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TherapeuTic advances in 
neurological disorders

Introduction
Multiple sclerosis (MS) is a chronic, disabling dis-
ease that requires long-term treatment and regular 

monitoring while also being associated with negative 
effects on health-related quality of life due to reduced 
physical, cognitive, and psychosocial functioning.1–3
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Abstract
Background: In REFLEX, subcutaneous interferon beta-1a (sc IFN β-1a) delayed the onset of 
multiple sclerosis (MS) in patients with a first clinical demyelinating event (FCDE).
Objectives: This post hoc analysis aimed to determine whether baseline serum neurofilament 
light (sNfL) chain can predict conversion to MS and whether correlations exist between 
baseline sNfL and magnetic resonance imaging (MRI) metrics.
Methods: sNfL was measured for 494 patients who received sc IFN β-1a 44 μg once weekly 
(qw; n = 168), three times weekly (tiw; n = 161), or placebo (n = 165) over 24 months. Median 
baseline sNfL (26.1 pg/mL) was used to define high/low sNfL subgroups. Hazard ratios (HRs) 
and 95% confidence intervals (CIs) were calculated using Cox’s proportional hazard model to 
determine factors influencing the risk of conversion to MS. Kaplan–Meier estimates calculated 
median time-to-conversion to MS (McDonald 2005 criteria) or clinically definite MS (CDMS; 
Poser criteria). Correlations between sNfL and MRI findings were assessed using Spearman’s 
rank correlation coefficient (r).
Results: Multivariable models indicated that high baseline sNfL was associated with the 
likelihood of converting to MS and inversely to time-to-conversion (HR = 1.3, 95% CI: 1.03–1.64; 
p = 0.024). Significant additional factors affecting conversion to McDonald MS were on-study 
treatment (sc IFN β-1a/placebo; qw: HR = 0.59, 95% CI: 0.46–0.76; tiw: HR = 0.45, 95% CI: 
0.34–0.59), classification of FCDE (monofocal/multifocal; HR = 0.69, 95% CI: 0.55–0.85), and 
most baseline imaging findings (T2 and T1 gadolinium-enhancing [Gd+] lesions; HR = 1.02, 
95% CI: 1.01–1.03 and HR = 1.07, 95% CI: 1.03–1.11); all p ⩽ 0.001. Conversion to CDMS showed 
similar results. At month 24, sNfL was strongly correlated with a mean number of combined 
unique active (r = 0.71), new T2 (r = 0.72), and new T1 Gd+ (r = 0.60) lesions; weak correlations 
were observed between sNfL and clinical outcomes for all treatment groups.
Conclusion: Higher baseline sNfL was associated with an increased risk of MS conversion, a 
risk that was mitigated by treatment with sc IFN β-1a tiw.

Trial registration: ClinicalTrials.gov identifier: NCT00404352. Date registered: 28 November 2006.
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The current standard for measuring neuroaxonal 
damage associated with disease activity in patients 
with MS is magnetic resonance imaging (MRI)-
assessed lesion burden and brain atrophy.4 
Alongside such imaging, various biomarkers have 
been explored to help identify patients at greater 
risk of aggressive disease phenotypes as well as 
aiding the selection of appropriate disease-modi-
fying therapies (DMTs).5–7 Serum neurofilament 
light (sNfL) chain is meanwhile a very promising 
and useful biomarker of neuroaxonal damage in 
MS as well as drug response. Six years before the 
onset of clinical MS, sNfL levels are higher than 
in matched controls, suggesting the biomarker is 
hugely relevant for prognosis and that neuroax-
onal damage occurs for years before MS onset.8 
The baseline level of sNfL appears to predict dis-
ease course in early MS9 and future disability pro-
gression in those with established disease.10,11 
The timely identification of patients with poten-
tially more aggressive forms of MS or suboptimal 
treatment response could mean that the disease 
course may be favorably altered by providing 
early access to high-efficacy treatments.9,12

Subcutaneous interferon beta-1a (sc IFN β-1a) 
has proven efficacy in the treatment of patients 
with a first clinical demyelinating event (FCDE), 
in terms of significantly delaying the onset of MS 
(according to McDonald 2005 criteria) or clini-
cally definite MS (CDMS; according to Poser cri-
teria) in the REFLEX study.13 Of note, a prior 
analysis of patients from this study found that 
those treated with sc IFN β-1a had reduced sNfL 
concentration as early as 6 months post-baseline.14 
Against this background, the current analysis was 
designed to further explore whether baseline sNfL 
concentration can predict conversion to MS in 
patients with an FCDE. Our primary research 
question was to determine whether baseline sNfL 
concentration can predict conversion to MS and 
whether any correlation exists between sNfL and 
MRI outcomes in such patients.

