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Abstract: Primary arylsulfonamide functional groups feature prominently in diverse pharmaceuticals.
However, natural arylsulfonamides are relatively infrequent. In this work, two novel arylsulfonamide
natural products were first synthesized, and then a series of novel molecules derived from natural
arylsulfonamides were designed and synthesized, and their in vitro cytotoxic activities against A875,
HepG2, and MARC145 cell lines were systematically evaluated. The results indicate that some of
these arylsulfonamide derivatives exhibit significantly good cytotoxic activity against the tested
cell lines compared with the control 5-fluorouracil (5-FU), such as compounds 10l, 10p, 10q, and
10r. In particular, the potential molecule 10q, containing a carbazole moiety, exhibited the highest
inhibitory activity against all tested cell lines, with IC50 values of 4.19 ± 0.78, 3.55 ± 0.63, and
2.95 ± 0.78 µg/mL, respectively. This will offer the potential to discover novel drug-like compounds
from the sparsely populated area of natural products that can lead to effective anticancer agents.

Keywords: natural arylsulfonamides; derivatives; synthesis; biological evaluation; SARs

1. Introduction

Natural products (NPs) and their molecular scaffolds have a long tradition of offering
chemists a range of uncharted chemotypes as valuable starting points for the development
of novel drugs [1–3], and have also been a major source of anticancer drug discovery [4–7].

Sulfonamides have a functional group (R-SO2-NH2) called the sulfonamide group;
sulfonamide scaffolds are also very important structural motifs that are present in diverse
pharmaceuticals (Figure 1), showing important and extensive biological activities, such as
antitumor [8–12], anti-inflammatory [13,14], and antiviral activities [15,16]. However, due
to the structural particularity, natural products that contain a primary sulfonamide group
in their structures are rare. Sulfadixiamycin A, (−)-altemicidin, and psammaplin C are a
few examples of natural products that contain the structure of a sulfonamide moiety [17,18]
(Figure 1).

Recently, sargassulfamide A, bearing a rare and unique sulfonamide group, was
isolated from the seaweed Sargassum naozhouense [19]. Almost simultaneously, another
novel arylsulfonamide natural product was isolated together with sargassulfamide A
from the roots and rhizomes of Tupistra chinensis Baker [20], whereas the result of in vitro
cytotoxic activity in the human cancer cell lines indicated that the novel arylsulfonamide
natural products displayed weak cytotoxicity.

Molecules 2022, 27, 1479. https://doi.org/10.3390/molecules27051479 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27051479
https://doi.org/10.3390/molecules27051479
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-2715-4005
https://doi.org/10.3390/molecules27051479
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27051479?type=check_update&version=2


Molecules 2022, 27, 1479 2 of 14

Molecules 2022, 27, x FOR PEER REVIEW 2 of 13 
 

 

activity in the human cancer cell lines indicated that the novel arylsulfonamide natural 
products displayed weak cytotoxicity. 

S
O

O
NH

O
NH

O
O

Sargassulfamide 
A

Rare natural
 
products

 containing
 
the structure of

 sulfonamide

N

NH2O

H

H

OH
COOH

HN

O
S

O

O NH2

(
  
)
-Altemicidin

OH
Br

N
HO

O

N
H

S
O

O NH2

Psammaplin
 
C

N S
O

O

H
COOHHO

NH

COOH
H

HO

Sulfadixiamycins 
A

Drugs containing
 sulfonamide moiety

H2N S
O

O
NH

N
N

Sulfadiazine

H2N S
O

O
N NH

O
O

O

OP
O

HO
OH

Fosamprenavir

S
O

O
NS

O

O
NH2N

S O
O

Sultiame

HOOC

Probenecid  
Figure 1. Prototypical natural products and drugs containing a sulfonamide group. 

Natural products are among the most important sources of the lead compounds in 
drug discovery; however, most of them cannot be used as drugs directly. In addition, ow-
ing to their low fermentation and extraction levels, further research exploring the poten-
tial bioactivity of some natural compounds has been seriously limited. Accordingly, struc-
tural optimization and derivation of natural products becomes a powerful strategy for 
improving the efficiency and success rate of NP-based drug development. Our research 
group has committed to discovering highly active compounds from natural products [21–
26], so the rare natural product sargassulfamide A, bearing a privileged scaffold of aryl-
sulfonamide, aroused our interest. It is well known that molecular skeletons determine 
whether molecules have bioactivity; despite the natural arylsulfonamide sargassulfamide 
A being less effective against the human cancer cell lines, we wondered whether we could 
modulate or improve the activities of these analogues of natural products by changing the 
position of the amide unit and pharmacophore hybridization. 

Meanwhile, aryls and hetero-aryls are important pharmacological units that always 
increase the potential bioactivity of corresponding molecules [27–29]. Hence, several dif-
ferent types of (hetero)aryl groups—including biphenyl, diphenyl ether, and heterocy-
cles—were selected to construct diversity molecules, and theses selected aromatic aryl 
amines (Ar1NH2) and aryl acids (Ar2COOH) are usually classical pharmacological units. 
Taking into account the above considerations, we wish herein to report the molecule de-
sign, convenient synthesis, and biological evaluation of a series of novel natural aryl-
sulfonamide-inspired molecules (Figure 2). 
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In this study, sargassulfamide A (NC2) was used as a key starting point for the de-
velopment of high-efficiency cytotoxic agents; a series of novel derivatives containing ar-
ylsulfonamide and carboxamide pharmacophores 10a-r were designed and synthesized 
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Natural products are among the most important sources of the lead compounds in
drug discovery; however, most of them cannot be used as drugs directly. In addition, owing
to their low fermentation and extraction levels, further research exploring the potential
bioactivity of some natural compounds has been seriously limited. Accordingly, structural
optimization and derivation of natural products becomes a powerful strategy for improv-
ing the efficiency and success rate of NP-based drug development. Our research group
has committed to discovering highly active compounds from natural products [21–26], so
the rare natural product sargassulfamide A, bearing a privileged scaffold of arylsulfon-
amide, aroused our interest. It is well known that molecular skeletons determine whether
molecules have bioactivity; despite the natural arylsulfonamide sargassulfamide A being
less effective against the human cancer cell lines, we wondered whether we could modulate
or improve the activities of these analogues of natural products by changing the position of
the amide unit and pharmacophore hybridization.

