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Lateral orbitofrontal gray matter abnormalities in subjects
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Background and aims: Smartphone use is becoming commonplace and exerting adequate control over smartphone
use has become an important mental health issue. Little is known about the neurobiology underlying problematic
smartphone use. We hypothesized that structural abnormalities in the fronto-cingulate brain region could be
implicated in problematic smartphone use, similar to that has been reported for Internet gaming disorder and
Internet addiction. This study investigated fronto-cingulate gray matter abnormalities in problematic smartphone
users, particularly those who spend time on social networking platforms. Methods: The study included 39 problematic
smartphone users with excessive use of social networking platforms via smartphone and 49 normal control male and
female smartphone users. We conducted voxel-based morphometric analysis with diffeomorphic anatomical
registration using an exponentiated Lie algebra algorithm. Region of interest analysis was performed on the
fronto-cingulate region to identify whether gray matter volume (GMV) differed between the two groups. Results:
Problematic smartphone users had significantly smaller GMV in the right lateral orbitofrontal cortex (OFC) than
healthy controls, and there were significant negative correlations between GMV in the right lateral OFC and the
Smartphone Addiction Proneness Scale (SAPS) score, including the SAPS tolerance subscale. Conclusions: These
results suggest that lateral orbitofrontal gray matter abnormalities are implicated in problematic smartphone use,
especially in social networking platform overuse. Small GMV in the lateral OFC was correlated with an increasing
tendency to be immersed in smartphone use. Our results suggest that orbitofrontal gray matter abnormalities affect

regulatory control over previously reinforced behaviors and may underlie problematic smartphone use.
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INTRODUCTION

Smartphones have come into widespread, daily use for most
people. They provide an environment that is continuously
connected to the Internet, which facilitates contact with
online-related activities. This environment has been suggested
as a risk factor for excessive immersion in some online
activities (Stald et al., 2014). Many people display “problem-
atic smartphone user” behaviors and fail to regulate their
excessive smartphone use, despite negative psychosocial
consequences (Long et al, 2016; Lopez-Fernandez,
Honrubia-Serrano, Freixa-Blanxart, & Gibson, 2014). How-
ever, little is known about the core features of problematic
smartphone use and its underlying neurobiological mechan-
isms. Previous studies indicate that comorbid psychiatric
conditions, such as depression and anxiety, are closely related
to problematic smartphone use (Elhai, Dvorak, Levine, &
Hall, 2017; Elhai, Tiamiyu, & Weeks, 2018). Some studies
focused on the role of psychological factors, such as empathy,
life satisfaction (Lachmann et al., 2018), and fear of missing
out (Wolniewicz, Tiamiyu, Weeks, & Elhai, 2018). Other
studies suggest that problematic smartphone use may

correspond to behavioral addictions, such as Internet gaming
disorder and Internet addiction (Salehan & Negahban, 2013).
Previous studies reported that problematic smartphone users
exhibit craving, salience, and loss of control, which are related
to their psychological dependence on online smartphone
activities (Chen, Liang, Mai, Zhong, & Qu, 2016; Sapacz,
Rockman, & Clark, 2016; Wegmann, Stodt, & Brand, 2018).
Several studies suggested that problematic smartphone use is
closely related to the addictive use of social networking
platforms (Salehan & Negahban, 2013; Sha, Sariyska, Riedl,
Lachmann, & Montag, 2019). It has been suggested that the
formation and reinforcement of habitual social networking
platform use could lead to Internet communication addiction
(Turel & Serenko, 2012). Smartphones provide a readily
available technology that likely facilitates the progression to
addictive use of social media.
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Gray matter in problematic smartphone users