Methods

Study design and procedures
In this post hoc analysis, sNfL concentrations were 
measured in blood samples from patients who 
participated in the 2-year, randomized, double-
blind REFLEX study (NCT00404352), in which 
eligible patients received sc IFN β-1a 44 μg 
(Rebif®, Merck Healthcare KGaA, Darmstadt, 

Germany) once weekly (qw), three times weekly 
(tiw), or placebo. Enrolment for REFLEX 
occurred at 67 study locations across 27 coun-
tries, beginning in November 2006, with study 
completion in July 2011.

As has been described previously,13 patients were 
eligible for inclusion in the REFLEX study if they 
were aged 18–50 years, had an Expanded Disability 
Status Scale (EDSS) score of ⩽5.0, and had expe-
rienced a first event suggestive of MS ⩽60 days 
before study entry; and at least two clinically silent 
lesions of ⩾3 mm on T2-weighted brain MRI scan 
(at least one of which was ovoid, periventricular, or 
infratentorial). Exclusion criteria included a diag-
nosis of MS according to McDonald 2005 criteria, 
other diseases that could explain the signs and 
symptoms a patient was experiencing at the index 
event, and previous use of any other immunomod-
ulatory or immunosuppressive therapy, or use of 
any corticosteroids within 30 days prior to initiat-
ing treatment in REFLEX.13

Study endpoints and statistical analysis
The post hoc analyses described here were per-
formed using data from the double-blind period 
of the REFLEX study up to CDMS conversion 
and included patients who had serum samples 
available from baseline and at least one other time 
point during the study. The sNfL concentration 
of samples taken at baseline, month 6, month 12, 
and month 24 was analyzed using a sensitive sin-
gle molecule array assay (as described by Disanto 
et al.15) and were run on a Simoa HD-1 instru-
ment (Quanterix, Billerica, MA, USA) using a 
two-step Assay Neat 2.0 protocol.

Hazard ratios (HRs) with 95% confidence inter-
vals (CIs) were estimated from univariable Cox’s 
proportional hazard models used to determine the 
factors influencing time to conversion to MS. A 
stepwise multivariable Cox’s proportional hazard 
model was used with factors or covariates selected 
from the univariable models (threshold p < 0.15) 
that were seen to have an influence on conversion 
to MS. These factors were on-study treatment, 
age at baseline, FCDE classification (monofocal/
multifocal), and number of T1 gadolinium-
enhancing (Gd+) and T2 lesions. Baseline sNfL 
concentration was also included as a factor, being 
categorically defined in relation to the median 
value of 26.1 pg/mL as either low (baseline 
sNfL ⩽ median) or high (baseline sNfL > median). 
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For both models, variable selection was based on 
a two-sided Wald test.

The median time to conversion to MS (McDonald 
2005 criteria) or CDMS in each treatment group 
by month 24 was calculated using Kaplan-Meier 
curve estimates.

Correlations between sNfL and MRI findings 
were assessed using Spearman’s rank correlation 
coefficient (r), according to two approaches: 
baseline sNfL with baseline lesion count and nor-
malized brain volume; and sNfL at month 24 
with (1) number of new MRI lesions between 
baseline and month 24 and (2) mean number of 
combined unique active (CUA), new T2, T1 
Gd+, and T1 hypointense lesions per patient per 
scan during the 24-month double-blind period.

Correlation analyses were performed on observed 
data and the strength of correlation was defined 
as follows: very strong (r = 0.80–1.00), strong 
(r = 0.60–0.79), moderate (r = 0.40–0.59), weak 
(r = 0.20–0.39), or very weak (r = 0.00–0.19).

Sample size and statistical power 
considerations
In REFLEX, the primary endpoint was the time to 
conversion to MS (McDonald 2005 criteria) where 
a total of 450 patients were required to achieve 165 
events for the comparison sc IFN β-1a 44 µg tiw 
versus placebo. This sample size was required to 
achieve 90% power with a two-sided 0.05 alpha 
error for detecting a HR of 0.6 for the primary 
comparison. The time to conversion was assumed 
to be exponentially distributed, and no adjustment 
for the multiplicity of the alpha error was applied.