Meanwhile, aryls and hetero-aryls are important pharmacological units that always
increase the potential bioactivity of corresponding molecules [27–29]. Hence, several differ-
ent types of (hetero)aryl groups—including biphenyl, diphenyl ether, and heterocycles—
were selected to construct diversity molecules, and theses selected aromatic aryl amines
(Ar1NH2) and aryl acids (Ar2COOH) are usually classical pharmacological units. Tak-
ing into account the above considerations, we wish herein to report the molecule design,
convenient synthesis, and biological evaluation of a series of novel natural arylsulfonamide-
inspired molecules (Figure 2).

Molecules 2022, 27, x FOR PEER REVIEW 2 of 13 
 

 

activity in the human cancer cell lines indicated that the novel arylsulfonamide natural 
products displayed weak cytotoxicity. 

S
O

O
NH

O
NH

O
O

Sargassulfamide 
A

Rare natural
 
products

 containing
 
the structure of

 sulfonamide

N

NH2O

H

H

OH
COOH

HN

O
S

O

O NH2

(
  
)
-Altemicidin

OH
Br

N
HO

O

N
H

S
O

O NH2

Psammaplin
 
C

N S
O

O

H
COOHHO

NH

COOH
H

HO

Sulfadixiamycins 
A

Drugs containing
 sulfonamide moiety

H2N S
O

O
NH

N
N

Sulfadiazine

H2N S
O

O
N NH

O
O

O

OP
O

HO
OH

Fosamprenavir

S
O

O
NS

O

O
NH2N

S O
O

Sultiame

HOOC

Probenecid  
Figure 1. Prototypical natural products and drugs containing a sulfonamide group. 

Natural products are among the most important sources of the lead compounds in 
drug discovery; however, most of them cannot be used as drugs directly. In addition, ow-
ing to their low fermentation and extraction levels, further research exploring the poten-
tial bioactivity of some natural compounds has been seriously limited. Accordingly, struc-
tural optimization and derivation of natural products becomes a powerful strategy for 
improving the efficiency and success rate of NP-based drug development. Our research 
group has committed to discovering highly active compounds from natural products [21–
26], so the rare natural product sargassulfamide A, bearing a privileged scaffold of aryl-
sulfonamide, aroused our interest. It is well known that molecular skeletons determine 
whether molecules have bioactivity; despite the natural arylsulfonamide sargassulfamide 
A being less effective against the human cancer cell lines, we wondered whether we could 
modulate or improve the activities of these analogues of natural products by changing the 
position of the amide unit and pharmacophore hybridization. 

Meanwhile, aryls and hetero-aryls are important pharmacological units that always 
increase the potential bioactivity of corresponding molecules [27–29]. Hence, several dif-
ferent types of (hetero)aryl groups—including biphenyl, diphenyl ether, and heterocy-
cles—were selected to construct diversity molecules, and theses selected aromatic aryl 
amines (Ar1NH2) and aryl acids (Ar2COOH) are usually classical pharmacological units. 
Taking into account the above considerations, we wish herein to report the molecule de-
sign, convenient synthesis, and biological evaluation of a series of novel natural aryl-
sulfonamide-inspired molecules (Figure 2). 

Target MoleculesNC1
 R = 

OH 

NC2
 R = 

2-NHPhCO2Me

Scaffold-hopping

Tupistra chinensis
 
Baker

S
O

O
NH

O

Location migration

R Ar2

O

N
H

S
O

O H
N

Ar1

 
Figure 2. Design strategy of natural arylsulfonamide-inspired molecules. 

In this study, sargassulfamide A (NC2) was used as a key starting point for the de-
velopment of high-efficiency cytotoxic agents; a series of novel derivatives containing ar-
ylsulfonamide and carboxamide pharmacophores 10a-r were designed and synthesized 
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In this study, sargassulfamide A (NC2) was used as a key starting point for the
development of high-efficiency cytotoxic agents; a series of novel derivatives containing
arylsulfonamide and carboxamide pharmacophores 10a-r were designed and synthesized
as shown in Scheme 1, and their cytotoxic activities against several human cancer cell
lines—including A875, HepG2, and MARC145—were systematically evaluated by the MTT
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colorimetric method for the first time. Beyond that, the possible structure and activity
relationships are also summarized and discussed.
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Scheme 1. Synthesis of natural arylsulfonamides and aryl-carboxamide derivatives bearing sulfon-
amide units 10a–r. Reagents and conditions: a. Et3N, DCM, rt; b. NaOH, MeOH/H2O, 60 ◦C; c.
SOCl2, reflux; d. Et3N, DCM, rt; e. Et3N, DCM, rt; f. NaOH, MeOH/H2O, 45-50 ◦C; g. Ar2COOH,
HOBt, EDCI, Et3N, DMF, r.t.

2. Results and Discussion

Chemistry: In this work, a series of novel aryl-carboxamide derivatives bearing
sulfonamide units were designed and synthesized by integrating natural arylsulfonamides
with carboxamide pharmacophores. The general synthetic route for these compounds is
outlined in Scheme 1.

Synthesis of natural arylsulfonamide-containing carboxylic acid (NC1) and sargas-
sulfamide A (NC2): First, the ethyl anthranilate 1 was treated with the biphenylsulfonyl
chloride 2 via sulfonamidation reaction to yield the key intermediate arylsulfonamide 3;
subsequently, compound 3 was conveniently hydrolyzed to the natural compound NC1,
which was transformed to the corresponding acyl chloride 4 and then reacted with the
ethyl anthranilate to obtain the target sargassulfamide A (NC2).

Synthesis of aryl-carboxamide derivatives bearing sulfonamide units 10a–r: The aryl-
sulfonamide derivatives 7a–d were prepared via the reaction of various aryl amines and
4-acetamidobenzene-1-sulfonyl chloride 6 in the presence of Et3N/DCM, and then the cor-
responding arylsulfonamide derivatives were transformed into the intermediate arylsulfon-
amide derivatives 8a–d via deacetylation reaction. Subsequently, the obtained compounds
8a–d were condensed with various aromatic acids 9a–e under EDCI/HOBt-promoted
conditions to construct target aryl-carboxamide derivatives bearing sulfonamide units
10a–r.

