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Conductance of porous media depends on external
electric fields
Leonid P. Savtchenko,1,* Kaiyu Zheng,1 and Dmitri A. Rusakov1,*
1UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
ABSTRACT In obstacle-filled media, such as extracellular or intracellular lumen of brain tissue, effective ion-diffusion perme-
ability is a key determinant of electrogenic reactions. Although this diffusion permeability is thought to depend entirely on struc-
tural features of the medium, such as porosity and tortuosity, brain tissue shows prominent nonohmic properties, the origins of
which remain poorly understood. Here, we explore Monte Carlo simulations of ion diffusion in a space filled with overlapping
spheres to predict that diffusion permeability of such media decreases with stronger external electric fields. This dependence
increases with lower medium porosity while decreasing with radial (two-dimensional or three-dimensional) compared with
homogenous (one-dimensional) fields. We test our predictions empirically in an electrolyte chamber filled with microscopic glass
spheres and find good correspondence with our predictions. A theoretical insight relates this phenomenon to a disproportion-
ately increased dwell time of diffusing ions at potential barriers (or traps) representing geometric obstacles when the field
strength increases. The dependence of medium ion-diffusion permeability on electric field could be important for understanding
conductivity properties of porous materials, in particular for the accurate interpretation of electric activity recordings in brain
tissue.
SIGNIFICANCE From nanomaterials to animal tissues, diffusion permeability of porous media has been attributed
entirely to their structure, which is often summarized as porosity and tortuosity. Here, we simulate a sphere-filled space to
find that its conductance decreases with stronger electric fields and confirm this in a physical experiment with a theoretical
treatment highlighting its key parameters. This finding has some potentially fundamental implications for our understanding
of electricity in porous media. For instance, it suggests that routinely recorded brain field potentials may not necessarily
scale linearly with the strength of current sources inside the brain tissue. On the microscopic scale, it predicts retarded
diffusion of charged molecules, heterogeneous charge accumulation, and possibly supralinear heat dissipation with
increased electrical activity.
INTRODUCTION

Physiological signaling in animal tissue relies on rapid diffu-
sion of electrolyte ions in the extracellular (or intracellular)
space filled with relatively immobile obstacles, from macro-
molecules to microscopic cellular structures. Compared with
a free medium, diffusion in obstacle-filled or porous media
is retarded. According to the classical Nernst-Einstein
equation, electrolyte conductivityG scaleswith ion diffusivity
so that

G ¼ F2

RT

Xi

n¼ 1

Dnq
2
nCn; (1)
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where qn, Cn, and Dn are, respectively, the valence, concen-
tration, and diffusivity of the nth ion species, F is Faraday’s
constant, R is gas constant, and T is absolute temperature
(Table 1). Thus, at constant ion concentrations, G is propor-
tional to diffusivity (which may not be the case when ion
concentrations vary or are spatially nonuniform). Generally,
retardation of ion diffusion by obstacles corresponds to
increased electrical resistance, which in turn affects the
scale and dynamics of electric events critical for cell func-
tion, particularly in the brain, both on the scale of tissue
(1) and the nanoscale (2). Numerous studies have focused
on the brain extracellular space to establish that its net diffu-
sion retardation effect is determined by the medium porosity
a (space volume fraction available for diffusion) and tortu-
osity l, which corresponds to the apparent diffusion coeffi-
cient Dapp ¼ Dfree/l

2 (Dfree is free-medium diffusivity) (1,3)
or otherwise diffusion permeability q ¼ Dapp/Dfree ¼ l�2

(4). The values of a, l, or q in brain tissue have been
Biophysical Journal 120, 1431–1442, April 20, 2021 1431

mailto:leonid.savtchenko@ucl.ac.uk
mailto:d.rusakov@ucl.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2021.02.012&domain=pdf
https://doi.org/10.1016/j.bpj.2021.02.012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


TABLE 1 Key notations and parameters used

Notation Meaning/Parameter Value

k Boltzmann constant 1.38�10�23 m2 kg s�2 K�1

T Absolute temperature 293 K

R Gas constant 8.31 kg m2 K�1 mol�1s�2

F Faraday constant 96,485 C/mol

e Elementary charge 1.6�10�19 C

C Concentration theory

D Diffusion coefficient theory

q Valence theory

Dfree Free-medium diffusivity 1 mm2/ms

Dapp Apparent diffusion

coefficient

varied

q ¼ Dapp/Dfree Medium permeability varied

q0 Medium permeability

at E ¼ 0

varied

qb�0.3 Medium permeability

at b ¼ 0.3

varied

E0 Reference electric

field strength

104 V/m

E Electric field strength 0.2E0–5E0

DE¼0 Diffusion coefficient

at E ¼ 0

varied

N Number of diffusing

particles

2,000

(200 for test runs)

b Sphere-occupied

volume fraction

0–0.5

- Number of spheres 200–15,000

- Sphere diameter 3–33 nm

a ¼ 1�b Medium porosity 0.5–1

k ¼ RT/F Constant theory

t� Time lost to navigate barrier theory

tþ Time gained behind barrier theory

H Height of potential barrier theory

- Electrolyte cell LHW 10 mm � 10 mm � 2 mm

- Electrolyte cell temperature 23–24
�
C
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evaluated on the scale of several microns and above (3,5,6).
Recently, advances in live super-resolution imaging have
extended this quest to the nanoscale structures (7,8),
whereas molecular mobility in the extracellular and intracel-
lular lumen on the nanoscale has been evaluated using time-
resolved anisotropy fluorescence lifetime imaging micro-
scopy (9). In this context, it has routinely been assumed
that the architectural features of porous media (such as l,
q, and a, or more complex shape variables) principally
define their effective conductivity (10,11).

When the electric field is present, ion movement follows
the classical Nernst-Planck (NP) relationship

dC

dt
¼ � VðJD þ JEÞ; (2)

where C is ion concentration, JD ¼ �DVC and JE ¼
�DqðF=RTÞCVV are, respectively, diffusion and electric

drift (migration) components, V is field potential (gradient
VV is equivalent to field strength E). Eqs. 1 and 2 are key
to the traditional interpretation of electrophysiological re-
cordings; it assumes constant electrolyte conductivity G,
which depends simply on the bulk concentration of ions.
Indeed, in the case of the mammalian brain, the common
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assumption has been that the NP formulism of electrodiffu-
sion applies to the tortuous extracellular space with diffu-
sivity corrected for q (12–14).