Patients were randomly and equally allocated to 
each of the three treatment arms at enrolment to 
REFLEX and were included in this post hoc anal-
ysis based on the criteria mentioned above.

Results
Overall, 517 patients were randomly assigned to 
treatment in REFLEX, of whom 494 patients 
were included in this analysis (sc IFN β-1a qw, 
n = 168; sc IFN β-1a tiw, n = 161; placebo, 
n = 165). The mean ± standard deviation (SD) 
age for these 494 patients was 30.8 (±8.1) years, 
and 318 (64.4%) were female (Table 1).

In the overall sNfL analysis set, the interquartile 
range for sNfL concentrations at baseline was 
15.4–61.8 pg/mL, with a median of 26.1 pg/mL. 
Patients with low sNfL at baseline (i.e. ⩽26.1 pg/
mL) had numerically fewer T1 Gd+, T1 hypoin-
tense, and T2 lesions compared with the high 
baseline sNfL cohort. Lesion volumes at baseline 
were also lower in the low sNfL subgroup com-
pared with the high sNfL subgroup, but there 
were no observed differences in normalized brain 
volume.

Over the 24-month study period, concentrations 
of sNfL were reduced in all three groups; these 
reductions occurred as early as 6 months post-
baseline and were more visibly reduced in patients 
with high baseline sNfL and for those treated with 
sc IFN β-1a (Supplemental Figure S1).

sNfL at baseline and conversion to MS
The multivariable stepwise analysis determined 
that high sNfL at baseline was correlated with the 
likelihood of conversion to MS (McDonald 2005 
criteria); significant factors in this multivariable 
model were baseline sNfL subgroup (high/low: 
HR = 1.3, 95% CI: 1.03–1.64; p = 0.024), on-
study treatment versus placebo (sc IFN β-1a qw: 
HR = 0.59, 95% CI: 0.46–0.76; sc IFN β-1a tiw: 
HR = 0.45, 95% CI: 0.34–0.59; both p < 0.001), 
classification of FCDE (monofocal/multifocal: 
HR = 0.69, 95% CI: 0.55–0.85; p < 0.001), base-
line number of T1 Gd+ (HR = 1.07, 95% CI: 
1.03–1.11; p = 0.001) and T2 lesions (HR = 1.02, 
95% CI: 1.01–1.03; p < 0.001), and age at base-
line (<30/⩾30 years: HR = 1.47, 95% CI: 1.19–
1.82; p < 0.001) (Table 2).

Regarding multivariable models of conversion to 
CDMS (Poser criteria), the only remaining sig-
nificant factors were on-study treatment versus 
placebo (sc IFN β-1a qw: HR = 0.45, 95% CI: 
0.30–0.68; sc IFN β-1a tiw: HR = 0.46, 95% CI: 
0.30–0.71; both p < 0.001), and number of T1 
Gd+ (HR = 1.10, 95% CI: 1.04–1.16; p < 0.001) 
and T2 lesions (HR = 1.01, 95% CI: 1.00–1.02; 
p = 0.053) at baseline. Results for the other fac-
tors, for example, age at baseline and baseline 
sNfL subgroup, were significant in the univaria-
ble models but were not significant in the step-
wise multivariable Cox’s proportional hazard 
model and, as such, were not subsequently 
included in the multivariable model.
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Table 1. Patient demographics and disease characteristics at baseline.

Full sNfL analysis set (n = 494)

Characteristic Placebo (n = 165) sc IFN β-1a qw (n = 168) sc IFN β-1a tiw (n = 161) Overall (n = 494)

Age, years 30.7 (7.7) 30.9 (8.2) 30.8 (8.6) 30.8 (8.1)

Female, n (%) 108 (65.5) 104 (61.9) 106 (65.8) 318 (64.4)

Time since FCDE, days

 Median (Q1–Q3) 59.0 (56.0–60.0) 59.0 (57.0–60.0) 59.0 (56.0–60.0) 59.0 (56.0–60.0)