The neurobiology of problematic smartphone use has not
been completely mapped, although recent studies have
identified various structural and functional brain abnormali-
ties in Internet gaming disorder and Internet addiction.
These abnormalities include gray matter volume (GMV)
deficiencies in the anterior cingulate and the orbitofrontal
and dorsolateral prefrontal cortex (Lee, Namkoong, Lee, &
Jung, 2018; Yao et al., 2017). These fronto-cingulate areas
are associated with exerting executive control (Yuan & Raz,
2014), which is the ability to use higher-order cognitive
functions appropriately to perform goal-directed behaviors
Miller & Wallis, 2009). Exerting appropriate executive
control is believed to be important in balancing goal-
directed actions and habitual behaviors (Jahanshahi, Obeso,
Rothwell, & Obeso, 2015). Habitual behaviors require less
executive control than goal-directed actions (Dalley,
Cardinal, & Robbins, 2004; Miiller et al., 2007). Addiction
involves a process in which goal-directed actions are
progressively shifted into habitual behaviors (Everitt,
Dickinson, & Robbins, 2001). Previously presented discase
models of Internet gaming disorder and Internet addiction
have emphasized the role of executive control dysfunction
(Brand, Young, Laier, Wolfling, & Potenza, 2016; Dong &
Potenza, 2014). Some studies suggest that fronto-cingulate
GMYV deficiencies are involved in problematic smartphone
use. A study of subjects who had self-reported addiction
symptoms to smartphone use showed that they had smaller
GMVs in the frontal regions and left anterior cingulate
cortex than healthy control users (Wang et al., 2016).
Smartphone users who had higher tendencies toward
addiction to Internet communication applications also had
smaller GMVs in the subgenual anterior cingulate cortex
(Montag et al., 2018). Therefore, we hypothesized that low
GMVs in executive control-related brain regions, including
the fronto-cingulate area, could be associated with the
pathophysiology of problematic smartphone use. This
hypothesis is consistent with neurophysiological evidence
suggesting that dysfunctional executive control, such as
attention and inhibitory control, is related to problematic
smartphone use (Chen et al., 2016; Hadar et al., 2017).

This study aimed to identify the neurobiological basis of
problematic smartphone use. Because problematic smart-
phone use is closely associated with social networking
addiction, this study focused on problematic smartphone
users with excessive social networking platform use via
smartphone. We examined the gray matter properties in the
fronto-cingulate area in problematic smartphone users and
healthy controls by performing voxel-based morphometry
(VBM) analysis to compare GMVs between the two groups.
Then, correlation analyses were performed to analyze
whether GMVs of problematic smartphone users were
related to their clinical features.

MATERIALS AND METHODS

Participants

Participants were recruited via online advertisements, flyers,
and word of mouth. Initially, 94 subjects (65 males and
29 females) were recruited. Participants were screened for

excessive smartphone use with the Korean Smartphone
Addiction Proneness Scale (SAPS; Kim et al., 2012; Kim,
Lee, Lee, Nam, & Chung, 2014). Subjects were classified as
excessive smartphone users if their total SAPS score
exceeded 40, or if their subscale score exceeded 14 for
disturbance of adaptive function. Otherwise, subjects were
classified as healthy controls. This study was aimed at those
who use smartphones for Internet communication and social
networks, so participants who use smartphones primarily for
other purposes such as gaming were excluded. All subjects
underwent the Structured Clinical Interview from the Diag-
nostic and Statistical Manual of Mental Disorders, Fourth
Edition (First, Spitzer, Gibbon, & Williams, 1995) to assess
major psychiatric illness, and the Korean version of the
Wechsler Adult Intelligence Scale IV to measure
intelligence quotient (IQ; Wechsler, 2008). Exclusion crite-
ria for all subjects were: major psychiatric disorder (other
than Internet addiction or problematic smartphone use),
mental retardation, neurological or medical illness, and
contraindications on the magnetic resonance imaging (MRI)
scan. Finally, 88 subjects were included in this study: 29
males with excessive smartphone use, 10 females with
excessive smartphone use, 32 healthy males, and 17
healthy females, all right-handed, aged between 16 and
27 years (mean: 22.6 + 2.4 years). All subjects included in
this study did not receive psychiatric treatment, including
psychopharmacology.