Spectroscopy studies: The structures of all of the target compounds in this work
gave satisfactory chemical analyses, including 1H NMR, 13C NMR, 19F NMR, and mass
spectroscopy, and all of these spectral data were in good agreement with the proposed
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structures. For the 1H NMR spectrum of all arylsulfonamide derivatives, the signals at
11.74–10.76 ppm showed a single peak, which was attributed to NH protons attached to
the sulfonyl group as indicated in the molecular structures. Correspondingly, the signals
in the range of 10.65–9.40 ppm were assigned to the NH protons, which attached to the
carbonyl group. The signal peaks of the remaining at low fields were attributed to aromatic
ring proton peaks. All of the characteristic peaks observed within the 1H NMR spectra for
title compounds are given in the Experimental section, and the representative 1H NMR
spectral analysis of the target sargassulfamide A is shown in Figure 3.
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Pharmacological evaluation: All target carboxamide derivatives derived from natural
arylsulfonamides 10a–r were screened for their potential in vitro cytotoxic effects on A875
(human melanoma), HepG2 (human hepatocellular liver carcinoma), and MARC145 (A
subclone of African green monkey kidney cell line MA-104) cell lines using the standard
MTT assay [30,31], with 5-FU (5-fluorouracil) as a positive control. The results are summa-
rized in Figure 4 and Table 1. The IC50 value represents the drug concentration required to
inhibit cell growth by 50%.

Based on the preliminary screening results, we found that some of these arylsulfon-
amide derivatives indicated moderate-to-good inhibition activity against all tested cell
lines. Notably, the compounds 10l, 10p, 10q, and 10r exhibited significantly higher activi-
ties compared with the control at a concentration of 40 µg/mL (Figure 4), demonstrating
that these natural-product-inspired molecules derived from sargassulfamide A could be
considered as promising scaffolds for developing effective anticancer agents.
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Table 1. In vitro cytotoxic activities of target compounds against tested cell lines.
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19 NC1 - - 27.17 ± 5.39 - 25.80 ± 10.40
20 NC2 - - >40 - >40
21 5-FU c - - 11.76 ± 2.03 15.14 ± 1.06 13.05 ± 1.32

a IC50—Compound concentration required to inhibit tumor cell proliferation by 50%. b Abbreviations: A875—
human melanoma cell line; HepG2—human hepatocellular liver carcinoma cell line; MARC145—a subclone of
African green monkey kidney cell line MA-104. c Used as a positive control.

In order to further explore their potential antitumor activity, the IC50 values of two
novel arylsulfonamide natural products and a series of novel molecules derived from
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natural arylsulfonamide derivatives were all systematically evaluated. The potential
inhibitory activities expressed as IC50 values for all compounds are shown in Table 1.
As indicated in Table 1, the natural arylsulfonamide NC1 showed poor activity against
tested cell lines, and sargassulfamide A (NC2) almost completely lost inhibitory activity
(IC50 > 40 µg/mL). Compounds 10l, 10p 10q, and 10r, containing a trifluoromethyl unit,
had higher inhibitory effects on all cell lines compared to the positive control 5-FU. It
should be noted that introduction of a trifluoromethyl group to natural products and
organic molecules is vitally important for lipophilicity, hydrophobicity, and metabolic
stability. Hence, trifluoromethylation has played an important role in discovering high-
activity drugs [32]. Compound 10q, containing a carbazole scaffold, showed the strongest
inhibitory effect on all three cell lines, with an IC50 of 4.19 ± 0.78 (A875), 3.55 ± 0.63
(HepG2), and 2.95 ± 0.78 (MARC145) µg/mL, which may be due to the carbazole ring
being favorable for such activity. The results showed in Table 1 can further demonstrate the
cytotoxic effect of arylsulfonamide derivatives as potential anticancer reagents for cancer
cell lines.

Subsequently, the dose–response analysis for the high-potential compounds 10l, 10q,
10r, and 5-FU was conducted, as shown in Figure 5, indicating that the cytotoxic effects of
arylsulfonamide derivatives on A875 cells (left), HepG2 cells (middle), and MARC145 cells
(right) are significantly concentration-dependent.
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Structure and activity relationships (SARs): The structural evolution here was to mod-
ify natural arylsulfonamides with diverse aryl amines (5a–d) and aromatic acid scaffolds
(9a–e). According to the in vitro bioassay results presented in Figure 4 and Table 1, we
obtained the preliminary structure–activity relationships (SARs) for these prepared arylsul-
fonamides derivatives. We concluded that the results indicate that modifying the carboxyl
group of natural arylsulfonamide can yield superior cytotoxicity activity against different
cancer cells. Meanwhile, changing the position of the amide unit also significantly affected
the antitumor activity (Figure 6). In addition, the compounds containing trifluoromethyl-
substituted arylsulfonamide derivatives presented greater cytotoxicity activity (10d, 10h,
10l, and 10p). In particular, the compounds containing a special carbazole moiety showed
the highest inhibitory activity (10q and 10r), indicating that the carbazole ring is beneficial
to increase the activity. It should be noted that carbazole skeletons are ubiquitous in diverse
antitumor pharmaceuticals [33–35]. Above all, the obtained SARs could contribute to the
discovery of potential cytotoxic agents from natural products in our subsequent research.
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3. Conclusions

In summary, we have described the molecular design, synthesis, and biological evalu-
ation of novel arylsulfonamides inspired by natural sulfadixiamycin A. These novel natural
arylsulfonamides and their derivatives were conveniently synthesized and characterized
by typical spectral analyses, including 1H NMR, 13C NMR, 19F NMR, and ESI-MS. The pre-
liminary in vitro bioassay indicated that some of these arylsulfonamides bearing carbazole
rings displayed good cytotoxic activity against the A875 and HepG2 cancer cell lines, and
the high-potential molecule 10q exhibited the highest inhibitory activity against all tested
cell lines, with IC50 values of 4.19 ± 0.78, 3.55 ± 0.63, and 2.95 ± 0.78 µg/mL, respectively.
However, the possible mechanisms for their antitumor activities still need to be explored
further, and these results may promote further development of our research inspired by
natural products to discover potential drug candidates.