EDSS score mean (median) 1.53 (1.5) 1.52 (1.5) 1.57 (1.5) 1.54 (1.5)

sNfL value, pg/mL

 Mean (SD) 59.3 (90.8) 54.6 (106.2) 45.7 (62.4) 53.3 (88.6)

 Median (Q1–Q3) 24.6 (15.6–61.8) 26.7 (16.5–51.9) 25.3 (15.4–48.4) 26.1 (15.8–53.1)

Number of T1 Gd+ lesions 1.2 (2.8) 1.5 (3.5) 1.3 (2.5) 1.3 (3.0)

T1 Gd+ lesion volume, mm3 193.4 (594.2) 199.8 (604.6) 148.3 (409.1) 108.9 (544.2)

Number of T1 hypointense lesions 5.5 (7.7) 6.0 (7.6) 5.8 (6.9) 5.8 (7.4)

T1 hypointense lesion volume, mm3 660.9 (1049.3) 790.7 (1304.7) 691.2 (1074.1) 714.9 (1149.1)

Number of T2 lesions 20.9 (19.9) 24.0 (21.3) 22.3 (19.0) 22.4 (20.1)

T2 lesion volume, mm3 3300.6 (3980.4) 3931.8 (4762.7) 3093.0 (3434.4) 3447.6 (4112.2)

Normalized brain volume, cm3 1545.9 (63.7) 1536.0 (66.9) 1536.2 (74.2) 1539.4 (68.4)

Low baseline sNfL (⩽ median baseline value; n = 247)

Characteristic Placebo (n = 85) sc IFN β-1a qw (n = 80) sc IFN β-1a tiw (n = 82) Overall (n = 247)

Age, years 31.2 (7.5) 31.2 (8.1) 32.1 (7.7) 31.5 (7.7)

Female, n (%) 56 (65.9) 55 (68.8) 56 (68.3) 167 (67.6)

Time since FCDE, days

 Median (Q1–Q3) 59.0 (56.0–60.0) 59.0 (57.0–60.0) 59.0 (57.0–60.0) 59.0 (57.0–60.0)

EDSS score, mean (median) 1.52 (1.5) 1.52 (1.5) 1.49 (1.5) 1.51 (1.5)

sNfL value, pg/mL

 Mean (SD) 15.7 (5.7) 15.8 (5.6) 15.2 (5.3) 15.6 (5.5)

 Median (Q1–Q3) 15.7 (12.2–20.0) 16.1 (11.5–20.9) 15.5 (11.7–18.5) 15.7 (11.7–20.1)

Number of T1 Gd+ lesions 0.3 (0.7) 0.5 (1.0) 0.4 (0.9) 0.4 (0.9)

T1 Gd+ lesion volume, mm3 25.8 (72.0) 53.9 (183.0) 18.1 (66.4) 32.4 (119.2)

Number of T1 hypointense lesions 3.4 (4.9) 5.1 (7.7) 4.6 (5.7) 4.3 (6.2)

T1 hypointense lesion volume, mm3 381.3 (794.0) 566.4 (1217.6) 596.1 (1186.6) 512.6 (1079.0)

Number of T2 lesions 15.1 (14.2) 19.6 (18.3) 16.9 (13.8) 17.2 (15.6)

T2 lesion volume, mm3 1754.2 (2291.9) 2261.6 (3150.7) 2081.9 (2567.4) 2027.3 (2682.7)

Normalized brain volume, cm3 1544.6 (64.6) 1535.5 (63.5) 1529.3 (72.3) 1536.6 (67.0)

(Continued)
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High baseline sNfL (>median baseline value; n = 247)

Characteristic Placebo (n = 80) sc IFN β-1a qw (n = 88) sc IFN β-1a tiw (n = 79) Overall (n = 247)

Age, years 30.2 (8.0) 30.7 (8.2) 29.4 (9.3) 30.1 (8.5)

Female, n (%) 52 (65.0) 49 (55.7) 50 (63.3) 151 (61.1)

Time since FCDE, days

 Median (Q1–Q3) 59.0 (56.0–60.0) 59.0 (56.0–60.0) 59.0 (55.0–60.0) 59.0 (56.0–60.0)

EDSS score, mean (median) 1.54 (1.5) 1.52 (1.5) 1.64 (1.5) 1.57 (1.5)

sNfL value, pg/mL

 Mean (SD) 105.7 (113.4) 89.9 (137.8) 77.3 (77.3) 91.0 (113.4)

