the very same knockout (table 1). Future works
should explore how restoration of the wild-type expression
level of multiple genes in gene deletion strains affect fitness.

Discussion
In this work, we systematically interrogated the genome-wide
transcriptional response to gene deletions in yeast and asked
whether it could contribute to the harmful fitness effect of
such mutations. We showed that gene deletions frequently
induce global transcriptomic rewiring. Most of these gene
expression changes are not specific to individual gene dele-
tions but are rather explained by a handful of recurrent ex-
pression patterns (i.e., TRMs) shared across null mutations.
Specifically, 15 TRMs capture�60% of all transcriptional var-
iation across �1,500 gene deletion strains (fig. 2). These re-
current TRMs are triggered by deletions in functionally
diverse genes (fig. 2) and mimic responses to environmental
perturbations (fig. 3). Together, these findings indicate that
transcriptional rewiring is largely unspecific to the exact mo-
lecular function of the deleted gene and hence unlikely to
mitigate the harmful effect of deletion. Indeed, in agreement

Table 1. Experimental Test of Suboptimal Downregulation in Knockouts.

Deletion Mutant Overexpressed Gene Fitness Change upon
Overexpression

Function of Deleted Gene Function of Overexpressed
Gene

Dopi3 SAM1 13% (9.1–16%) Phospholipid biosynthesis Cofactor biosynthesis
Dopi3 RPS5 7% (2.9–8.4%) Phospholipid biosynthesis Ribosomal subunit
Dseh1 SAM1 7% (4.3–9.6%) Nuclear transport Cofactor biosynthesis
Daco1 RPS5 4% (1.1–6.6%) Tricarboxylic acid cycle Ribosomal subunit
Dsit4 EMI2 4% (0.4–5.2%) Protein phosphatase/cell

cycle
Sporulation

Dubp3 ADE12 2% (0.1–3%) Protein degradation Nucleotide biosynthesis
Dubp3 AST1 1% (0–2.4%) Protein degradation Protein targeting
Dyvh1 EMI2 1% (20.8% and 1.7%) Protein phosphatase/ribo-

some assembly
Sporulation

Dctk1 SAM1 24% (26.8% to 1.5%) Protein kinase Cofactor biosynthesis
Dopi3 ADE12 212% (215% to 29.8%) Phospholipid biosynthesis Nucleotide biosynthesis
Dopi3 AST1 215% (22% to 211%) Phospholipid biosynthesis Protein targeting

NOTE.—The table summarizes the results of 11 knockout–downregulated gene pairs that were experimentally tested harmful downregulation. Functional categories of the
deleted and overexpressed genes (via the MoBY-ORF system) are indicated in the table. Blue rows indicate harmful downregulation, defined by a significant fitness increase
upon overexpression that is also significantly higher than in the wild-type (WT) background (Wilcoxon and bootstrap tests, both at a false discovery rate of 1%). Red rows
indicate a significant fitness decrease upon overexpression that is also significantly larger in magnitude than in the WT. White rows indicate no significant fitness change upon
overexpression. Numbers indicate the fitness change in the knockout upon overexpression relative to that of the same strain with a control plasmid and 95% confidence
intervals based on Wilcoxon tests. For details on the statistical analysis, see Materials and Methods and supplementary table S5, Supplementary Material online.

-5

-4

-3

-2

-1

0

1

0 20 40 60
Time (hour)

O
pt

ic
al

de
ns

ity
�lo

g 1
0�

WT + control

WT + SAM1

�seh1  + control

�seh1  + SAM1

FIG. 5. Experimental test of suboptimal downregulation in knockouts.
The figure shows the growth curves of strains with and without SAM1
overexpression from a single-copy plasmid (MoBY) in the wild-type
(Dhis3) and Dseh1 backgrounds, respectively. SAM1 overexpression
significantly increases the growth rate of Dseh1 background but not
that of the WT. Average optical density values with 95% confidence
bands based on 15 biological replicates are shown.
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with previous works based on less comprehensive data
(Wong and Roth 2005), we find that gene upregulations
very rarely (2%) provide functional backup in the correspond-
ing gene deletion backgrounds. Moreover, we present two
complementary lines of evidences indicating that these tran-
scriptional changes could even be harmful for the mutant cell.
First, our systematic analysis revealed that gene deletions that
alter the expression of dosage-sensitive genes display espe-
cially high-fitness defects (fig. 4). Second, by experimentally
elevating the expression level of downregulated genes in spe-
cific deletion strains, we provide direct evidence that tran-
scriptional changes contribute to the fitness defect of deletion
(table 1 and fig. 5).