More recently, however, it has been shown that brain tissue
shows prominent nonohmic properties that might affect inter-
pretation of local field potentials (15–18), whereas physical
tests in porous ceramics indicated that permittivity of such
media could depend on the electric field strength (19). There
has been a significant progress in advancing theoretical work
that focuses on electrodiffusion in porous media (e.g., dis-
cussed in (20,21)), including brain tissue (22). On the nano-
scale, anomalous diffusion arising due to diffusion obstacles
and electric field interactions in cell membranes and neuronal
dendrites has also been explored (23,24). However, the influ-
ence of external electric fields on ion-diffusion permeability
of such obstacle-filled media remains poorly understood.

Here, we focus on this particular issue as a first principle,
without attempting to address or generalize evaluation of
apparent diffusivity or permittivity for porous media of
various types. To understand the basic phenomenon, we there-
fore explore Monte Carlo (MC) simulations mimicking elec-
trodiffusion of charged particles across the space filled, to a
varied degree, with inert, partly overlapped spherical obsta-
cles. Although not critical for establishing theoretical princi-
ples, our simulation parameters were chosen to roughly
replicate themovement of small ions on themicroscopic scale
in the interstitial (or intracellular) brain tissue lumen filled
with macromolecules and other nanoscopic obstacles. Our
simulations predict that increasing the external field strength
lowers porous-medium diffusion permeability, thus deviating
from the classical NP theory. We test this prediction by using
voltammetry measurements in an electrolyte filled with non-
polarizing dielectric (glass), microscopic spheres, and suggest
a first-approximation theoretical insight into the underlying
principles.
MATERIALS AND METHODS

MC simulations: electrodiffusion

MC simulation algorithms were designed and run using MATLAB (The

MathWorks, Natick, MA), based on the classical NP relationship (Eq. 2),

as detailed and tested against experimental recordings earlier (25,26).

The standard random walk procedure for individual particles (ions) was

thus implemented in which the electric field drift (migration) was calculated

from the particle speed as ðdr =dtÞ ¼�mE, where mobility m¼Dq ðF =RTÞ,
vector E¼ VV is the field strength, and r is the coordinate vector (r is radial

coordinate). Thus, ion particles positioned at time t at point r(x, y, z) were

moved to point r1(x1, y1, z1) over time incrementDt so that in the case of the

one-dimensional (1D) field x1 ¼ x þ Dx � dþ Dt eEDxkTr with E ¼ 0 for par-

ticle displacement into y and z directions, Dx corresponds to the mean-

square displacement in the Einstein’s diffusion equation for 1D Brownian

motion Dx2 ¼ 2DDt, d denotes a ‘‘delta-correlated’’ (independently seeded

and uncorrelated) uniform random number from the (�1, 1) range to reflect

that Brownian particles are equally likely to move into either direction, e is

elementary charge, and k is the Boltzmann constant (Table 1). In the case of

the two-dimensional (2D) radial field (inside a flat and narrow 2D slab), this

expression had E ¼ 0 for z direction; in the three-dimensional (3D) radial
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field (3D open space), all directions had the field term. As the drift compo-

nent was added at every diffusion step, the diffusion coefficient calculation

was dealing with time and distance in a fixed coordinate system.

To avoid occasional numerical deadlocks for particles trapped near the

space dead-ends formed by aggregated overlapped spheres (Fig. S1 B),

we implemented the duty-cycle translational movements in a contiguous

3D space over all directions rather than over the rectangular 3D-lattice

vertices used by us and many others previously. The duty-cycle time step

Dt (usually <0.1 ms) was set to be small enough to prevent particles

from ‘‘tunnelling’’ through the smallest 6-nm-wide obstacles.

The basic ‘‘reference value’’ field strength E0 was set at 10
4 V/m, which

roughly corresponds to the field generated by a synaptic current of 10–50 pA

toward the center of the 10–15-nm-thick, 0.5-mm-wide synaptic cleft, with

the medium resistance of �100 Ohm cm (9,27,28). Accordingly, for stronger

electric fields (E > 2E0), we adopted Dt < 0.01 ms. For the sake of simplicity

and to separate the effect of field geometry per se, we have assumed constant

field strength E for both uniform (1D) and radial (2D and 3D) fields, whereas

under the common 2D and 3D scenarios, field is attenuated with a factor of

r�1 and r�2, respectively, where r is the distance to the infinitesimal central

source. Insteadof incorporating these factors in our calculations,we considered

the 1D case as the first-principles scenario and addressed the effect of weak-

ening the field separately by exploring E-values over an order of magnitude.

The particle-wall interaction was simulated as an elastic collision, and

electrostatic interactions with the obstacle surfaces were ignored on the

assumption that the dimensions of the free diffusion space were much larger

than the electrolyte double layer.

The initial conditions routinely included 2000 particles injected instanta-

neously in the arena center (within a 10-nm sphere at the coordinate origin,

outside any obstacle). This reflected the case when ions flowing through the

open channel generate the field in which they and other ions diffuse, such as

inside the synaptic cleft (28). We also ran arena-size trials for each new con-

dition using 200 diffusing particles (see below). Ten full trials with 2000

particles each were carried out for the statistical estimates of average diffu-

sion permeability values, with the sphere distributions generated anew

every trial. In addition, we systematically ran single control trials involving

2000 particles to verify the computational stability for the diffusion steps,

sphere distributions, and the interactions between particles and obstacles.
MC simulations: sphere-filled space

The main parameter controlling the distribution of spheres is the volume

fraction b occupied by them. The b-value was calculated by 1) scattering

105 test points uniformly randomly across the entire space, and 2) calcu-

lating the proportion of the point falling outside the spheres. We verified

that increasing the number of such test points to 106 altered b by<1%, sug-

gesting asymptotic accuracy. The space (arena) dimensions were set large

enough to reach a stationary value for the apparent diffusion coefficient un-

der the strongest electrical field (fluctuation was less than51% for the last

20% of the simulated diffusion time). As noted above, the arena size was

routinely trialled and established using ad hoc simulations with 200 parti-

cles under the strongest tested electric field without spheres.