4. Experimental

Instrumentation and chemicals: All reagents from commercial sources were used
directly, without purification. All melting points (m.p.) were measured using a digital
model X-5 apparatus (Shanghai Instrument Physical Optics Instrument Co., LTD, Shanghai,
China), and were uncorrected. 1H NMR, 13C NMR, and 19F NMR spectra were recorded
on a Bruker Avance III 600 MHz FT-NMR spectrometer (Bruker, Billerica, MA, USA), using
CDCl3 or DMSO-d6 as the solvent and tetramethylsilane (TMS) as the internal standard.
Chemical shifts are reported in δ (parts per million) values, and coupling constants nJ are
reported in Hz. Mass spectra were recorded on a Waters ACQUITY UPLC® H-Class PDA
(Waters®) instrument (Waters®, Milford, MA, USA). Thin-layer chromatography (TLC) was
carried out on precoated GF254 silica gel plates (Qingdao Haiyang Chemical, Qingdao,
China), and spots were visualized with ultraviolet light. All commercially available starting
materials and reagents were used without further purification, unless otherwise specified.

Synthetic procedures for natural compound NC1: To a solution of ethyl anthranilate
1 (3.30 g, 20 mmol) and triethylamine (4.04 g, 40 mmol) in anhydrous DCM (40 mL), we
added 4-biphenylsulfonyl chloride (6.06 g, 24 mmol) dropwise, which dissolved in DCM
under an ice bath, and then the mixture was stirred at room temperature overnight and
detected by thin-layer chromatography. After the completion of the reaction, we washed the
crude mixture with saturated aqueous NaHCO3 and brine solution, and then the mixture
was extracted with DCM and dried over Na2SO4. The obtained crude product 3 was used
for the next reaction without further purification. To the obtained compound 3 in methanol
(80 mL), we added 20 mL of aqueous sodium hydroxide (0.1 mol), which was stirred at
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room temperature overnight. After the completion of the reaction, the mixture was adjusted
to pH 3 with diluted hydrochloric acid under an ice bath, and the precipitate was filtered
and washed with a small amount of alcohol to yield the pure natural compound NC1. The
physico-chemical properties for compound NC1 are as follows, and the corresponding
spectrum are indicated in Supplementary Materials.

2-([1,1′-Biphenyl]-4-sulfonamido)benzoic acid (NC1), white solid, m.p. 205–207 ◦C. 1H NMR
(600 MHz, DMSO-d6, 25 ◦C) δ = 11.22 (s, 1H), 7.94–7.89 (m, 3H), 7.86 (dd, J = 8.4, 1.4 Hz,
2H), 7.71–7.69 (m, 2H), 7.59–7.56 (m, 2H), 7.50–7.48 (m, 2H), 7.46–7.42 (m, 1H), 7.16–7.12 (m,
1H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 ◦C) δ = 170.3, 145.4, 140.2, 138.5, 137.8, 135.1,
132.1, 129.6, 129.2, 128.1, 128.0, 127.6, 123.8, 118.8, 117.1 ppm. MS m/z 354.2 = [M + H]+,
calculated for C19H15NO4S m/z = 353.0.

Synthetic procedures for natural compound NC2: Thionyl chloride (25 mL) was added
dropwise under an ice bath to natural compound NC1 (1.59 g, 4.5 mmol); after addition,
the mixture was slowly heated to 80 ◦C overnight, and then the reaction solution was
concentrated to obtain compound 4, which was used for the next reaction without further
purification. To a mixture of ethyl anthranilate (0.83 g, 5 mmol) and triethylamine (1.2
equivalents) in CH2Cl2 (25 mL), we added compound 4 dropwise under an ice bath, and
the resulting mixture was stirred at room temperature until TLC indicated that the reaction
was complete. Then, 30 mL of water was added to the mixture, the aqueous solution was
extracted with CH2Cl2, and the combined organic phases were washed with NaHCO3 and
dried with anhydrous Na2SO4. After removing the volatile component, the desired natural
compound NC2 was obtained. Sargassulfamide A (NC2) was subjected to isolation with
silica column chromatography (eluting solution: petroleum ether/ethyl acetate = 3/1 (v/v)).
The physico-chemical properties for compound NC2 are as follows, and the corresponding
spectrum are indicated in Supplementary Materials.

Methyl 2-(2-([1,1′-biphenyl]-4-sulfonamido)benzamido)benzoate (NC2), white solid, m.p. 148–
149 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C) δ = 11.74 (s, 1H), 10.48 (s, 1H), 8.75 (dd,
J = 8.4, 0.7 Hz, 1H), 7.97 (dd, J = 8.0, 1.6 Hz, 1H), 7.79 (dd, J = 8.3, 0.9 Hz, 1H), 7.76–7.72
(m, 2H), 7.67 (dd, J = 7.9, 1.3 Hz, 1H), 7.65–7.60 (m, 1H), 7.53–7.49 (m, 1H), 7.47–7.44 (m,
2H), 7.37–7.34 (m, 3H), 7.33–7.30 (m, 2H), 7.25–7.22 (m, 1H), 7.17–7.13 (m, 1H), 3.76 (s, 3H)
ppm. 13C NMR (151 MHz, DMSO-d6, 25 ◦C) δ = 168.0, 166.6, 144.9, 139.6, 138.3, 137.6, 137.2,
134.6, 133.3, 131.0, 129.5, 129.1, 128.7, 128.0, 127.7, 127.3, 126.3, 125.9, 124.5, 123.7, 122.1,
118.6, 53.0 ppm. MS m/z 487.4 = [M + H]+, calculated for C27H22N2O5S m/z = 486.1.

General synthetic procedures for aryl-carboxamide derivatives bearing sulfonamide
units 10a–r: To a solution of aryl amine (10 mmol) and triethylamine (12 mmol, 1.2 equiv.)
in anhydrous DCM (20 mL), we added phenylsulfonyl chloride (12 mmol) dropwise, which
dissolved in DCM under an ice bath. After the completion of the reaction, we washed the
crude mixture with saturated aqueous NaHCO3 and brine solution, and then the mixture
was extracted with DCM and dried over Na2SO4. The obtained crude products 7a–d
were used for the next reaction without further purification. The crude products 7a–d
(1 equivalent) in methanol (20 mL) was added to 5 mL of aqueous sodium hydroxide
(4 equivalents), and then the mixture stirred at 50 ◦C for 10 h. After the completion of
the reaction, the mixture was adjusted to pH 5–6 with diluted hydrochloric acid under an
ice bath, and the precipitate was filtered and washed with a small amount of alcohol to
yield 8a–d. To a solution of 8a–d (1.2 mmol) in DMF (4 mL), we added HOBt (1.5 mmol),
EDCI (1.5 mmol), Et3N (2.5 mmol) and appropriate substituted acids 9a–e (1.0 mmol),
and then the mixture was stirred at room temperature overnight. After the completion of
the reaction, water was added to the mixture, which was extracted with DCM, and the
organic layer was washed with water and brine, and then dried with anhydrous Na2SO4.
The solvent was removed to yield crude target compounds, which were purified by silica
gel column chromatography (eluting solution: petroleum ether/ethyl acetate = 2/1 (v/v))
or recrystallization to yield pure compounds. The physico-chemical properties for some
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intermediates and target compounds are as follows, and the corresponding spectrum are
indicated in Supplementary Materials.