Based on the above findings, we propose that gene dele-
tions evoke stereotypic gene expression responses that are
repeatedly used across diverse environmental and genetic
perturbations. Probably as a consequence of the shortage of
knockout-specific regulatory responses, the genomic expres-
sion changes are suboptimal and contribute to the fitness
impact of gene deletion. We offer two mutually nonexclusive
evolutionary reasons why it should be so. First, compared
with environmental changes, the rate at which individual
loss-of-function mutations arise is generally low. Therefore,
the strength of natural selection for the evolution of more
specific and adaptive responses upon gene inactivation is
generally weak under realistic population genetic settings
(Proulx and Phillips 2005). Second, adaptive transcriptional
responses to individual gene deletions may demand specific
and potentially costly regulatory mechanisms, which could be
difficult to evolve. Therefore, the cell may often rely on gen-
eral and global transcriptional responses that are the result of
natural selection to withstand frequent environmental
stresses but are suboptimal to genetic perturbations that
occur exceedingly rarely. The finding that the regulatory
responses of yeast are well captured by a handful of TRMs
suggests that optimal transcriptional rewiring upon genetic
perturbations might be the exception, rather than the rule.

Our work has limitations that should be addressed in fu-
ture works. First, although we established the existence of
suboptimal expression changes upon gene deletion, its prev-
alence and overall contribution to fitness defects demand
further in-depth studies. For instance, future empirical works
should investigate which TRMs are triggered by slow growth
and which ones contribute to the fitness defect themselves.
Furthermore, it remains to be seen whether beneficial gene
deletions (Qian et al. 2012) can be explained by suboptimal
use of transcriptional modes in the wild-type. Second, our
study focused on changes in gene expression when such
changes are not needed or inadequate. The other side of
the coin is equally interesting: It is feasible that cells do not
change expression of certain genes when such changes would
be beneficial. Third, optimality of the transcriptional response
can vary across different types of mutations of the same gene.
For example, beneficial expression responses might be more
prevalent for mutations that do not prevent transcription of
a gene but result in aberrant mRNAs, which could potentially
induce the upregulation of compensating genes with similar
sequences (Rossi et al. 2015; El-Brolosy et al. 2019; Ma et al.

2019). Fourth, our analysis identified 15 distinct TRMs, but
only one of them, the slow growth signature, has been char-
acterized in detail so far (O’Duibhir et al. 2014). The nature
and potential functional role of the rest of TRMs remain to be
explored. Finally, the specific molecular circuits underlying
these transcriptional responses and how they are triggered
by gene deletions and environmental changes are generally
unknown. Notably, our analysis revealed a complex relation-
ship between regulatory units and TRMs, which might stem
from the highly interconnected nature of eukaryotic tran-
scription regulatory networks. This contrasts with prokar-
yotes where regulatory networks exhibit simpler structures
(Yan et al. 2010). Indeed, decomposition of transcriptional
responses across different environmental and genetic pertur-
bations in bacterial species resulted in independent modules
that frequently represent the direct regulatory effect of a
single or few transcriptional regulators (Sastry et al. 2019;
Poudel et al. 2020). Thus, deciphering the regulatory interac-
tions underlying eukaryotic TRMs will likely demand more
sophisticated approaches.

Our study has relevance for understanding the link be-
tween modularity of cellular networks and robustness against
mutations (Hartman et al. 2001). Our results indicate that
genetic perturbations in various functional modules can elicit
similar global transcriptional responses (supplementary fig.
S4, Supplementary Material online). These findings are con-
sistent with an earlier report on widespread transcriptomic
and proteomic changes upon mutations in a particular met-
abolic gene (Bershtein et al. 2015). Our work generalizes this
case study by showing that mutations in various genes have
nonspecific transcriptomic effects. We demonstrated that
such extensive regulatory responses can aggravate the fitness
cost of the focal mutation. Thus, cellular networks can not
only diminish the phenotypic effects of mutations but also
contribute to mutational fragility (Diss et al. 2017).