To fill the space with overlapping spheres that have a distributed size, the

following algorithm was adopted. First, we prohibited spheres to occupy a

3-nm-wide space around the coordinate origin where the particles start their

random walk. Second, in each duty cycle, we generated a random sphere

location (set of coordinates) with the arena space and the random radius

value (distributed in accord with the designated density function) for the

sphere. Third, we repeated the cycle until b approaches the required value

with �5% accuracy.

To replicate our empirical arrangement with glass spheres, we attempted

an algorithm filling the space with equally sized nonoverlapping spheres.

Random packing of equal spheres has a theoretical density maximum of

b�64%, assuming that the arena size is much larger than that of spheres

(29). In computational practice, however, as the volume fraction b occupied

by the simulated spheres reaches �50%, it becomes progressively difficult
to insert further spheres. In the majority of cases, the algorithm stalls

because of the lack of available space. It turns out that a similar deadlock

occurs when the spheres have a predefined distribution of their size, at least

in the case of even distribution. Therefore, we asked whether the cases of

overlapping versus nonoverlapping spheres differ significantly in terms of

the apparent diffusion coefficient and found little difference, at least for

b < 0.5 (see Fig. S1 D). This was consistent with the observation that

the overlaps occupied only a small fraction (<4% for b ¼ 0.5) of the arena

volume, thus suggesting little effect overall, which also applies to enhanced

trapping due to the electric field.

The overall size (cutoff distance) of the diffusion arena was determined

by the condition that it should be large enough to contain >99% particles

during at least 0.5-ms postrelease in the strongest-field case E ¼ 5E0 and

with b ¼ 0 (free space, no obstacles). At the same time, the arena had to

be sufficiently small to allow technically feasible computation times, which

increased supralinearly with greater b or with the number of spheres intro-

duced as obstacles.
Computing environment

Simulations were carried out on a dedicated, ad-hoc-built, 8-node

BEOWULF-style diskless PC cluster running under the Gentoo LINUX

operating system (kernel 4.12.12), an upgraded version of the cluster

described earlier (5). Individual nodes comprised an HP ProLiant DL120

G6 Server (Hewlett Packard Enterprise, San Jose, CA) containing a quad-

core Intel Xeon X3430 processor and 8 GB of DDR3 RAM (Santa Carla,

CA). Nodes were connected through a NetGear Gigabit Ethernet switch

to a master computer that distributes programs and collects the results on

its hard disk. Optimization and parallelization routines were implemented

by AMC Bridge (Waltham, MA).
Calculating the apparent diffusion coefficient

The apparent diffusion coefficient for the particle cohort, averaged over

time t in any of the three directions, was calculated as Dx ¼
ð1 =2NÞPN

i¼1ðx2i =tÞ (similar for y and z), where N is the number of diffusing

particles, and xi
2 reports the particle’s mean-square displacement over time

t. The diffusion coefficient values were calculated continuously during

simulation runs as long as all original diffusing particles remained within

the simulation arena. Normally, once a single particle has left the open

boundary of the simulation area, computations stopped.
Analytical solutions of the NP electrodiffusion
equations

In analytical estimates of the particle concentration profiles, we solved the

NP equation using the built-in MATLAB function pdepe (The MathWorks).

This function enables solving initial-boundary value problems for the para-

bolic-elliptic type of partial differential equations.
Conductance measurements

Electrolyte conductance was measured using a classical shunt resistor

method (e.g., p. 175 in (30)). Various voltages supplied by a constant

voltage source with maximal current limited to 2A (TTi EX4210R 42V

10A model) were applied to a presterilized, industry-standard electropora-

tion chamber (Molecular BioProducts #5520; W � L � H: 2 mm � 10 mm

� 25 mm; Fig. 4 A). Because of the large current passing through the circuit

at high voltage steps, a shunt resistor of 10 A/V (RS257-391) was connected

in series to the chamber from which a small voltage drop across the resistor

was measured using a national instrument analog to digital converter (NI

BNC-2090). To deal with any resistive heating effects in the chamber under

high currents, we applied short (10-ms) voltage pulses with a high current
Biophysical Journal 120, 1431–1442, April 20, 2021 1433
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reed relay (Cynergy3 S8-0504; Wimborne, UK) connected in series before

the chamber. The short 10-ms pulse applied to the circuit had no resistive

heating effect; the monitored solution temperature in the chamber was

23–24�C throughout tests. Signal timing was gated by a pulse generator

(Master-8; AMPI, Jerusalem, Israel), which was triggered from the same

national instrument board using acquisition control software WinWCP

(University of Strathclyde).

Three different solutions were made: deionized water (H2O, ELGA

PURELAB machine (ELGA LabWater, Woodridge, IL), resistivity 15

MOhm/cm at 25�C;), sodium chloride (NaCl, S7653; Sigma-Aldrich, St.

Louis, MO; 153 mM solution in deionized water solution), and ACSF.

The ACSF solution composition was as follows: 126 mM NaCl (S7653;

Sigma-Aldrich), 2.5 mM KCl (P9333; Sigma-Aldrich), 1.3 mM

MgSO4$7H2O (M1880; Sigma-Aldrich), 1.25 mM NaH2PO4 (S0751;

Sigma-Aldrich), 10 mM glucose (G8270; Sigma-Aldrich), 26 mMNaHCO3

(S6014; Sigma-Aldrich), and 2 mM CaCl2$2H2O (C3881; Sigma-Aldrich).

The electrolyte strength was thus chosen to be in the physiological range

below the levels (>0.2 M) at which, classically, ion-ion interactions could

affect conductivity (31).

DC voltages were applied to the opposite electrodes in the chamber

(Fig. 4 A), and small voltages across the shunt resistor were measured

and converted to currents. The procedure was carried out in a free solution

and then repeated with 13–45-mm lime soda glass spherical microbeads

(Specialty Products 201-002-003; Mo-Sci, Rolla, MO). The beads were

slowly (to avoid void formations) loaded into a �150-mL freshly prepared

solution until the chamber was full (Fig. 4 B). The electrolyte volume

required to fill the chamber volume occupied by the spheres provided an

estimated valued of b ¼ 30 5 2% (mean 5 SEM).