Psychometric measures

The SAPS test was developed by the Korean National
Information Society Agency to evaluate problematic smart-
phone use (Kim et al., 2014). The SAPS scale consists of a
total of 15 items rated by a 4-point Likert scale (1 = strongly
disagree; 2 = disagree; 3 = agree; 4 = strongly agree), so
the score can range from 15 to 60. The SAPS scale includes
the following four subscales: disturbance of adaptive func-
tions, virtual life orientation, withdrawal, and tolerance.
Subjects with the following SAPS scores were classified
as high-risk smartphone users: (a) total SAPS score of >44
or (b) disturbance of adaptive functions, withdrawal, and
tolerance subscale scores of >15, >13, and >13, respec-
tively. Subjects with the following SAPS scores were
classified as potentially at-risk smartphone users: (a) total
SAPS total score of >40 or <43 or (b) disturbance of
adaptive functions subscale score of >14. Those not
belonging to the high-risk or potentially at-risk users were
classified as normal smartphone users. The original
Cronbach’s o value of the SAPS score was .814, whereas
the Cronbach’s a value of the SAPS score in this study was
.934. During scale development, each of the SAPS subscales
(disturbance of adaptive functions, virtual life orientation,
withdrawal, and tolerance) had a Cronbach’s a value of
.832, .687, .776, and .780, respectively. In this study, each
of the SAPS subscales (disturbance of adaptive functions,
virtual life orientation, withdrawal, and tolerance) had a
Cronbach’s a value of .874, .473, .855, and .885, respec-
tively. Thus, three SAPS subscales exhibited adequate
internal consistency (except for virtual life orientation).
The Internet Addiction Test (IAT; Young, 1998) was
administered to assess Internet addiction status. The Barratt
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Impulsiveness Scale version 11 (BIS-11; Patton & Stanford,
1995) was administered to test impulsivity. The Cronbach’s
o values in this study for IAT and BIS-11 were .94 and .80,
respectively. To assess comorbid psychiatric conditions of
depression, anxiety, and alcohol use disorder, all subjects
took the Beck Depression Inventory (BDI; Beck, Steer, &
Brown, 1996), the Beck Anxiety Inventory (BAI; Beck,
Epstein, Brown, & Steer, 1988), and the Alcohol Use
Disorder Identification Test (AUDIT; Saunders, Aasland,
Babor, de la Fuente, & Grant, 1993), respectively. The
Cronbach’s o values in this study for BDI, BAI, and AUDIT
were .80, .81, and .75, respectively.

Structural image acquisition and preprocessing

Brain MRI was conducted using a 3T Siemens Magnetom
MRI scanner (Erlangen, Germany) equipped with an eight-
channel head coil. A 3D structural MRI data set was
obtained for each subject through a T-1 weighted spoiled
gradient echo sequence (TE =2.19 ms, TR = 1,780 ms, flip
angle =9°, field of view =256 mm, matrix =256 X 256,
transversal slice thickness = 1 mm). Structural brain images
were analyzed with MATLAB 8.5 (MathWorks, Natick,
MA, USA) and SPMS8 (Wellcome Department of Imaging
Neuroscience, UK). All preprocessing steps were performed
according to the standardized procedure (Ashburner, 2010).
First, structural images were aligned along the anterior—
posterior commissure line, and the anterior commissure of
each image was matched to the origin position. Then, the
structural images were segmented into gray matter, white
matter, and cerebrospinal fluid probability maps using a
Bayesian image segmentation algorithm. The brain tissue
probability maps for each subject were used for intersubject
alignment. We used diffeomorphic anatomical registration
with an exponentiated Lie algebra algorithm (DARTEL) to
increase the accuracy of intersubject alignment by modeling
the shape of each brain using a host of parameters
(Ashburner, 2007). DARTEL processing includes generat-
ing the flow fields that encode deformations and creating the
study-specific templates for all subjects. Gray matter images
for each subject were warped to the study-specific template
and normalized into standard Montreal Neurological Insti-
tute (MNI) space. The images were then resampled to a
1.5%1.5x 1.5 mm® voxel size. This spatial normalization
step involved Jacobian modulation to preserve regional
volume values. Finally, the warped, normalized, and mod-
ulated gray matter images were smoothed using an 8-mm
full-width at half maximum kernel.

Statistical analysis

Statistical analyses were performed using the Statistical
Package for the Social Sciences (SPSS) version 24.0 (SPSS
Inc., Chicago, IL, USA). Differences with p values <.05
were deemed to be statistically significant. To compare
demographic data (clinical characteristics of excessive
smartphone users and healthy controls), we employed
independent #-tests and y? tests. To evaluate group differ-
ences in GMV, we used an analysis of covariance model at
each voxel. The age, sex, and intracranial volume of each
subject were entered as covariates. Intracranial volumes
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were calculated from the sum of gray matter, white matter,
and cerebrospinal fluid volume.