The presence of nonspecific and suboptimal regulatory
responses may also have profound importance on interpret-
ing the results of genetic perturbation studies. First, analyzing
the transcriptomes of perturbed signaling and regulatory
genes is often employed to dissect pathway memberships
(van Wageningen et al. 2010; Lenstra et al. 2011). However,
transcriptional responses are not always pathway specific
(Apweiler et al. 2012) and can be further confounded by
global gene expression signatures (O’Duibhir et al. 2014).
Indeed, removing the slow growth signature improves iden-
tification of direct target genes of perturbed regulators
(O’Duibhir et al. 2014; Chagoyen and Poyatos 2019). Future
works should explore whether factoring out additional recur-
ring TRMs would further help reveal the direct functional
effects of genetic perturbations. Second, suboptimal tran-
scriptional responses may confound the interpretation of
chemical-genetic and genetic interactions screens. A large
fitness defect upon deleting a particular gene may indicate
its importance associated to the gene’s biochemical function
or the deleterious side effects of the deletion on genomic
expression. Clearly, the relative contribution of these two
factors remains to be tested using more systematic measure-
ments of the fitness impacts of expression changes in gene
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deletion backgrounds. Third, it has been recently suggested
that knowing the degree of evolutionary conservation of the
transcriptional responses in gene deletion strains might fur-
ther help to distinguish between responses that are function-
ally coupled to the deleted genes’ biochemical activities and
those that are pleiotropic and evolutionary ad hoc (Liu et al.
2020). Future works should examine whether nonconserved
responses contribute to the suboptimality described in the
present work.

Our results are consistent with the “induced essentiality”
model of synthetic genetic interactions, which posits that
deletion of one gene results in a rearrangement of the genetic
network into an alternative viable state where a second gene
becomes more important for fitness (Tischler et al. 2008). This
model predicts that large expression rearrangements should
modulate the fitness impact of numerous other genes. Our
observation that gene deletions inducing substantial tran-
scriptomic rewiring also frequently show synthetic genetic
interactions (Costanzo et al. 2016) supports this idea (supple-
mentary fig. S11, Supplementary Material online).
Importantly, this correlation also holds after removing the
slow growth gene expression signature (Spearman’s q ¼
0.48, P value < 10�16, Materials and Methods).

More broadly, our work suggests that it is possible to mod-
ulate mutational effects through changes in gene expression
of functionally unrelated genes. Deciphering the molecular
mechanisms by which the phenotype of a mutation is mod-
ified by the genetic background is crucial both for our under-
standing of how genotype determines phenotype in natural
populations and for predicting the severity of disease muta-
tions (Nadeau 2003; Vu et al. 2015). Recent works demon-
strated that variation in gene expression level between
individuals substantially modulates the manifestation of
mutations (Vu et al. 2015). In particular, the phenotypic effect
of a given mutation is modified by the expression level of
other genes within the same functional module. Our results
raise the possibility that more global regulatory changes
driven by mutations in functionally unrelated genes could
also underlie genetic background effects. Future works should
elucidate whether such nonspecific regulatory responses con-
tribute to natural variation in the severity of mutant pheno-
types, including those of Mendelian disorders in humans.

Materials and Methods

Transcriptome Data Set
To investigate expression changes, we used the genome-wide
transcriptome profiles for�1,500 single-gene deletion strains
(Kemmeren et al. 2014). Up- and downregulations were de-
fined based on fold-change (FC > 1.7) and P value cutoff
(P< 0.05), following Kemmeren et al. (2014). When control-
ling for the slow growth gene expression signature, we used
the transformed gene expression data of O’Duibhir et al.
(2014). In this data set, the first principal component, the
so called “slow growth signature,” was subtracted from the
original transcript level changes. Up- and downregulations
were defined based on the transformed fold-change values
(FC > 1.7). To filter out genes with transcription-related

function from the set of gene deletions, we considered func-
tional categories “chromatin factor,” “Pol II transcription,”
“gene-specific transcription factor,” and “RNA metabolism”
according to Kemmeren et al. (2014).