 Median (Q1–Q3) 63.1 (40.3–123.5) 50.9 (35.7–92.8) 48.9 (35.8–85.8) 53.4 (36.2–98.7)

Number of T1 Gd+ lesions 2.2 (3.7) 2.4 (4.6) 2.2 (3.2) 2.3 (3.9)

T1 Gd+ lesion volume, mm3 371.4 (815.6) 332.5 (796.2) 283.4 (550.0) 329.4 (731.4)

Number of T1 hypointense lesions 7.7 (9.4) 6.8 (7.4) 7.1 (7.7) 7.2 (8.2)

T1 hypointense lesion volume, mm3 958.0 (1200.8) 994.6 (1353.9) 790.0 (940.7) 917.3 (1183.1)

Number of T2 lesions 27.0 (23.1) 28.0 (23.1) 27.8 (22.0) 27.6 (22.7)

T2 lesion volume, mm3 4943.7 (4690.2) 5450.3 (5443.3) 4142.5 (3893.6) 4867.9 (4758.4)

Normalized brain volume, cm3 1547.2 (63.1) 1536.5 (70.1) 1543.5 (75.9) 1542.2 (69.7)

Mean (SD) unless stated otherwise.
EDSS, Expanded Disability Status Scale; FCDE, first clinical demyelinating event; Gd+, gadolinium enhancing; IFN, interferon; Q, quartile; 
qw, once weekly; sc, subcutaneous; sc IFN β-1a, subcutaneous interferon beta-1a; SD, standard deviation; sNfL, serum neurofilament light 
chain; tiw, three times weekly.

Table 1. (Continued)

Low versus high sNfL at baseline and time to 
conversion to MS
The median time to conversion to MS 
(McDonald 2005 criteria) was longer in patients 
in the low sNfL subgroup (128, 272, and 
801 days for placebo, sc IFN β-1a qw, and tiw, 
respectively) than in the high sNfL subgroup 
(93, 97, and 142 days for placebo, sc IFN β-1a 
qw, and tiw, respectively). Corresponding 
median time to conversion to CDMS could not 
be reported since the proportion of patients who 
converted was below 50%; however, at the 25% 
level, the time to conversion to CDMS was 
longer in the low sNfL subgroup (445 days for 
placebo, and not estimable for sc IFN β-1a since 
this level was not reached for either therapeutic 
dose) than in the high sNfL subgroup (345, 699, 
and 651 days for placebo, sc IFN β-1a qw, and 
tiw, respectively) [Figure 1(a) and (b) and 
Supplemental Table S1).

Correlation between sNfL at baseline and  
MRI findings/clinical outcomes
Moderate, positive correlations were observed 
between baseline sNfL and baseline MRI findings, 
including the volume of T2 lesions and the volume 
and number of T1 Gd+ lesions (r = 0.55, 0.49, 
and 0.46, respectively; all p < 0.0001) [Table 3 
and Supplemental Figure S2(a)]. There were weak 
correlations between baseline sNfL and other 
baseline MRI findings, including the volume and 
number of T1 hypointense lesions and number of 
T2 lesions (r = 0.36, 0.35, and 0.30, respectively; 
all p < 0.0001). Very weak correlations were seen 
between baseline sNfL and normalized brain vol-
ume (r = 0.01, p = 0.8180) (Table 3).

During the 24-month double-blind treatment 
period, the mean number of MRI lesions was 
significantly lower in the sc IFN β-1a tiw group 
compared with placebo (Supplemental Table 
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S2). In the placebo group, for the same time-
frame, strong correlations were observed 
between sNfL at month 24 and the mean num-
ber of CUA, new T2 lesions, and new T1 Gd+ 
lesions [Table 4 and Supplemental Figure 
S2(b)]. The lower Spearman’s rank correlation 
coefficients observed in the sc IFN β-1a tiw 
treatment group indicate a lower number and 
volume of T1 and T2 lesions compared with sc 
IFN β-1a qw and placebo. Very weak correla-
tions were observed between sNfL at month 24 
and clinical outcomes (EDSS, brain volume, 
and qualifying relapses) in the placebo and sc 
IFN β-1a-treated groups (Table 4).