Initially, region of interest (ROI) analysis was performed
to explore the group differences in GMV. The fronto-
cingulate regions (superior/middle/inferior frontal gyrus and
cingulate cortex) were set as ROI, which was defined by the
Individual Brain Atlas Statistical Parametric Mapping
(Aleman-Gomez, 2006) provided by the Wake Forest Uni-
versity Pickatlas toolbox (Maldjian, Laurienti, Kraft, &
Burdette, 2003). Subsequently, exploratory analysis of the
whole brain was performed to explore the region outside of
ROIL. Statistical inferences were set via cluster extent-based
thresholding (Friston, Worsley, Frackowiak, Mazziotta, &
Evans, 1994). Initially, a voxel-wise cluster-defining thresh-
old of uncorrected p < .001 was applied. Then, we reported
significant clusters with a cluster-level extent threshold of
false-wise error rate corrected p < .05.

We conducted partial correlation analyses to verify that
GMYV correlated with clinical variables (SAPS and BIS).
The mean GMV of clusters with group differences was
extracted using the MarsBaR toolbox (http://marsbar.
sourceforge.net/). The age, sex, and intracranial volume
of each subject were entered as covariates. In subsequent
correlation analyses, parameters related to comorbid
conditions (BDI, BAI, and AUDIT) were added as
covariates.

Ethics

This study was carried out under the guidelines for the use
of human participants established by the Institutional
Review Board at Yonsei University. All protocols for this
study were approved by the Institutional Review Board at
Severance Hospital, Yonsei University. Written informed
consent was obtained from all participants before
enrollment.

RESULTS

Demographic and clinical characteristics of study subjects

Healthy control subjects and subjects with problematic
smartphone use were matched by age, sex, and 1Q
(Table 1). Subjects with problematic smartphone use spent
significantly more daily time using their smartphone than
healthy controls (p <.001). We calculated Bonferroni’s
correction (p <.05/4) to adjust for multiple comparisons
(four subdomains of usage goals: gaming, entertainment,
social communication platforms, and Internet surfing) and
found that the time spent on social communication
applications significantly differed between the two groups
(p <.001). Problematic smartphone users scored signifi-
cantly higher on SAPS and SAPS subscales (p <.001,
respectively), and IAT and BIS (p =.001, respectively)
than healthy control subjects. Problematic smartphone
users scored significantly higher on tests for depression
(BDI), anxiety (BAI), and alcohol-related problems
(AUDIT; p=.026, p=.006, and p =.006, respectively)
than healthy controls.
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Table 1. Demographics and clinical variables of study participants

Problematic smartphone

users (n=39) Healthy controls (n =49)

Mean (SD) Mean (SD) Test p value
Age (years) 229 (2.2) 22.4 (2.7) t=0.921 .360
Sex [male; n (%)] 29 (74.4) 32 (65.3) x> =0.837 .360
Full-scale 1Q? 110.3 (12.4) 109.5 (11.0) t=0.338 137
Smartphone addiction 45.0 (4.8) 28.9 (6.4) t=13.434 <.001
Proneness scale total
Disturbance of adaptive functions 15.6 (1.7) 9.4 (2.4) t=14.115 <.001
Virtual life orientation 4.1 (1.2) 2.8 (0.9) t=5.838 <.001
Withdrawal 11.7 2.2) 8.1 (2.6) t=6.961 <.001
Tolerance 13.6 (1.5) 8.7 (2.7) t=10.606 <.001
Duration of smartphone use per day (hr) 6.8 (2.0) 2.5(1.2) t=11.976 <.001
Gaming 0.5 (1.0) 0.1 (0.4) t=2.560 .014
Entertainment 1.0 (1.0) 0.6 (0.7) t=2.283 .025
Social communication platform 4.6 (1.6) 1.5 (0.9) t=10.645 <.001
Internet surfing 0.7 (0.9) 0.3 (0.5) t=2.239 .029
Internet Addiction Test 48.7 (14.1) 36.9 (18.2) t=3.336 .001
Beck Depression Inventory 8.4 (4.8) 6.0 (5.0) t=2.270 .026
Beck Anxiety Inventory 8.3 (6.0) 5.1 (4.6) t=2.840 .006
Alcohol Use Disorder Identification Test 10.4 (4.9) 7.5 (4.5) t=2.834 .006
Barratt Impulsivity Scale 53.8 (7.5) 48.2 (7.3) t=3.523 .001

Note. 1Q: intelligence quotient; SD: standard deviation.
*1Q was assessed using the Wechsler Adult Intelligence Scale.

users did not display significantly larger GMV than healthy
controls in any brain region. There were no significant

Voxel-based morphometry (VBM) results

Compared to healthy control subjects, problematic smart-
phone users exhibited smaller GMV in the right orbitofrontal
cortex (OFC; Figure 1A). These clusters remained significant
after comorbid conditions (BDI, BAI, and AUDIT) had been
included as covariates (p <.001). The GMV differences in
the OFC were significant when the two groups were stratified
with respect to sex (Figure 1B). The problematic smartphone

Right Orbitofrontal Cortex
[41, 38, -12]

clusters with group differences, outside of the ROIL.