Growth Rate Data
Growth rates (fitness) of gene deletion strains relative to the
wild-type were obtained from (O’Duibhir et al. 2014). In brief,
growth rate was determined by growth curve measurement
under the same culture condition as for transcriptome anal-
ysis (Kemmeren et al. 2014).

Identification of Recurrent TRMs
Following the same approach used in O’Duibhir et al. (2014),
we applied a method equivalent to PCA (Singular Value
Decomposition) to decompose the transcriptome data set
into a weighted sum of simpler expression patterns
(“modes”), ordered by how much of the variation in the
data they explain. Such TRMs represent “stereotypic” global
expression changes, that is, groups of genes that change their
expression concomitantly in the same way in a recurrent way
across gene deletion strains.

To evaluate the extent to which these TRMs reflect rele-
vant biological responses instead of purely random associa-
tions between gene expression changes, we compared the
percentage of the variation in the data set explained by
each TRM with that obtained from the first principal com-
ponent of randomized data matrices. The number of signif-
icant independent TRMs in the real data was defined as
follows. PCA is performed over the original expression data
set, as well as over randomized instances of it. The threshold
for estimating the number of TRMs is set as the meanþ 2 SD
in the variance explained by TRM #1 in 600 randomized data
sets. Note that the variation explained by the first principal
component in the randomized data sets is the maximal
amount of variation that any TRM can explain in randomized
data sets. Thus, our procedure yields a conservative null
model for the identification of significant modes.

The data matrix was randomized assuming that all genes
change their expression independently in each gene deletion.
Random recurrent associations between specific gene expres-
sion changes could be magnified by two characteristics of
transcription in yeast. First, some genes have a strong general
tendency to change their expression irrespective of the per-
turbation (e.g., those containing TATA boxes in the pro-
moter). Second, the number of gene expression changes
per deletion shows a highly skewed distribution, with a few
deletions changing the expression of hundreds of genes, and
hundreds of deletions changing the expression of less than
three genes. To include these structural constraints in our null
model, we devised a method that randomizes the full data
matrix of log2 expression ratios (M matrix of n transcripts� k
deletion strains) while preserving the total amount of gene
expression variation per row and column. Our algorithm for
this is as follows:

(1) Compute a “gene expression change propensity” matrix
W, where the value of each element wij is a probability
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that is proportional to a function of the corresponding
sum row values and the sum of column values in the M
matrix (gene expression change relative to wild-type)

wij ¼ f
PK

j¼1 Mij;
PN

i¼1 Mij

� �
.

We empirically observed that the function f that works
best is the product of the row and column sums,

wij ¼ f
PK

j¼1 Mij;
PN

i¼1 Mij

� �2

. Finally, we normalize

the matrix W to sum one, which gives us a matrix of
probabilities P.

(2) Construct a vector G with all the values of the M matrix
sorted by descending absolute value.

(3) Build an empty matrix R. Sequentially choose entries in R
without replacement according to the probabilities in P
and assign them the values in G.

This algorithm stochastically assigns the values from the
original M matrix to the entries in the randomized R matrix,
with the highest values having more probability to be
assigned to the entries having the highest gene expression
change propensity. By doing this, the values are randomized
while preserving the structural constraints of the original ma-
trix, that is, gene expression values in the original matrix, row
and column sums (fig. 2A). For computational efficiency, the
weighted random sampling in the algorithm was done using
the sample_int_crank() function from the wrswoR R package,
which implements the efficient sampling method from
Efraimidis and Spirakis (2006).

Identification of Deletions Triggering TRMs and
Transcripts Affected by TRMs
In order to define gene deletions that trigger a given recurrent
TRM, we identified pairs of deletions and TRMs with the fol-
lowing property: the TRM explains more than 10% of the
variance in the transcriptomic changes observed in the partic-
ular deletion strain. Furthermore, to classify deletions that cor-
relate positively or negatively with a given TRM, we defined a
“signature profile” for each TRM following O’Duibhir et al.
(2014). The signature profile is the profile of the deletion strain
that shows the largest amount of transcriptomic changes (larg-
est Euclidean norm) in a given TRM. Next, for each TRM, we
classified deletions into those that correlate positively or neg-
atively with the signature profile. To characterize the functions
of these triggering genes, we carried out GO enrichment anal-
ysis. We tested separately those subsets of deletions that cor-
relate positively or negatively with the signature profile.