N-([1,1′-Biphenyl]-2-yl)-4-aminobenzenesulfonamide (8a), m.p. 128–129 ◦C. MS m/z 347.3 = [M
+ Na]+, calculated for C18H16N2O2S m/z = 324.1.

4-Amino-N-(2-phenoxyphenyl)benzenesulfonamide (8b), m.p. 119–120 ◦C. MS m/z 363.4 = [M +
Na]+, calculated for C18H16N2O3S m/z = 340.1.

4-Amino-N-(4,5-dimethylisoxazol-3-yl)benzenesulfonamide (8c), m.p. 162–163 ◦C. MS m/z
290.3 = [M + Na]+, calculated for C11H13N3O3S m/z = 267.1.

4-Amino-N-(2-(trifluoromethyl)phenyl)benzenesulfonamide (8d), m.p. 95–96 ◦C. MS m/z 317.4 = [M
+ H]+, calculated for C13H11F3N2O2S m/z = 316.0.

N-(4-(N-([1,1′-Biphenyl]-2-yl)sulfamoyl)phenyl)-2-(trifluoromethyl)benzamide (10a), white solid,
m.p. 151–152 ◦C. 1H NMR (600 MHz, CDCl3, TMS, 25 ◦C) δ = 7.93 (s, 1H), 7.76 (d, J = 7.8 Hz,
1H), 7.69 (d, J = 8.2 Hz, 1H), 7.67–7.64 (m, 2H), 7.62 (d, J = 8.6 Hz, 3H), 7.50 (d, J = 8.7 Hz,
2H), 7.36 (dd, J = 5.1, 1.8 Hz, 4H), 7.18 (td, J = 7.5, 0.9 Hz, 1H), 7.12 (dd, J = 7.6, 1.5 Hz,
1H), 6.88 (dt, J = 7.5, 3.8 Hz, 2H), 6.65 (s, 1H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 ◦C)
δ = 165.9, 141.7, 137.2, 135.1, 134.5, 134.4, 133.4, 132.4, 130.7, 130.4, 129.2, 128.8, 128.7, 128.5,
128.4, 128.2, 127.2, 126.7, 125.3, 123.4 (q, J = 274.8 Hz), 122.0, 119.6. 19F NMR (565 MHz,
DMSO-d6, 25 ◦C) δ = −58.8. MS m/z 497.3 = [M + H]+, calculated for C26H19F3N2O3S
m/z = 496.1.

N-(4-(N-(2-Phenoxyphenyl)sulfamoyl)phenyl)-2-(trifluoromethyl)benzamide (10b), white solid,
m.p. 161–162 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 oC) δ = 10.93 (s, 1H), 9.85 (s, 1H), 7.88
(d, J = 7.8 Hz, 1H), 7.82 (t, J = 7.5 Hz, 1H), 7.74 (t, J = 8.1 Hz, 4H), 7.70–7.66 (m, 2H), 7.42
(d, J = 7.5 Hz, 1H), 7.28 (t, J = 7.8 Hz, 2H), 7.12–7.07 (m, 3H), 6.71 (dd, J = 7.6, 1.5 Hz, 1H),
6.64 (d, J = 8.4 Hz, 2H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 ◦C) δ = 171.2, 161.3, 154.8,
147.8, 140.9, 140.1, 138.0, 135.6, 134.9, 134.8, 133.8, 133.1, 133.0, 131.7, 131.2, 131.0, 129.0
(q, J = 273.3 Hz), 128.8, 128.6, 124.5, 123.7, 123.6. 19F NMR (565 MHz, DMSO-d6, 25 ◦C)
δ = −53.1. MS m/z 513.5 = [M + H]+, calculated for C26H19F3N2O4S m/z = 512.1.

N-(4-(N-(4,5-Dimethylisoxazol-3-yl)sulfamoyl)phenyl)-2-(trifluoromethyl)benzamide (10c), white
solid, m.p. 183–184 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 oC) δ = 10.99 (s, 1H), 10.65 (s,
1H), 7.89–7.84 (m, 5H), 7.82 (t, J = 7.5 Hz, 1H), 7.74 (t, J = 7.5 Hz, 2H), 2.23 (s, 3H), 1.80
(s, 3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 ◦C) δ = 166.6, 166.2, 157.2, 143.3, 136.1,
134.8, 133.2, 130.9, 129.0, 128.9, 127.0, 126.4, 124.2 (q, J = 273.3 Hz), 119.7, 105.0, 11.2, 6.4.
19F NMR (565 MHz, DMSO-d6, 25 ◦C) δ = −57.9. MS m/z 440.3 = [M + H]+, calculated for
C19H16F3N3O4S m/z = 439.0.

2-(Trifluoromethyl)-N-(4-(N-(2-(trifluoromethyl)phenyl)sulfamoyl)phenyl)benzamide (10d), white
solid, m.p. 128–129 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C) δ = 10.91 (s, 1H), 9.92 (s, 1H),
8.54 (dd, J = 4.7, 1.5 Hz, 1H), 8.25 (dd, J = 8.1, 1.5 Hz, 1H), 7.83 (d, J = 8.7 Hz, 2H), 7.75 (d,
J = 8.8 Hz, 2H), 7.71 (dd, J = 7.9, 1.1 Hz, 1H), 7.67 (dd, J = 8.1, 4.7 Hz, 1H), 7.58 (t, J = 7.3 Hz,
1H), 7.52 (s, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H) ppm. 13C NMR (151 MHz,
DMSO-d6, 25 ◦C) δ = 156.3, 148.7, 147.8, 142.3, 140.1, 139.6, 136.6, 134.6, 133.7, 129.0, 128.4,
128.3, 128.0, 127.3, 127.2, 126.6, 123.7 (q, J = 274.8 Hz), 120.5, 111.8. 19F NMR (565 MHz,
DMSO-d6, 25 ◦C) δ = −58.0. MS m/z 489.3 = [M + H]+, calculated for C21H14F6N2O3S
m/z = 488.0.