Discussion
Recently, sNfL has received growing interest 
around how this biomarker may predict the 

future disease course in early MS, as well as how 
sNfL concentrations are affected in response to 
DMTs. In this analysis of REFLEX, sNfL con-
centrations of patients experiencing a first event 
suggestive of early MS were correlated with cur-
rent and future MRI outcomes along with con-
version to MS, as defined by McDonald 2005 
and Poser criteria. Using a multivariable analy-
sis, results from the study show that treatment 
with sc IFN β-1a delayed the time to conversion 
and reduced the proportion of patients who 
converted to MS over the 24-month study 
period.

Conversion to MS (McDonald 2005 criteria) or 
CDMS (Poser criteria)
Several studies have reported higher sNfL con-
centrations in patients with clinically isolated 

Table 2. Multivariable analysisa of time to conversion to MS or clinically definite MS.

Factor Parameter estimate SE HR (95% CI) p Valueb

Time to conversion to MS (McDonald 2005 criteria)

 Treatment

  (sc IFN β-1a qw/placebo) −0.53 0.13 0.59 (0.46–0.76) <0.001

  (sc IFN β-1a tiw/placebo) −0.80 0.14 0.45 (0.34–0.59) <0.001

  Age at baseline (<30/⩾30 years) 0.39 0.11 1.47 (1.19–1.82) <0.001

  FCDE classification (monofocal/multifocal) −0.38 0.11 0.69 (0.55–0.85) <0.001

  Number of T1 Gd+ lesions at baseline 0.07 0.02 1.07 (1.03–1.11) 0.001

 Number of T2 lesions at baseline 0.02 0.00 1.02 (1.01–1.03) <0.001

  Baseline median sNfL subgroup (high/low)c 0.26 0.12 1.3 (1.03–1.64) 0.024

Time to conversion to clinically definite MS (Poser criteria)

 Treatment

  (sc IFN β-1a qw/placebo) −0.80 0.21 0.45 (0.30–0.68) <0.001

  (sc IFN β-1a tiw/placebo) −0.77 0.22 0.46 (0.30–0.71) <0.001

  Number of T1 Gd+ lesions at baseline 0.09 0.03 1.10 (1.04–1.16) <0.001

aA stepwise multivariable Cox’s proportional hazard model was performed using factors selected from the univariable 
model (threshold p < 0.15). Only statistically significant factors in the multivariable model are shown.
bTwo-sided Wald test.
cLow baseline sNfL: baseline sNfL ⩽ median; high baseline sNfL: baseline sNfL > median.
CI, confidence interval; FCDE, first clinical demyelinating event; Gd+, gadolinium enhancing; HR, hazard ratio; IFN, 
interferon; MS, multiple sclerosis; qw, once weekly; sc, subcutaneous; sc IFN β-1a, subcutaneous interferon beta-1a; SE, 
standard error; sNfL, serum neurofilament light chain; tiw, three times weekly.
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Figure 1. Kaplan–Meier cumulative incidence curves for time to conversion to MS (McDonald 2005 criteria) or clinically definite 
MS (Poser criteria) by treatment group, for each baseline sNfL subgroup. (a) Time to conversion to MS (McDonald 2005 criteria). (i) 
Low baseline sNfL (⩽ median baseline value). (ii) High baseline sNfL (> median baseline value). (b) Time to conversion to clinically 
definite MS (Poser criteria). (i) Low baseline sNfL (⩽ median baseline value). (ii) High baseline sNfL (> median baseline value).
CI, confidence interval; IFN, interferon; MS, multiple sclerosis; qw, once weekly; sc, subcutaneous; sc IFN β-1a, subcutaneous interferon beta-1a; 
sNfL, serum neurofilament light chain; tiw, three times weekly.

Table 3. Correlation between sNfL concentration and MRI findings at baseline.