The correlation analysis showed that smaller GMV in the
right OFC was significantly correlated with higher total
SAPS score (r=-.449, p=.006; Figure 2A). These
correlations remained significant after comorbid conditions
(BDI, BAI, and AUDIT) had been included as covariates
(p = .035). We calculated Bonferroni’s correction (p < .05/4)
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Figure 1. Voxel-based morphometric analysis of the fronto-cingulate region as the region of interest (ROI). Statistical inferences were
thresholded using an uncorrected p value height threshold of .001 in conjunction with an extent threshold correction of false-wise error rate of
p <.05. Coordinates indicate the locations of the brain slices according to the Montreal Neurological Institute system. (A) Subjects with
problematic smartphone use showed significantly smaller gray matter volume than healthy controls in the right lateral orbitofrontal cortex
(OFC). (B) Significant gray matter volume (GMV) differences were observed in the OFC when the groups were stratified with respect to sex

(male, p =.001; female, p =.007)
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Figure 2. Correlation analysis of the mean gray matter volume (GMV) value for clusters in the right lateral orbitofrontal cortex (OFC) and

clinical variables for subjects with problematic smartphone use (r» = 39). Partial correlation analysis was performed to control for covariates

(age, sex, and intracranial volume). To depict partial correlation, linear regression was used to regress variables onto covariates. Calculated

non-standardized residuals were used to generate scatter plots. (A) Smaller GMV in the right OFC correlated significantly with higher total

SAPS score (r =—449, p =.006). (B) Smaller GMV in the right OFC correlated significantly with higher SAPS tolerance subscales scores
(r=-515, p=.001)

to adjust for multiple comparisons (four subscales of the
SAPS) and found that smaller GMV in the right OFC
significantly correlated with higher SAPS tolerance
subscale score (r=-.515, p=.001; Figure 2B). These
correlations remained significant after comorbid conditions
(BDI, BAIL and AUDIT) had been included as covariates
(p =.008). Other correlation tests did not reach statistical
significance.

DISCUSSION

This study analyzed the GMV of subjects who spend an
excessive amount of time on social networking platforms
through smartphones. Subjects with problematic smart-
phone use had smaller GMV in the right OFC than normal
control subjects. This result supports our hypothesis that
subjects with problematic smartphone use could have gray
matter abnormalities in the fronto-cingulate region. This
study results were not consistent with those of previous
studies on gray matter abnormalities, which identified
structural brain abnormalities in problematic smartphone
users such as small GMV in the anterior cingulate cortex
(Montag et al., 2018; Wang et al., 2016). However, our
identification of gray matter abnormalities in the OFC of
problematic smartphone users is consistent with the
results of previous studies on Internet gaming disorder
(Weng et al., 2013) and Internet addiction (Hong et al.,
2013; Lin & Lei, 2015). Our results also are consistent
with the results of a previous functional MRI study of
problematic smartphone use, which identified alterations
in functional connectivity in the OFC (Chun et al., 2018).
Smaller GMV in the OFC was significantly correlated
with higher SAPS score, reflecting a risk of addiction to
online activities through smartphones. These results
suggest that gray matter abnormalities in the OFC are
involved in the pathophysiology of problematic smart-
phone use.