Because electrical conductance depends on the temperature, it was also

important to avoid temperature rises. This was achieved by using short

10-ms voltage steps with 60-s resting periods; the solution temperature

thus held at 23–24�C. The short electrical pulse also minimizes electrode

polarization, which might, in principle, lead to an accumulation of ionic

species near the surface, hence unwarranted chemical reactions. Special

care was taken to avoid bubble formation and accumulation in the solution

during electric pulses: tests were terminated upon detection of any micro-

scopic bubbles (usually after several trials). To avoid such and further

time-dependent concomitants of the pulse application, we used only the first

3 ms of the pulse, and no more than five trials per cuvette.
Data availability

The data sets generated and/or analyzed during this study are available from

the corresponding authors upon request.
Source code availability

The data sets source codes used in this study are available from the corre-

sponding authors.
RESULTS

Electrodiffusion in uniform 1D electric field

We first asked to what extent geometric obstacles would
affect ion movements along a narrow long cylinder (diam-
eter << length), a basic case of 1D diffusion. We note
that although in this case the overall diffusion flux is 1D,
on the scale compatible with the cylinder diameter, diffusion
trajectories and obstacle geometries are essentially 3D. For
the sake of simplicity, we set the free-medium diffusion co-
efficient at Dfree ¼ 1 mm2/ms, which is typical for small ions
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in aqueous solutions, and the cylinder diameter at 0.1 mm to
roughly represent extra- or intracellular lumen of brain tis-
sue. Zero-size diffusing particles were released in the cylin-
der centroid and allowed to move freely (Materials and
methods; Fig. 1 A; Fig. S1 A), with the cylinder walls
providing a reflecting boundary. To mimic macromolecular
hindrance, small spheres with an evenly distributed diam-
eter over the 3–33 nm range were scattered uniformly
with overlap throughout the space (Materials and methods).
Overlapping spheres could sometimes form dead-ends for
diffusing particles (Fig. S1 B), reflecting nonconvex geom-
etries of real microscopic obstacles. The MC algorithm
incorporating Brownian movement and electric field drift
(Materials and methods) stochastically directed the particle
flow around obstacles, roughly following the field lines
around dielectric spheres (Fig. S1 C). Although our simula-
tions adopted a uniform field throughout the space and thus
ignored its distortion near dielectric spheres, the comparison
of limiting cases (uniform versus zero-field near spheres)
indicated that the related diffusivity error was fairly negli-
gible (�6% at the strongest field; Fig. S1 D). We have
also found that changing the nonoverlapping to overlapping
sphere pattern altered Dapp values only within �7% at b �
0.4 and within �4% at b� 0.3 (Fig. S1 E), thus projecting a
smaller still effect at smaller b.

Equipped with these settings, we sought to test fours
scenarios for b taking four values between 0 and 0.5 to
reflect diffusion retardation on the nanoscale assessed with
time-resolved fluorescence anisotropy imaging (9). The
time-averaged apparent diffusion coefficient Dapp showed
significant variability in the initial stages of the test, reflect-
ing anomalous diffusion (Fig. 1 B, zero field), as discussed
previously (32). Reassuringly, in a free medium, (b ¼ 0)
Dapp was converging to Dfree (Fig. 1 B, black dotted line;
Fig. S1 B). Simulations also showed that Dapp decreased
monotonously with greater b (Fig. 1 B), consistent with
earlier assessments of macroscopic diffusion in porous brain
tissue (4,33,34).

We next introduced a uniform electric field that was
collinear with the cylinder axis (Materials and methods).
To mimic the case of an ion channel current that generates
voltage gradient for the current carrying and other ions in
the nearby lumen, we considered the outward field direction
that would force particles away from the diffusion source
(Fig. 1 A, arrows). We explored a range of field strength E
centered around E0 ¼ 104 V/m, which roughly represents
the field generated by a synaptic current carried mainly by
Naþ ions toward the synaptic cleft center at small excitatory
synapses (Materials and methods). The simulation outcome
was somewhat unexpected. Introducing geometric hin-
drance retarded particle diffusion to a greater degree under
electric field if compared with the zero-field scenario in
the same setting (Fig. 1, B and C). The effect depended
monotonously on both E and b (single-run simulation exam-
ples in Fig. 1, C and D; further detail in Fig. S2, A–E).
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FIGURE 1 Ion diffusion permeability of

obstacle-filled media in uniform electric field de-

pends on field strength. (A) Snapshot of the simu-

lated scatter of diffusing particles (blue dots) in a

0.1-mm-wide, 10-mm-long cylinder (fragment;

two different scales as shown; actual simulation

data rendered by OriginPro) at 0.1 ms postrelease

from the centroid (dotted line), with b ¼ 0.2 vol-

ume fraction occupied by obstacles (yellow

spheres, diameter 3–33 nm) and electric field

strength E¼ 0; blue arrows indicate the field direc-

tion. (B) An example of an MC simulation run:

time course of apparent diffusivity Dapp (along

the cylinder as in A) for different values of b as

indicated. (C) An example of an MC simulation

run: time course of diffusion permeability q ¼
Dapp/Dfree under electric field E ¼ E0 (104 V/m)

and over the range of b-values as shown; see Ma-

terials and methods for model parameters. (D)

An example of an MC simulation run: time course

of q for a medium with for b ¼ 0.5 over the range

of E as indicated. (E) Statistical summary of simu-

lation experiments depicted in (B)–(D) (additional

examples of individual MC runs are shown in

Fig. S2); dots 5 error bars indicate diffusion

permeability q ¼ Dapp/Dfree (mean 5 SD) values

for n ¼ 10 runs completed for each set of b- and

E-values, as indicated; the overall effect of either

factor E (four levels) or b (four levels) on q is at

p < 0.001, determined by two-way analysis of

variance (ANOVA) (FE ¼ 79.0, Fb ¼ 1366). To

see this figure in color, go online.
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Repeating simulations runs 10 times with 2000 particles
each for each scenario provided a robust summary (Fig. 1
E; Fig. S2 F), suggesting that in obstacle-filled media, the
relationship between field strength and ion transfer (current)
is sublinear. It appears therefore that the obstacles decelerate
ion movement to a disproportionately greater degree in
stronger fields. Reassuringly, in these simulations, the
Dapp/Dfree ratios representing diffusion permeability q

were, while under E ¼ 0, in good correspondence with the
Maxwell’s relationship for porous media (35) Dapp ¼
2aDfree

3�a
, where porosity a ¼ 1 � b (Fig. 1 E, open circles).