Characteristic Overall Spearman’s rank correlation 
coefficient (r) (n = 494)

p Value

Volume of T2 lesions, mm3 0.545 <0.0001

Volume of T1 Gd+ lesions, mm3 0.490 <0.0001

Number of T1 Gd+ lesions 0.464 <0.0001

Volume of T1 hypointense lesions, mm3 0.358 <0.0001

Number of T2 lesions 0.345 <0.0001

Number of T1 hypointense lesions 0.298 <0.0001

Normalized brain volume*, cm3 0.010 0.8180

Bold, italicized values indicate moderate correlations.
*Based on n = 488.
Gd+, gadolinium enhancing; MRI, magnetic resonance imaging; sNfL, serum neurofilament light chain.
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syndrome or a FCDE. However, there have been 
few published examples of how sNfL may be used 
prognostically to determine the risk of conversion 
to MS.12,16,17 It should be noted that these studies 
explored the risk of conversion to MS according 
to McDonald 201012,17 or 2017 criteria,16 whereas 
our analysis of REFLEX investigated conversion 
according to the earlier 2005 criteria that were in 
place at the time of study initiation. We found 
that higher baseline sNfL concentration was asso-
ciated with an increased risk of conversion to MS, 
thus indicating that sNfL may be a prognostic 

biomarker of disease in patients with a FCDE. 
One such study found a 1-point increase in the 
HR for the risk of conversion to CDMS for every 
100 pg/mL increase in sNfL using a univariable 
model and found the adjusted HR for CDMS 
conversion remained significant in a multivariable 
model.17

Factors such as receiving treatment with sc IFN 
β-1a, the classification of FCDE (mono- or multi-
focal), and low numbers of MRI lesions at base-
line were also found to be independently 

Table 4. Correlation between month 24 sNfL and MRI and clinical findings at month 24, according to treatment 
group.

Characteristic Spearman’s rank correlation coefficient (r)

 Placebo sc IFN β-1a qw sc IFN β-1a tiw

Lesion count per patient per scana during the 24-month 
double-blind period

n = 91 n = 113 n = 115

Mean number of CUA lesions 0.708*** 0.485*** 0.133

Mean number of new T2 lesions 0.715*** 0.458*** 0.105

Mean number of new T1 Gd+ lesions 0.598*** 0.400*** 0.308**

Mean number of new T1 hypointense lesions 0.494*** 0.477*** 0.182

Lesion count at month 24 n = 133 n = 139 n = 138

Number of new T2 lesions 0.564*** 0.372*** 0.274**

Volume of total T2 lesions, mm3 0.453*** 0.286** 0.215*

Number of new T1 Gd+ lesions 0.344*** 0.360*** 0.231*

Volume of total T1 Gd+ lesions, mm3 0.379*** 0.355*** 0.232*

Number of new T1 hypointense lesions 0.319** 0.259* 0.292**

Volume of total T1 hypointense lesions, mm3 0.430*** 0.267* 0.194*

EDSS (change from baseline) at month 24 n = 138
0.014

n = 140
−0.148

n = 145
−0.011

Brain volume (% change from baseline) at month 24 n = 127
−0.135

n = 136
−0.081

n = 135
−0.218

Qualifying relapses during a 24-month, double-blind 
period

n = 141
0.012

n = 141
−0.031

n = 148
0.080

Bold, italicized values indicate moderate correlations; bolded blue values indicate strong correlations.
aMRI metrics collected at several time points during a 24-month period were used for the correlation analysis; data 
reported for patients with sNfL and MRI/clinical data were available for analysis.
*p < 0.05, **p < 0.001, ***p < 0.0001.
CUA, combined unique active; EDSS, Expanded Disability Status Scale; Gd+, gadolinium enhancing; IFN, interferon; MRI, 
magnetic resonance imaging; qw, once weekly; sc, subcutaneous; sc IFN β-1a, subcutaneous interferon beta-1a; sNfL, 
serum neurofilament light chain; tiw, three times weekly.
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associated with a reduced risk of conversion to 
MS. Indeed, the respective multivariable models 
both showed significance for on-study treatment 
(versus placebo) and for the number of T1 Gd+ 
and T2 lesions for the conversion to both MS 
(McDonald 2005 criteria) and CDMS (Poser cri-
teria), respectively.