N-(4-(N-([1,1′-Biphenyl]-2-yl)sulfamoyl)phenyl)-3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-
carboxamide (10e), white solid, m.p. 156–157 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C)
δ = 10.88 (s, 1H), 9.44 (s, 1H), 8.55 (dd, J = 4.7, 1.5 Hz, 1H), 8.27–8.23 (m, 1H), 7.70 (d,
J = 8.8 Hz, 2H), 7.69–7.66 (m, 1H), 7.53 (d, J = 8.8 Hz, 2H), 7.51 (s, 1H), 7.36–7.32 (m, 2H),
7.31 (dt, J = 5.5, 2.3 Hz, 1H), 7.29–7.27 (m, 3H), 7.26–7.22 (m, 3H), 7.07–7.03 (m, 1H) ppm.
13C NMR (151 MHz, DMSO-d6, 25 ◦C) δ = 156.3, 148.7, 147.8, 141.9, 140.1, 139.7, 139.2, 139.0,
136.4, 133.7, 131.4, 129.7, 128.5, 128.2, 128.0, 127.5, 127.3, 127.2, 127.1, 120.4, 111.8 ppm. MS
m/z 608.2 = [M + H]+, calculated for C27H19BrClN5O3S m/z = 607.0.
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3-Bromo-1-(3-chloropyridin-2-yl)-N-(4-(N-(2-phenoxyphenyl)sulfamoyl)phenyl)-1H-pyrazole-5-
carboxamide (10f), white solid, m.p. 177–178 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C)
δ = 10.82 (s, 1H), 10.82 (s, 1H), 9.84 (s, 1H), 8.54 (dd, J = 4.7, 1.4 Hz, 1H), 8.26 (dd, J = 8.1,
1.3 Hz, 1H), 7.71–7.60 (m, 5H), 7.48 (s, 1H), 7.36 (dd, J = 7.8, 1.7 Hz, 1H), 7.22 (t, J = 7.9 Hz,
2H), 7.12–7.03 (m, 3H), 6.67 (dd, J = 7.9, 1.4 Hz, 1H), 6.63–6.55 (m, 2H) ppm. 13C NMR
(151 MHz, DMSO-d6, 25 ◦C) δ = 156.4, 156.2, 150.2, 148.7, 147.8, 142.1, 140.1, 139.7, 135.8,
130.1, 128.3, 128.1, 127.3, 127.2, 126.5, 123.9, 123.8, 120.4, 119.0, 118.8, 111.7 ppm. MS m/z
624.2 = [M + H]+, calculated for C27H19BrClN5O4S m/z = 623.0.

3-Bromo-1-(3-chloropyridin-2-yl)-N-(4-(N-(4,5-dimethylisoxazol-3-yl)sulfamoyl)phenyl)-1H-pyrazole-
5-carboxmide (10g), white solid, m.p. 171–172 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C)
δ = 10.91 (s, 1H), 10.66 (s, 1H), 8.53 (dd, J = 4.7, 1.5 Hz, 1H), 8.24 (dd, J = 8.1, 1.5 Hz, 1H),
7.84–7.79 (m, 4H), 7.66 (dd, J = 8.1, 4.7 Hz, 1H), 7.48 (s, 1H), 2.21 (s, 3H), 1.77 (s, 3H) ppm.
13C NMR (151 MHz, DMSO-d6, 25 ◦C) δ = 166.3, 157.1, 156.3, 148.7, 147.8, 142.4, 140.1, 139.7,
135.3, 128.9, 128.2, 127.3, 127.2, 120.4, 111.8, 105.1, 11.2, 6.4 ppm. MS m/z 651.2 = [M + H]+,
calculated for C20H16BrClN6O4S m/z = 649.9.

3-Bromo-1-(3-chloropyridin-2-yl)-N-(4-(N-(2-(trifluoromethyl)phenyl)sulfamoyl)phenyl)-1H-pyrazole-
5-carboxamide (10h), white solid, m.p. 181–182 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C)
δ = 10.91 (s, 1H), 9.92 (s, 1H), 8.55 (dd, J = 4.7, 1.5 Hz, 1H), 8.25 (dd, J = 8.1, 1.5 Hz, 1H),
7.84 (d, J = 8.9 Hz, 2H), 7.76 (d, J = 8.8 Hz, 2H), 7.71 (dd, J = 7.9, 1.1 Hz, 1H), 7.67 (dd,
J = 8.1, 4.7 Hz, 1H), 7.60–7.56 (m, 1H), 7.52 (s, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.05 (d, J = 8.0 Hz,
1H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 ◦C) δ = 156.3, 148.7, 147.8, 142.3, 140.1, 139.6,
136.6, 134.6, 133.7, 128.9, 128.4, 128.3, 127.9, 127.5, 127.3, 127.2, 126.6, 123.7 (q, J = 273.3 Hz),
120.5, 111.8. 19F NMR (565 MHz, DMSO-d6, 25 ◦C) δ = −57.9. MS m/z 600.5 = [M + H]+,
calculated for C22H14F3BrClN5O3S m/z = 598.9.

N-(4-(N-([1,1′-Biphenyl]-2-yl)sulfamoyl)phenyl)-2-methyl-[1,1′-biphenyl]-3-carboxamide (10i),
white solid, m.p. 197–198 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C) δ = 10.79 (s, 1H), 9.40
(s, 1H), 7.83 (d, J = 8.7 Hz, 2H), 7.57–7.53 (m, 2H), 7.51–7.46 (m, 3H), 7.43–7.39 (m, 2H),
7.39–7.35 (m, 4H), 7.34–7.33 (m, 2H), 7.30–7.27 (m, 2H), 7.27–7.23 (m, 3H), 7.11–7.08 (m,
1H), 2.25 (s, 3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 ◦C) δ = 169.1, 143.2, 142.9, 141.3,
139.1, 139.0, 138.7, 135.6, 133.9, 132.4, 131.5, 131.4, 129.7, 129.5, 128.9, 128.5, 128.1, 127.7,
127.5, 127.1, 126.9, 126.7, 126.3, 119.7, 17.7 ppm. MS m/z 519.4 = [M + H]+, calculated for
C32H26N2O3S m/z = 518.1.