However, under E> 0, our data suggest that porous-medium
electric resistance, or ion-diffusion permeability, depends
on the field strength rather than on the medium properties
alone, thus deviating from the Ohm’s law.
Electrodiffusion in radial 2D and 3D electric fields

Molecular diffusion inside narrow 2D clefts with a local cur-
rent point-source is a common scenario in the brain neuropil
where intercellular signal exchange occurs in an electrolyte
medium between the opposing cell membranes populated
with ion channels. Our next test was therefore to release
diffusing particles in the 20-nm-wide (characteristic intersti-
tial width) flat cleft with an accelerating radial field (Fig. 2, A
and B). For simplicity, field strength Ewas maintained as uni-
form; we have previously shown that in the 2D synaptic cleft,
with a spatially uniform distribution of postsynaptic chan-
nels, the field is closer to uniform than to the classical r�1

decay for radial field with cylindrical symmetry (r is the dis-
tance from the center). Furthermore, when the diffusion dis-
tance of interest is much smaller than the distance from the
field source, uniform field provides canonical linear approx-
imation. An additional reason for keeping uniform E was to
try and separate the effects of field geometry and field
strength on diffusion permeability. Other simulation parame-
ters were similar to the 1D case shown above (Fig. 1). Again,
the simulation outcome suggested that the electric fields,
while accelerating overall diffusion escape of charged mole-
cules compared with the zero-field case, reduced medium
diffusion permeability q for ions, as reported by the decreased
Dapp/Dfree ratios in stronger fields (Fig. 2 C; Fig. S3).

Finally, we explored a similar scenario in three dimen-
sions. For the sake of generality, we expanded the simula-
tion arena to 10 mm and increased the diameter of
diffusion-hindering spheres to the range of 0.1–1 mm (uni-
formly distributed; snapshot in Fig. 2 D; Fig. S4 A) setting
time step at Dt ¼ 0.1 ms. Similar to the cases considered
above, here we found a clear, albeit less strong, reduction
in the Dapp/Dfree ratios, hence diffusion permeability q,
either with stronger electric fields or with greater values
of b (Fig. 2 E; Fig. S4, B–F).
Biophysical Journal 120, 1431–1442, April 20, 2021 1435
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FIGURE 2 Ion-diffusion permeability of

obstacle-filled media in radial electric fields. (A)

An example of the simulated scatter of diffusing

particles (blue dots) in a 20-nm flat cleft extending

6-mm-wide (fragment; two different scales as

shown; the actual simulation data were rendered

by OriginPro): a snapshot at 0.1 ms postrelease at

the central point (dotted line) with b ¼ 0.2 and

E ¼ 0; blue arrows indicate the radial field. (B)

Snapshots of single-particle particle trajectories

at three time points, as indicated, with b ¼
0 (red) and b ¼ 0.2 (black) under no field (E ¼
0); blue dots indicate the diffusion starting point.

(C) Statistical summary of simulations in (A) and

(B) (examples of individual MC runs are shown

in Fig. S3); dots indicate diffusion permeability

q ¼ Dapp/Dfree- (mean 5 SD) values for n ¼ 10

runs completed for each set of b- and E-values as

indicated; the overall effect of either factor E

(four levels) or b (four levels) on q is at p <

0.001, determined by two-way ANOVA (FE ¼
45.3, Fb ¼ 906). (D) Simulation example: a scatter

of diffusing particles (blue dots) in a 3D space

(fragment; actual simulation data rendered by Ori-

ginPro); a snapshot at 0.1-ms postrelease at the

central point (dotted line) with b ¼ 0.2 of space

occupied by spherical obstacles (yellow spheres),

with electric field strength E ¼ 0; radial electric

field is centered at the coordinate origin. (E) Satis-

tical summary of simulation experiments depicted

in (C) (examples of individual MC runs are shown

in Fig. S3); the overall effect of either factor E

(four levels) or b (four levels) on q is at p <

0.001, determined by two-way ANOVA (FE ¼
24.4, Fb ¼ 31.3); other notation is as in (C). To

see this figure in color, go online.
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We note that in these simulations, the actual dimensions
are mainly for illustration purposes; the dependence between
field strength and medium diffusion permeability remains un-
changed when the arena geometry, diffusion coefficient, and
electric field are scaled by the same time and space factor.
Our data also suggest that the effect of field on medium diffu-
sion permeability is progressively weaker under radial fields
with higher dimensions, at least in the vicinity of the source,
as modeled here (Fig. 3 A), even when the field strength is
kept the same throughout the space. As mentioned above,
at large distances from the source, one would expect the local
field to be well approximated by the 1D case.
Geometric obstacles and classical
electrodiffusion theory

It was important to assess how our MC simulation results
are related to the classical NP theory. First, for the sake of
1436 Biophysical Journal 120, 1431–1442, April 20, 2021
generality, we tested whether positioning the field source
near the diffusion source or away from it produced the
same time-averaged apparent diffusion coefficient in our
settings. Control MC runs confirmed that this was the
case: particles showed a characteristic wave-like scatter
away from the field source, showing the convergence of
Dapp for varied distance between the field and the diffusion
sources (Fig. 3 B).

Next, we systematically compared the particle concentra-
tion profiles computed using MC simulations with those ob-
tained using analytical solutions of the canonical NP equation
(Eq. 2), which could be written in the following form:

1

D

vC

vt
¼ V

�
VC� e

kT
CE

�
; (3)

where e is elementary unit charge and k is the Boltzmann
constant (Table 1). For several cases of b> 0- and E-values,
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FIGURE 3 Classical electrodiffusion theory

may overestimate apparent diffusivity when

applied to a porous medium. (A) A summary of

MC simulations (as in Figs. 1 and 2) showing the

dependence between field strength and diffusion

permeability q ¼ Dapp/Dfree (normalized to the

value at E ¼ 0) for two b-values in 1D uniform

and 2D and 3D radial electric fields, as indicated.