Correlations between sNfL and MRI  
findings/clinical outcomes
The presence of MRI lesions is commonly associ-
ated with a more active disease course, and as 
such it would be expected that higher sNfL con-
centrations would be present. Indeed, there was a 
consistent association between sNfL concentra-
tion and both MRI and clinical outcomes during 
the study. At baseline, for example, higher sNfL 
concentrations were observed in patients who had 
higher numbers of T1 Gd+, T1 hypointense, and 
T2 MRI lesions, possibly reflecting recent/ongo-
ing neuroaxonal damage18 and/or greater disease 
activity.19 Moderate, albeit significant, correla-
tions were observed between baseline sNfL con-
centration and baseline T2 lesion volumes, T1 
Gd+ lesion volumes, and T1 Gd+ lesion num-
bers, findings that are consistent with previous 
observations15 and studies of plasma NfL.18 
These findings were also similar to those of 
patients treated with intramuscular IFN β-1a, 
which showed moderate correlations in the num-
ber of T1 Gd+ lesions and T2 lesion volumes.5

During the 24-month, double-blind study period 
and at the month 24 timepoint, strong correla-
tions were observed between sNfL and CUA, T1 
Gd+, and T2 lesions in the placebo group. It 
should be noted that patients in the placebo group 
had a similar number of lesions as compared to 
the treated subgroups at baseline.

Studies have found increased sNfL close to the 
onset of clinical relapse,15,16,20 with the appear-
ance of T1 Gd+ and new and/or enlarging T2 
lesions,15,16,19,20 and EDSS progression.12,20,21 
sNfL concentration at the time of diagnosis was 
also found to predict disease activity over a suc-
ceeding 2-year period.22 Although some studies 
have found correlations between sNfL and EDSS 
worsening, these observations were not made in 
this post hoc analysis of REFLEX, which may be 
due to the study population. In early MS, there 
are very few changes to disability and any changes 
that are present can be difficult to detect. Other 

studies have also found no correlations between 
sNfL and EDSS,16,17,19 with some studies indicat-
ing a correlation using univariable and multivari-
able models.11,15

Taken together, the results from this analysis sug-
gest that patients with a FCDE and high baseline 
sNfL have a higher probability of disease worsen-
ing. Indeed, since the REFLEX study was con-
ducted, treatment practices have changed, and 
early treatment may be used in patients with high 
levels of sNfL to maintain neurological 
function.23–25

Study limitations
This analysis is limited by the use of the McDonald 
2005 criteria, which were the current means for 
determining conversion to MS at the time the 
REFLEX study commenced (November 2006). 
It should also be noted that the sNfL data in this 
analysis were collected over a short 2-year time-
frame, during which patients may not have con-
verted to MS based on their disease phenotype. 
However, longer-term studies have found that at 
10 years, there was no statistically significant dif-
ference in the risk of CDMS between patients 
with low versus high sNfL concentrations.5 It 
should also be considered that the present analy-
sis of REFLEX focuses on a patient population 
that had experienced a FCDE. For this popula-
tion, the time-to-conversion analysis was deemed 
to be important and therefore the multivariable 
analyses explored the primary and secondary end-
points of time-to-conversion to McDonald MS 
(2005 criteria) and CDMS (Poser criteria). For 
this analysis, the multivariable models were not 
expanded to other variables, thus raising an inter-
esting question about the interactions with lesion 
volume and brain atrophy, which needs further 
exploration. Lastly, not using percentiles/Z-scores 
– adjusting for age and BMI based on healthy 
controls – was a shortcoming of the work. 
However, large reference databases are not avail-
able for the homebrew assay used to measure 
sNfL in this study; consequently, we were not 
able to use percentiles/Z-scores.11 However, all 
models were adjusted for age.

In conclusion, we found that higher baseline sNfL 
concentration was associated with an increased 
risk of conversion to MS (McDonald 2005 crite-
ria) or CDMS (Poser criteria) in patients with a 
FCDE. Age, multifocal disease, and number of 
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T1 or T2 lesions at baseline were also confirmed 
as significant determinants for risk of conversion. 
Conversion was delayed in all patients treated 
with sc IFN β-1a tiw regardless of baseline sNfL 
concentrations; yet, this delay in conversion was 
particularly noticeable for patients who had base-
line sNfL values below the median of 26.1 pg/mL. 
Concerning MRI parameters, a higher sNfL con-
centration at baseline was moderately correlated 
with lesion load and T1 Gd+ lesion count in such 
patients, and this association was also present for 
placebo recipients at month 24. However, these 
correlations were weak in the sc IFN β-1a tiw 
group, consistent with a significant reduction in 
lesion counts compared with placebo. Together, 
these exploratory findings highlight the complex 
interplay between sNfL concentration, MRI out-
comes, and risk of conversion to MS in patients 
with a FCDE, and the benefits of treatment with 
sc IFN β-1a in such patients.
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