2-Methyl-N-(4-(N-(2-phenoxyphenyl)sulfamoyl)phenyl)-[1,1′-biphenyl]-3-carboxamide (10j), white
solid, m.p. 170–171 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C) δ = 10.76 (s, 1H), 9.84 (s,
1H), 7.80 (d, J = 8.7 Hz, 2H), 7.67 (d, J = 8.8 Hz, 2H), 7.50–7.46 (m, 3H), 7.42–7.39 (m, 3H),
7.36–7.34 (m, 3H), 7.29–7.27 (m, 2H), 7.10–7.07 (m, 3H), 6.71 (dd, J = 7.8, 1.8 Hz, 1H), 6.66
(dd, J = 8.6, 0.9 Hz, 2H), 2.24 (s, 3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 ◦C) δ = 169.1,
156.6, 150.0, 143.4, 143.0, 141.3, 138.6, 135.0, 132.4, 130.1, 129.6, 129.5, 128.8, 128.7, 128.3,
127.7, 127.0, 126.7, 126.3, 126.1, 124.1, 123.9, 119.6, 118.9, 118.8, 17.7 ppm. MS m/z 535.5 = [M
+ H]+, calculated for C32H26N2O4S m/z = 534.1.

N-(4-(N-(4,5-Dimethylisoxazol-3-yl)sulfamoyl)phenyl)-2-methyl-[1,1′-biphenyl]-3-carboxamide (10k),
white solid, m.p. 156–157 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C) δ = 10.84 (s, 1H), 10.65
(s, 1H), 7.94 (d, J = 8.8 Hz, 2H), 7.87–7.84 (m, 2H), 7.50–7.47 (m, 3H), 7.43–7.38 (m, 2H),
7.36–7.33 (m, 3H), 2.23 (s, 6H), 1.81 (s, 3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 ◦C)
δ = 169.2, 166.2, 157.2, 143.7, 142.9, 141.3, 138.6, 134.5, 132.5, 131.5, 129.5, 128.9, 128.8, 127.7,
126.7, 126.3, 119.6, 105.0, 17.7, 11.2, 6.4 ppm. MS m/z 462.4 = [M + H]+, calculated for
C25H23N3O4S m/z = 461.1.

2-Methyl-N-(4-(N-(2-(trifluoromethyl)phenyl)sulfamoyl)phenyl)-[1,1′-biphenyl]-3-carboxamide (10l),
m.p. 178–180 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C) δ = 10.84 (s, 1H), 9.88 (s, 1H), 7.96
(d, J = 8.7 Hz, 2H), 7.78 (d, J = 8.8 Hz, 2H), 7.72 (d, J = 7.2 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H),
7.50–7.44 (m, 4H), 7.40 (dd, J = 14.0, 7.4 Hz, 2H), 7.36–7.33 (m, 3H), 7.08 (d, J = 8.1 Hz, 1H),
2.24 (s, 3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 ◦C) δ = 169.2, 143.5, 143.0, 141.3, 138.6,
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135.8, 134.8, 133.8, 132.5, 131.5, 129.5, 128.9, 128.8, 128.4, 127.8, 127.7, 127.5, 126.7, 126.5,
126.3, 123.7 (q, J = 273.3 Hz), 119.8, 17.7. 19F NMR (565 MHz, DMSO-d6, 25 ◦C) δ = −57.9.
MS m/z 511.4 = [M + H]+, calculated for C27H21F3N2O3S m/z = 510.1.

N-(4-(N-([1,1′-Biphenyl]-2-yl)sulfamoyl)phenyl)-4′-(trifluoromethyl)-[1,1′-biphenyl]-2-carboxamide
(10m), white solid, m.p. 163–164 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C) δ = 10.76 (s,
1H), 9.40 (s, 1H), 7.80 (d, J = 8.2 Hz, 2H), 7.73 (dd, J = 7.5, 1.1 Hz, 1H), 7.71–7.67 (m, 3H),
7.65–7.61(m, 3H), 7.58 (d, J = 7.6 Hz, 1H), 7.48 (d, J = 8.8 Hz, 2H), 7.35–7.28 (m, 5H), 7.27–7.24
(m, 1H), 7.21–7.17 (m, 2H), 7.14 (d, J = 9.3 Hz, 1H) ppm. 13C NMR (151 MHz, DMSO-d6, 25
◦C) δ = 168.3, 144.6, 142.9, 139.1, 139.0, 138.6, 137.0, 135.6, 133.8, 131.3, 130.9, 130.6, 129.7,
129.6, 128.6, 128.5, 128.2, 127.9, 127.4, 127.2, 127.1, 126.7, 126.6, 124.7 (q, J = 272.0 Hz), 119.7.
MS m/z 573.6 = [M + H]+, calculated for C32H23F3N2O3S m/z = 572.1.

N-(4-(N-(2-Phenoxyphenyl)sulfamoyl)phenyl)-4′-(trifluoromethyl)-[1,1′-biphenyl]-2-carboxamide
(10n), white solid, m.p. 173–174 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C) δ = 10.74 (s,
1H), 9.82 (s, 1H), 7.73 (d, J = 8.2 Hz, 2H), 7.69–7.67 (m, 1H), 7.66–7.63 (m, 2H), 7.63–7.56 (m,
6H), 7.54 (d, J = 7.6 Hz, 1H), 7.37 (dd, J = 7.8, 1.9 Hz, 1H), 7.25–7.21 (m, 2H), 7.11–7.03 (m,
3H), 6.70 (dd, J = 7.9, 1.6 Hz, 1H), 6.64 (dd, J = 8.6, 0.9 Hz, 2H) ppm. 13C NMR (151 MHz,
DMSO-d6, 25 ◦C) δ = 168.3, 156.6, 149.9, 144.7, 143.1, 138.6, 136.9, 135.1, 130.9, 130.7, 130.1,
129.6, 128.6, 128.4, 128.2, 126.9, 125.7 (q, J = 3.0 Hz), 124.1 (q, J = 272.0 Hz), 123.8, 119.6,
118.9, 118.8. 19F NMR (565 MHz, DMSO-d6, 25 ◦C) δ = −60.9. MS m/z 589.6 = [M + H]+,
calculated for C32H23F3N2O4S m/z = 588.1.