The strongest dependence corresponds to 1D filed

at the higher b. (B) Image panel, an illustration of

an MC test in which diffusing particles are released

either at the field source (open circle, blue arrow,

and blue dots) or at a distance of 200 nm from it

(red arrow and red dots) under E ¼ E0 (104 V/

m); a snapshot 100 ms postrelease. Graph, tests

showing the time course of Dapp/Dfree values for

particle cohorts released at different distances

from the field source, as indicated, in condition

as above. (C) The black line indicates the analyt-

ical solution of the NP equation showing a particle

concentration profile (normalized to maximum)

against distance to the diffusion source for 2D

radial field with no obstacles (b¼ 0, D¼Dfree) un-

der E ¼ E0 at time point t ¼ 0.1 ms; the red line

indicates the outcome of MC simulations in similar

conditions. (D) Graph similar to (C), but with b ¼
0.5; blue indicates the analytical solution of the NP

equation in which apparent diffusivity DE ¼ 0 is

derived by MC simulations for E ¼ 0 (b ¼ 0.5);

black, a similar solution but with Dapp calculated

from MC simulations incorporating electric field

E ¼ E0 (as in the graph in Fig. 2 C, for E ¼ 1 �
E0, b¼ 0.5); red indicates the outcome of MC sim-

ulations, as indicated. (E) Graph similar to (C) but

for 3D radial field with b ¼ 0.2 and E ¼ 5E0, as

indicated. Other notations are as in (C). (F) Graph

similar to (D) but for 3D radial field with b ¼ 0.2 and E ¼ 5E0. Other notations are as in (D); blue indicates the analytical solution of the NP equation in

whichDE ¼ 0 is derived byMC simulations for E¼ 0 (b¼ 0.2); black indicates a similar solution but withDapp derived byMC simulations under E¼ 5E0 (as

in Fig. 2 E, data point at E ¼ 1 � 5E0, b ¼ 0.2). To see this figure in color, go online.
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we thus calculated an analytical solution of the NP equation
at a certain time point (t ¼ 100 ms), first for diffusivity DE ¼
0 estimated by MC simulations under E ¼ 0. This solution
was compared with the analytical solution calculated for
diffusivity Dapp estimated from MC simulations under the
corresponding E > 0-value. These cases were also
compared with the concentration profile obtained directly
by MC simulations under the same conditions.

As expected, in all cases under E > 0, the concentration
profiles showed a characteristic wave that was spreading
away from the diffusion source (Fig. 3, C–F). Reassuringly,
in a free medium (b ¼ 0), MC simulations provided an
excellent match with the analytical NP solution for a given
E (Fig. 3, C and E). In contrast, in an obstacle-filled medium
(b > 0), the classical NP theory overestimated the effective
diffusivity values, with the discrepancy increasing with
stronger fields (Fig. 3,D and F). In other words, the outcome
of MC simulations could be satisfactorily described using
the analytical NP theory but with a diffusion coefficient cor-
rected for the field-dependent transfer retardation.
Physical testing of electrodiffusion in a porous
medium

To test our theoretical prediction that the ion conductance of
porous media is field dependent, we designed and imple-
mented a simple physical experiment. We measured electro-
lyte currents between the opposite sides (flat parallel walls
serving as electrodes) of a narrow rectangular chamber filled
with microscopic glass spheres (Fig. 4, A and B; Materials
and methods), a design somewhat similar to that explored
previously (36). The space fraction b occupied by the spheres
was evaluated by monitoring electrolyte displacement in the
chamber upon sphere filling, b ¼ 0.30 5 0.02. We used 10-
ms square voltage pulses over a range of voltages that would
generate inside the chamber electric fields compatible with
those in the brain tissue (Fig. 4 C; Materials and methods).
The three solutions tested were water, NaCl (153 mM), and
standard ACSF (Materials and methods).

As expected, these measurements showed monotonic, qua-
silinear dependencies between voltage (electric field) and
Biophysical Journal 120, 1431–1442, April 20, 2021 1437
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FIGURE 4 Experimental testing of obstacle-

filled medium conductivity under varied electric

fields. (A) An experiment schematic. The test solu-

tion, with or without glass beads, is placed in a

cuvette equipped with flat side electrodes (Mate-

rials and methods). Controlled application of DV

voltage steps to the electrodes induces electric cur-

rent measured digitally, as depicted. (B) Electro-

lyte solution (NaCl) filled with densely packed

microscopic glass beads is shown in transmitted

light (800 nm) at the top layer (left; scale bar, 50

mm) and as a fluorescent image (right; solution

containing Alexa Fluor 488, two-photon excitation

800 nm; scale bar, 20 mm). (C) The time course of

voltage pulse application (an example; top) and the

current response in a fee-medium (middle) and

sphere-filled NaCl solution (bottom). Gray shading

indicates the sampled response area (first 3 ms af-

ter the pulse artifact). To see this figure in color, go

online.
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electrolyte current in either free-space or sphere-filled cham-
bers (Fig. 5 A; pure water provided control measurements).
However, because physical properties of electrolytes could
be affected by electric field, it was important to compare
these measurements directly between free and obstacle-filled
cases under the same field strength: the ratio between the cor-
responding current density values (porous-to-free) should
represent q ¼ Dapp/Dfree. We thus found that q decreased
with greater strengths of the electric field, both for ACSF
and NaCl solutions (Fig. 5 B, data points). This dependence
was similar to that obtained in MC simulations of 1D electro-
diffusion for b-values roughly between 0.3 and 0.4 (Fig. 5 B,
dotted lines), which was a remarkable correspondence given
that the volume fraction occupied by glass spheres in these
experiments was b � 0.3. The slight shift of theoretical
curves toward higher values of b (Fig. 5 B) was likely
because simulated spheres were allowed to overlap, thus
leading to somewhat higher space tortuosity. It appeared
therefore that the electrical resistance of tested electrolytes
in a porous space depended on the external electric field, in
good correspondence with our theoretical predictions.
Theoretical insight