To identify which genes’ expression is affected by each
TRM, we used the following criterion. We considered that
TRM i contributes to the expression change of gene j if it
contributes with at least a 1.3 log2 fold-change in at least one
deletion background in which gene i shows a significant ex-
pression change. This equals to half of the log2 1.7 fold-change
threshold. To characterize the functions of the TRM-affected
genes, we carried out GO enrichment analysis. We calculated
the enrichment separately for genes which were upregulated
and downregulated, respectively, in the signature profile. GO
Slim processes were downloaded from the SGD database

(http://sgd-archive.yeastgenome.org/curation/literature/ver-
sion, October 25, 2019). Noninformative categories
(“biological_process,” “other,” and “not_yet_annotated”)
and categories with less than four genes from our data set
were removed. One-tailed Fisher’s exact test was used to test
the enrichments.

Environmental Gene Expression Compendium
We downloaded the expression profiles corresponding to en-
vironmental conditions from Saccharomyces Genome
Database (SPELL [Hibbs et al. 2007]). Biological replicates
were averaged together in each case. In the case of two-
channel arrays, original log2 ratios were kept. In the case of
one-channel arrays, log 2 ratios were calculated, taking as
reference the array from the same data set that was most
similar to a WT control in standard culture conditions. After
compiling the data set, profiles where more than 75% of the
genes were missing values were removed. In the remaining,
KNN-imputation of missing values was performed using the
function provided in R package “impute.”

In order to compare environmental expression profiles with
TRMs, we calculated the absolute Spearman correlation coef-
ficients between each environmental profile and the signature
profile of each TRM (supplementary table S3, Supplementary
Material online). We applied this rank-based measure of pro-
file similarity due to heterogeneity in the gene expression data
sources. Because of the large sample sizes, very small effect
sizes appeared statistically significant, therefore we used an
absolute correlation coefficient of 0.2 as a conservative thresh-
old to define substantial similarity between TRMs and envi-
ronmental profiles. Note that this is well above the
correlations expected by chance. Randomly expected similar-
ities between TRMs and environmental profiles were obtained
by computing the Spearman correlation between TRM #1
from 600 randomized matrices, on the one hand, and the
environmental expression profiles, on the other hand.

Analysis of Regulation by TFs
The data set mapping all S. cerevisiae TFs to the genes they
bind was downloaded from Transfac (Monteiro et al. 2020)
(http://www.yeastract.com/) on February 19, 2020.
Hypergeometric distribution was used to assess enrichment
in the genes responding to each TRM and FDR correction was
applied to P values. We calculated the enrichment separately
for genes which were upregulated and downregulated, re-
spectively, in the signature profile.

Testing the Enrichment of Upregulations among
Synthetic Sick or Lethal Genetic Interactions
To statistically test whether genes that are upregulated upon
gene deletions more often show a synthetic sick or lethal
genetic interaction with the deleted genes than expected
by chance, we carried out a randomization test. We first cal-
culated our test statistics: the fraction of upregulations
among gene pairs being in synthetic sick or lethal genetic
interaction. We then calculated the same fractions for 1,000
randomized data sets, obtaining a randomized distribution.
During randomization, we randomly permuted the links
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between the deleted and upregulated genes, thus the number
of upregulations for each deletion and transcript change
remained constant. We defined P value as the number of
random data sets where the fraction of gene pairs is higher
or equal than the empirical valueþ 1 divided by the number
of randomizations þ 1.

A comprehensive set of negative genetic interactions (i.e.,
synthetic sick or lethal gene pairs) was obtained from
Costanzo et al. (2016), using their stringent cutoff.
Temperature-sensitive alleles and reciprocal gene pairs show-
ing opposite genetic interactions were removed from the
data set.

To examine whether the enrichment of upregulation is
significant for both low- and high-fitness knockouts, we cal-
culated the test statistics for high- and low-fitness deletion
strains separately after randomizing the gene expression data
set. High- and low-fitness deletion strains were defined as
those with a relative fitness value higher and lower than
0.95, respectively. Transcription-related genes were defined
as described above.