N-(4-(N-(4,5-Dimethylisoxazol-3-yl)sulfamoyl)phenyl)-4′-(trifluoromethyl)-[1,1′-biphenyl]-2-
carboxamide (10o), white solid, m.p. 199–200 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C)
δ = 10.82 (s, 1H), 10.61 (s, 1H), 7.78–7.76 (m, 3H), 7.75–7.73 (m, 3H), 7.69 (dd, J = 7.6, 1.1 Hz,
1H), 7.64–7.62 (m, 2H), 7.58 (td, J = 7.5, 1.2 Hz, 1H), 7.55–7.53 (m, 2H), 2.22 (s, 3H) ppm. 13C
NMR (151 MHz, DMSO-d6, 25 ◦C) δ = 169.4, 168.3, 166.2, 157.2, 144.6, 143.5, 140.5, 138.6,
136.8, 134.5, 132.2, 131.8, 130.9, 128.8, 128.3 (q, J = 31.7 Hz), 125.8 (q, J = 3.0 Hz), 124.7 (q,
J = 273.0 Hz), 119.6, 105.0, 11.2, 6.3. 19F NMR (565 MHz, DMSO-d6, 25 ◦C) δ = −60.9. MS
m/z 516.3 = [M + H]+, calculated for C25H20F3N3O4S m/z = 515.1.

4′-(Trifluoromethyl)-N-(4-(N-(2-(trifluoromethyl)phenyl)sulfamoyl)phenyl)-[1,1′-biphenyl]-2-
carboxamide (10p), white solid, m.p. 160–161 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C)
δ = 10.77 (s, 1H), 9.86 (s, 1H), 7.76–7.73 (m, 4H), 7.72–7.69 (m, 4H), 7.64–7.62 (m, 2H), 7.61–
7.57 (m, 2H), 7.56–7.53 (m, 2H), 7.46–7.44 (m, 1H), 7.06 (d, J = 8.0 Hz, 1H) ppm. 13C NMR
(151 MHz, DMSO-d6, 25 ◦C) δ = 168.4, 144.6, 143.2, 138.6, 136.9, 135.8, 134.7, 133.7, 131.8,
130.9, 130.7, 130.1, 129.7, 129.6, 128.8, 127.8, 127.5, 126.6 (q, J = 28.7 Hz), 125.7 (q, J = 3.8 Hz),
125.4 (q, J = 4.5 Hz), 123.8, 123.7 (q, J = 273.3 Hz), 122.9 (q, J = 274.0 Hz), 119.7. 19F NMR
(565 MHz, DMSO-d6, 25 ◦C) δ = −58.0, −60.9. MS m/z 565.5 = [M + H]+, calculated for
C27H18F6N2O3S m/z = 564.0.

2-(6-Chloro-9H-carbazol-2-yl)-N-(4-(N-(2-(trifluoromethyl)phenyl)sulfamoyl)phenyl)propanamide
(10q), white solid, m.p. 159–160 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C) δ = 11.39 (s, 1H),
10.52 (s, 1H), 9.83 (s, 1H), 8.17 (d, J = 2.1 Hz, 1H), 8.11 (d, J = 8.1 Hz, 1H), 7.81 (d, J = 8.9 Hz,
2H), 7.72–7.65 (m, 3H), 7.56–7.51 (m, 2H), 7.48 (d, J = 8.6 Hz, 1H), 7.43–7.34 (m, 2H), 7.23
(dd, J = 8.2, 1.4 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 4.05–4.02 (m, 1H), 1.52 (d, J = 7.0 Hz, 3H)
ppm. 13C NMR (151 MHz, DMSO-d6, 25 ◦C) δ = 173.6, 141.0, 140.4, 138.8, 133.6, 128.4, 127.5
(q, J = 4.5 Hz), 125.6, 124.1, 123.3, 121.1, 121.0, 120.1, 119.3, 119.2, 112.8, 110.1, 47.0, 19.5.
19F NMR (565 MHz, DMSO-d6, 25 ◦C) δ = −57.9. MS m/z 572.4 = [M + H]+, calculated for
C28H21ClF3N3O3S m/z = 571.0.

2-(6-Chloro-9H-carbazol-2-yl)-N-(4-(N-(2-phenoxyphenyl)sulfamoyl)phenyl)propanamide (10r),
white solid, m.p. 166–167 ◦C. 1H NMR (600 MHz, DMSO-d6, 25 ◦C) δ = 10.87 (s, 1H), 9.45
(s, 1H), 8.56 (d, J = 2.9 Hz, 1H), 8.26 (d, J = 7.7 Hz, 1H), 7.77–7.66 (m, 3H), 7.59–7.50 (m, 3H),
7.35–7.31 (m, 2H), 7.28–7.22 (m, 4H), 7.06 (s, 1H), 4.04 (q, J = 7.0 Hz, 1H), 1.21 (d, J = 7.0 Hz,
3H) ppm. 13C NMR (151 MHz, DMSO-d6, 25 ◦C) δ = 170.8, 156.3, 148.8, 147.8, 142.0, 140.1,
139.8, 139.2, 139.1, 136.4, 133.7, 131.4, 129.7, 128.5, 128.2, 128.1, 127.5, 127.4, 127.3, 127.2,
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120.4, 111.8, 60.2, 21.2 ppm. MS m/z 596.4 = [M + H]+, calculated for C33H26ClN3O4S
m/z = 595.1.

Bioassays: The in vitro cytotoxicity of the novel carbazole derivatives against hu-
man melanoma (A875), human hepatocellular liver carcinoma (HepG2), and a subclone
of African green monkey kidney cell line MA-104 (MARC145) cell lines was evaluated
using the MTT assay. All data were analyzed with SPSS software, and the 50% inhibitory
concentrations (IC50) of each compound for the different cell lines were determined. All
assays were performed in triplicate on three independent experiments.

Supplementary Materials: The following are available online. Instrumentation and chemicals, and
Spectroscopy for target compounds.
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