Given the unlimited variety of porous-medium geometries,
it would not seem feasible to generalize our findings as a
fully-fledged electrodiffusion theory. However, we sought
to explore the first principles by considering geometric ob-
stacles as barriers in the field-potential profile that drives
ion-diffusion transfer. For 1D diffusion (which is 3D diffu-
sion in a long narrow cylinder), the mean-square displace-
ment of a free Brownian particle increases linearly with
time t, hx2i � t, plus an additional drift when the electric
1438 Biophysical Journal 120, 1431–1442, April 20, 2021
field is present (Fig. 5 C, i and ii; red lines illustrate poten-
tial profiles for stronger and weaker field). When the
diffusing particle encounters an obstacle or a trap, it takes
additional time t to escape it so that particle displacement
over time t is reduced to hx2i � ta(t), where 0 < a(t) < 1.
The obstacle-imposed additional dwell time t depends on
the characteristic height of the potential barrier (or trap)
H (Fig. 5 C, iii). Generally, for diffusion under an electric
field (electrodiffusion), H scales with field strength E
(Fig. 5 C, iii; red lines illustrate how the potential barrier
scales with the field strength). It has long been established
that 1D stochastic diffusion in field E can be described by
the canonical Dynkin’s operator J¼ qDFE

RT
d
dx þ D d2

dx2

(p. 241 in (37)), in which the first and second terms define
electric drift and free diffusion, respectively; R is the gas
constant, T is the temperature, and F is the Faraday con-
stant. When field E is directed against the particle’s escape
over a certain barrier, the mean exit (dwell) time t is given
by the boundary value problem �jt ¼ 1 with the Dirichlet
boundary condition. This leads to the following steady-
state equation (38):

D

�
v2t

vx2
þ qFE

RT

vt

vx

�
¼ � 1; (4)
with the boundary conditions

tðx ¼ 0Þ ¼ 0;
vt

vx
ðx ¼ HÞ ¼ 0;
where x in this case denotes the initial particle’s coordinate
(between 0 and H). Its solution for t is
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FIGURE 5 Electric conductivity of porous tis-

sue decreases with stronger electric fields. (A)

The recorded current density plotted against elec-

tric field in ACSF and NaCl solutions, with and

without densely packed microscopic glass beads

(as in Fig. 4), as indicated; control recordings

with deionized water. (B) Relative porous-medium

conductivity (ratio between porous- and free-me-

dium conductivity values) for ACSF and NaCl

electrolytes is plotted against the electric field.

Dotted lines indicate theoretical dependencies

calculated for ions diffusing in a 1D uniform elec-

tric field (as in Fig. 1) for b ¼ 0.4 and b ¼ 0.3

(experimental value in Fig. 4 tests), as indicated.

(C) A schematic illustrating (not to scale) a theo-

retical approach (Eqs. 4, 5, 6, 7, and 8); blue

shading indicates the probability density for parti-

cle occurrence (dot, starting point) under no elec-

tric field (i), under uniform field E (ii; dotted

arrow, average drift), facing the barrier of radius

H (iii; t�, maximal dwell time ‘‘lost’’ to navigate

the barrier), and behind the barrier (iv; green dotted

arrow, no-obstacle particle drift, as in ii; black ar-

row, average drift increased because of the

‘‘gained’’ time tþ); red lines illustrate profiles of

field-potential V(x) in 1D space for weaker (E1)

and stronger (E2) fields, with orange dots repre-

senting particles facing (iii) or past (iv) the poten-

tial barrier. (D) Experimental data are given as in

(B) but with the theoretical dependencies (dashed

and dotted-dashed lines) calculated from the

analytical solution (Eq. 8) for several values of H

and q0, as indicated. To see this figure in color,

go online.
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tðxÞ ¼ eð�kEHÞð1� ekEx þ ekEHkExÞ
ðkEÞ2D ; (5)

where k ¼ RT/F. For x ¼ H (displacement to the edge of the
barrier H), Eq. 5 becomes

t�ðHÞ ¼ kEH � 1þ eð�kEHÞ

ðkEÞ2D : (6)

Equation 6 thus describes the average barrier-imposed
dwell time t� (Fig. 5 C, iii). This time defines diffusion
deceleration (time delay) when a particle faces an obstacle
so that field E hinders its diffusion escape. In this case, par-
ticle displacement is reduced compared with free diffusion.
On the same space-time scale, when the particle is behind
the trap in the direction of E or otherwise if the field is
reversed (to�E), it gains an additional drift along E because
any stochastic movement in the opposite direction is pre-
vented by the barrier (Fig. 5 C, iv). This increase in drift,
when compared with free-medium diffusion, translates
into time gain:

tþðHÞ ¼ �kEH � 1þ eðkEHÞ

ðkEÞ2D : (7)
Then, the relative medium conductivity estimate q under
field E could be estimated by the expression

qðHÞ ¼ q0
t�ðHÞ
tþðHÞ ¼ q0

kEH � 1þ eð�kEHÞ

�kEH � 1þ eðkEHÞ; (8)
where q0 is the relative medium conductance (porous versus
obstacle-free) under zero field (E ¼ 0). In our experimental
settings (Fig. 4), the q0 value is estimated between 0.4 and
0.5 (Fig. 5 B) so that Eq. 8 has one free parameter H. It turns
out that with the H-values set between 5 and 10 mm, Eq. 8
provides a reasonably close prediction of the experimental
dependence between relative conductivity q and field
strength (Fig. 5 D).

What could be the meaning of H-values in our
experimental test (Fig. 4)? Several studies suggest
that the space tortuosity for a sphere-packed medium
with b ¼ 0.3–0.4 ranges between 1.3 and 1.5 (39–
41). This implies a 30–50% increase in the particle’s
diffusing path compared with an obstacle-free medium.
With the characteristic sphere radius in our tests of
�15 mm (Fig. 4 C), this increase corresponds to �5–
7 mm of additional path per obstacle, which falls
within the range of ‘‘best-fit’’ H-values of 5 and 10
mm. Whether Eq. 8 and the meaning of H hold in
Biophysical Journal 120, 1431–1442, April 20, 2021 1439
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more general cases remains an open and intriguing
question.
DISCUSSION