Testing the Association between Knockout Fitness
and Altered Expression of Dosage-Sensitive Genes
We used previously defined sets of overexpression-sensitive
(Makanae et al. 2013) and haploinsufficient (Deutschbauer
et al. 2005) genes to test whether knockout strains with at
least one upregulated overexpression sensitive genes or at
least one downregulated haploinsufficient genes have an es-
pecially low fitness. To control for the positive correlation
between the number of upregulated (downregulated) genes
with both fitness and the number of upregulated
overexpression-sensitive (downregulated haploinsufficient)
genes, we fit a loess curve (degree ¼ 2, span ¼ 1) between
the log10-scaled number of upregulations (downregulations)
and growth rate across those strains without any upregulated
overexpression-sensitive (downregulated haploinsufficient)
genes and calculated residual fitness values for each strain
within this range of total upregulations (downregulations)
(supplementary fig. S8, Supplementary Material online).
Then, we tested the correlation between the residual fitness
values and the number of upregulated overexpression-
sensitive (downregulated haploinsufficient) genes by using
two-tailed Spearman correlation tests.

Yeast Strains and Media
All strains used in this study were derived from the BY4742
S. cerevisiae parental MAT alpha strain. Nonessential single-
gene deletion strains from the MAT alpha haploid yeast de-
letion collection (Open Biosystems; his3D1, leu2D0, lys2D0,
ura3D0, xxx::KanMX4 [Giaever et al. 2002]) were selected
based on the criteria listed below. Deletion strains and the
wild-type strain were transformed with single-copy plasmid
clones of the MoBY ORF library (Ho et al. 2009; Open
Biosystems) carrying the URA3 auxotrophic marker. As a con-
trol plasmid, the HO (YDL227C) plasmid clone of the same
library was used throughout the study. Yeast transformations
were carried out using the standard lithium acetate method
(Gietz and Schiestl 2007). Transformants were selected on

uracil-dropout synthetic complete medium (SC-uracil: 5 g/l
ammonium sulfate, 1.7 g/l Yeast Nitrogen Base, supple-
mented with 2% glucose and with amino acid mix, without
uracil). We used the HIS3 (YOR202W) deletion strain
(YOR202W::KanMX4) as wild-type strain, for the following
reasons: 1) fitness of this strain is indistinguishable from the
BY4743 parental wild-type strain (Qian et al. 2012); 2) it
carries the same selection marker (KanMX4) as all other
single-gene deletion strains in the nonfunctional his3D1 allele.

Fitness and Genetic Interaction Measurements
Established protocols were used to measure the fitness effect
of increasing the expression level of downregulated genes in
populations of slow-growing gene deletion backgrounds
(Szamecz et al. 2014). For details, see supplementary
Methods, Supplementary Material online.

To define harmful downregulations, we simultaneously
applied the following two criteria. First, the deletion strain
should have a significantly higher fitness when the tested
downregulated gene is overexpressed compared with the
case when the deletion strain harbors only a control plasmid.
P values were calculated and corrected for multiple testing
(1% false discovery rate threshold) by two-tailed Wilcoxon
rank sum tests. Second, the overexpressed gene and the de-
leted gene should display a significant positive genetic inter-
action. Genetic interaction score was calculated as e¼ (fab�
fWT)� (fa� fb), where fWT is the fitness of the wild-type with
control plasmid, fa is the fitness of the deletion strain with
control plasmid, fb is the fitness of the wild-type strain with
overexpressing the tested gene, and fab is the fitness of the
deletion strain with overexpressing the tested gene. A positive
(e> 0) interaction score indicates that the fitness increase
caused by the gene overexpression in the deletion strain is
higher than expected based on the multiplicative model. We
tested the null hypothesis that e¼ 0. Two-tailed P values
were calculated and corrected for multiple testing (1% false
discovery rate threshold) using the bootstrap method imple-
mented in the “boot” R package (Canty and Ripley 2020),
resampling fa, fb, fWT, and fab separately. In contrast to the
above criteria, if overexpressing the downregulated gene
resulted in both a significant fitness defect in the deletion
strain and a significant negative genetic interaction score,
we considered the particular downregulation beneficial in
the deletion background (indicated by red in table 1).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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