The OFC has been associated with reward-guided
decision-making (Wallis, 2007). OFC abnormalities have
been suggested to interfere with adaptive decision-making,
thereby increasing impulsivity and forming stimulus-driven
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habits (Torregrossa, Quinn, & Taylor, 2008). Dysfunctional
decision-making and a progression from goal-directed actions
into stimulus-driven habits have been associated with addic-
tion (Bechara & Damasio, 2002; Bechara, Dolan, &
Hindes, 2002). The OFC has been proposed to have a role
as a neural correlate of the development and maintenance of
addiction (Schoenbaum, Roesch, & Stalnaker, 2006;
Volkow & Fowler, 2000). In particular, the cluster in the
right OFC identified in this study corresponds to the lateral
OFC, which is involved in suppressing behaviors that
previously gave rewards and adjusting decisions to obtain
delayed rewards (McClure, Laibson, Loewenstein, & Cohen,
2004). We identified small GMV in the lateral OFC, which
suggests that repeating habitual behaviors while pursuing
immediate rewards would be implicated in problematic
smartphone users. This study includes subjects who spend
excessive amounts of time using social networking
platforms via smartphones. Previous studies suggest
that subjects with excessive social media use have difficulty
in proper decision-making for the delayed reward
(Delaney, Stein, & Gruber, 2018; Turel, He, Brevers, &
Bechara, 2018).

This study correlated GMV in the lateral OFC with the
SAPS tolerance subscale. In behavioral addiction, tolerance
is defined as the increasing amount of time required for
participation in particular activities to achieve the same
levels of satisfaction (Griffiths, 1996). The SAPS tolerance
subscale was calculated as the sum of the following items:
“I try cutting my smartphone usage time, but I fail;” “I can
control my smartphone usage time;” “Even when I think I
should stop, I continue to use my smartphone;” and
“Spending a lot of time on my smartphone has become a
habit.” These questionnaire items reflect an increase in the
behavioral ranges of online smartphone activities,
accompanied by loss of control over smartphone use. The
lateral OFC is associated with the tendency to adaptively
regulate control in response to negative consequences
(O’Doherty, Critchley, Deichmann, & Dolan, 2003).
Neurobiological studies on substance addiction showed that
disruption of the lateral OFC is associated with enhanced
tolerance to the deleterious effects of substance use
(Nimitvilai, Lopez, Mulholland, & Woodward, 2016;
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Winstanley et al., 2007). To understand problematic smart-
phone use in terms of behavioral addiction, we infer that the
lateral OFC may have a crucial role in forming the core
manifestations of addiction.

We acknowledge several limitations of this study and
points that require further discussion. First, there is no
consensus on the terms used in this study. Although the
results of this study were described from the perspective of
behavioral addiction, the controversy regarding these terms
is ongoing. The effects of media characteristics on excessive
smartphone use and addictive potential of online activities
are not well identified. The patterns of smartphone usage
and related factors can vary, and numerous online activities
and applications are available on the smartphone. Therefore,
we used the phrase “problematic smartphone use” as a
generic term, rather than using more specific terms such as
“smartphone addiction” and “social networking addiction.”
The core characteristics of problematic smartphone use and
the appropriate terminology to represent this psychiatric
condition require further investigation and consensus-
building. Second, this study was performed with a
cross-sectional design, making it impossible to sufficiently
discriminate between a predisposition to problematic smart-
phone use and the effects of long-term, uncontrolled,
excessive smartphone use. A longitudinal follow-up study
on Internet gaming disorder suggested that the reduction of
GMYV in the OFC might be due to excessive gaming (Zhou
et al., 2019). Whether orbitofrontal gray matter abnormali-
ties might result from excessive use of social networking
platforms via smartphone requires further investigations.
Third, the study relied on self-reported answers to
questionnaires collecting information about clinical features
associated with problematic smartphone use. Behavioral
smartphone usage patterns obtained by the applications of
the smartphone are needed to be explored further in future
research. If neuropsychological tests evaluating executive
control and decision-making are included in these future
studies, a more reliable interpretation of neuroimaging
results will be available.

CONCLUSIONS

In conclusion, this study identified characteristic lateral
orbitofrontal gray matter abnormalities in subjects with
problematic smartphone use. There were significant
correlations between small GMV in the right lateral OFC
and high SAPS score, particularly the SAPS tolerance
subscale. The Ilateral OFC has important roles in
reward-related decision-making and exercising appropriate
regulatory control. We speculate that smartphone media
characteristics, which provide continuous Internet connec-
tion, may function synergistically with lateral orbitofrontal
gray matter abnormalities. This leads to increased amounts
of time spent on smartphone online activities, accompanied
by loss of control over smartphone use. Future studies on
problematic smartphone use need to include a more
objective measurement of smartphone usage patterns and
clarify the aspects of problematic smartphone use that have
potential risk of behavioral addiction.
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