The main finding of this study is that diffusion permeability
of porous (obstacle-filled) media for charged particles could
depend on the macroscopic electric field. MC simulations
predicted that the apparent diffusion coefficient, or electrical
conductivity, in such media decreases with stronger electric
fields that otherwise accelerate diffusion transfer. This
dependence is enhanced with increased geometric hindrance
or decreased porosity. Our data also suggest that the addi-
tional diffusion hindrance due to the electric field effect is
weaker in radial compared with uniform field (at least
when close to the field source), even when the field strength
remains the same throughout the space. The latter observa-
tion might help explain conclusions of an earlier study (42)
in which geometric considerations suggested a longer diffu-
sion path for ‘‘1D diffusion’’ compared with point-source
diffusion in 2D or 3D; in fact, these earlier conclusions
should have referred to ion diffusion in a strong uniform
(1D) field compared with radial fields. One could also
consider a limiting case when the electric field drift dwarfs
any stochastic Brownian effects; in that case, space dead-
ends in the porous media (4,43,44) could entirely prevent
particle transfer.
Modeling electrodiffusion

The MC algorithms for diffusion and electrodiffusion em-
ployed here have previously been tested and validated system-
atically against experimental recordings, including
submillisecond fast-exchange receptor probing in outside-
out and nucleated (whole-cell) membrane patches (25,26).
In this study, we compared the MC simulation outcome with
the analytical solutions of the NP equation in several key set-
tings and found good correspondence. Throughout our ana-
lyses, we assumed no interactions between diffusing
particles and the spherical obstacles, such as any electrostatic
or electroosmotic influence; we tried to focus on the case of
small ions diffusing, on the microscopic scale, in the weak
(fully dissociated) electrolyte filled with macromolecules
and other inert nanoscopic obstacles. Thismay not necessarily
be the case when particles diffuse in sufficiently narrow clefts
between charged surfaces,whichmaygive rise to further inter-
ference with their transfer (20,22). In this context, our MC al-
gorithms enabled diffusing particles to navigate individual
obstacles, roughly in correspondence with the distortions of
electric field near the surface of dielectric (low permittivity)
spheres. Although it would be important to have a more
rigorous assessment of particle behavior in the vicinity of ob-
stacles, the particle concentration profiles generated by our
MC simulations appeared in good agreement with the NP so-
lutions incorporating the apparent diffusion coefficient.
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We tested our theoretical predictions using a simple phys-
ical experiment inwhich the relationship between electric cur-
rent and external field was measured in controlled conditions
involving glass-sphere-filled electrolyte solutions. The elec-
trolyte strengthwas sufficiently low (much below0.2M) to as-
sume free ion mobility (full dissociation) without ion-ion
interactions, whereas the porosity value was high enough
(�0.7) to ignore electrostatic interactions with the sphere
walls. The shape and the material of obstacles can also affect
interpretation of the results. In our tests, soda glassmicrobeads
were selected for the several reasons. First, we aimed tomatch
the geometry (if not size) of obstacles in our MC simulations.
Second, solid glass material has a high crush strength, which
makes it suitable for high-density packing. Third, soda glass
helped to avoid polarization effects in the spheres if compared
with other materials like polystyrene or coated metals.
Although the experiment did not replicate the dimensions of
the MC simulation settings, we considered it suitable enough
to address the underlying principle. In addition, our control
MC simulations suggested that having either overlapping
spheres (as we did throughout our simulation tests) or
nonoverlapping spheres (in the experiment) had indistinguish-
ably similar effects on the apparent diffusion coefficient, at
least for b < 0.5.
Potential implications for electrophysiology

Across the areas of biology (and other sciences), porous
media come with highly variable geometries and electro-
diffusion scenarios. This makes it difficult to suggest a
generalized theory, although significant progress has been
made in the description of ion flows in media consisting
of tightly packed obstacles separated by narrow pores
(such as porous rocks, sediments, ceramics, etc.) (20,21).
Recently, an elegant study has introduced a Kirchhoff-NP
formulism to model macroscopic electrodiffusion in the
interstitial space surrounding nerve cells (22). On the nano-
scale in the brain, a better understanding of electrodiffu-
sion phenomena is beginning to emerge (23,45),
reflecting a present gap in our knowledge (2,46). In this
context, much less attention has been paid to the potential
influence of electric fields on the conductive properties of
obstacle-filled electrolytes in biological tissues. The poten-
tial importance of this issue stems from the clear depen-
dence between extracellular ion current (both diffusive
and resistive components) and the external field frequency
in brain tissue (15,17). Such nonohmic properties of the
brain extracellular medium can be related to the local
structural inhomogeneities so that the timescale of changes
in the field strength and/or direction affects local ion flow
differently depending on the size of local obstacles (16).
This appears consistent, in principle, with our conclusions
that relate field strength (and b) to medium diffusion
permeability.
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One potentially important consequence of having local
nonohmic properties of the brain tissue is the quantitative
interpretation of electrocorticography of field-potential re-
cordings. Such recordings reflect the strength, spatial distri-
bution, and preferred orientation of local current sources
and sinks inside the tissue volume conductor; estimating
these parameters from the (multipoint) field-potential
readout constitutes the classical inverse problem of brain
electrophysiology (18). Introducing nonohmic tissue prop-
erties that might arise from our findings might therefore
lead to somewhat differing estimates pertaining to the
arrangement and strength of active current sources across
the frequency spectrum (16,18). This could in turn affect
our understanding of electrical neural network activity
based on the current-source reconstruction from electro-
physiological recordings.

Here, we have attempted a first-principle theoretical treat-
ment in which geometrical obstacles are considered poten-
tial barriers in the homogenous electric field. It appears
that under plausible assumptions and within the tested range
of experimental parameters, the theory provides a reason-
able prediction of the dependence between electric field
strength and relative reduction in conductivity observed
experimentally. Clearly, further tests should answer the
question how general these theoretical findings are.
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18. Buzsáki, G., C. A. Anastassiou, and C. Koch. 2012. The origin of extra-
cellular fields and currents–EEG, ECoG, LFP and spikes. Nat. Rev.
Neurosci. 13:407–420.

19. Zhang, Y. Y., G. S. Wang, ., X. L. Dong. 2008. The model of electric
field dependent dielectric properties for porous ceramics. J. Appl. Phys.
103:114103.

20. Di Fraia, S., N. Massarotti, and P. Nithiarasu. 2018. Modelling electro-
osmotic flow in porous media: a review. Int J Numer Method H.
28:472–497.

21. Szyszkiewicz, K., J. J. Jasielec,., R. Filipek. 2017. Modeling of elec-
trodiffusion processes from nano to macro scale. J. Electrochem. Soc.
164:E3559–E3568.
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