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ABSTRACT Here, we report the metagenomes from two Amazonian floodplain sediments
in eastern Brazil. Tropical wetlands are well known for their role in the global carbon cycle.
Microbial information on this diversified and dynamic landscape will provide further insights
into its significance in regional and global biogeochemical cycles.

loodplains and wetlands constitute 14% of the total area of the Amazon basin (1) and

are considered the largest natural geographic source of methane (CH,) in the tropics (2).
Therefore, several studies have investigated the CH,-producing and -consuming microbial
communities in these sediments and their responses to a range of environmental factors using
16S rRNA amplicon sequencing (3-5). However, their overall microbial taxonomic and
functional diversity remains little explored. Here, we report 12 metagenomes from two
Amazonian floodplains in the wet and dry seasons.

The samplings were carried out in two floodplains in the State of Para, Brazil, namely,
one located at the Amazon River (FP2, “Maica”, 2°28'11.2"S 54°38'49.9"W) and the other at
the intersection between the Amazon and the Tapajés rivers (FP3, “Acgu”, 2°22'44.8"S 54°
44'21.1"W). The Amazon and Tapajés are considered whitewater and clearwater rivers, respec-
tively, according to Junk et al. (6). Sediment samples from a depth of 0 to 10 cm were collected
using a corer (5-cm diameter by 10-cm depth) at both sites in the wet and dry seasons (May
and October 2016, respectively) in triplicate, totaling 12 samples, and homogenized thoroughly.
Total DNA was extracted in duplicate from 0.25 g of sediment using the PowerlLyzer
PowerSoil DNA Isolation Kit (Qiagen, Hilden, Germany), following an optimized protocol
for Amazonian sediments (7). Metagenomic libraries were constructed using the NEBNext
Ultra Il DNA Library Prep Kit for lllumina (New England BioLabs, Inc., Ipswich, MA) and paired-

end sequenced (2 x 150 bp) on an lllumina HiSeq 2500 instrument (lllumina, Inc., Editor J. Cameron Thrash, University of
San Diego, CA) at Novogene Co., Ltd. (Beijing, China). Detailed information about the study Southern California
sites, sampling, sediment physicochemical properties, and DNA extraction and quantification Copyright © 2022 Venturini etal. This is an
. . open-access article distributed under the terms
have been described previously (5). of the Creative Commons Attribution 4.0
Metagenomic reads were imported into the KBase platform (8), and default parameters International license.
were used for all software unless otherwise specified. Reads were evaluated using FastQC Address correspondence to Andressa M.

Venturini, andressa.venturini@alumni.usp.br.

v0.11.9 (9), trimmed and filtered using Trimmomatic v0.36 (adapters, TruSeq3-PE-2; seed
mismatches, 5; sliding window size, 5; sliding window minimum quality, 20; head crop length,

. . . . L . - Received 23 May 2022
10; leading minimum quality, 20; trailing minimum quality, 20; minimum read length, 70) (10), Accepted 26 June 2022
and again evaluated using FastQC v0.11.9 (9). Overlapping paired-end reads were joined with Published 19 July 2022
FASTQ-JOIN v2.0.2 (8, 11) and taxonomically classified using Kaiju v1.7.3 (taxonomic level,
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FIG 1 Taxonomic classification of the sequence reads at the phylum level. (A) Most abundant bacterial phyla (mean relative abundance of > 1% across
samples). (B) Archaeal phyla. (C) Fungal phyla. Relative abundance calculated based on the classified reads. WS, wet season; DS, dry season.

phylum/class; reference database, NCBI BLAST nr+euk; low abundance filter, 0.01%; sub-
sample percent, 100%) (12). The results were plotted using ggplot2 3.3.5 (13) in R 4.1.2 (14).

The metagenomic samples had between 22 and 31 million 150-bp long paired-end reads
(Table 1). After quality control, between 19 and 29 million paired-end reads remained, ranging
from 70 to 140 bp. The joining of the overlapping paired-end reads resulted in samples with
between 9 and 15 million reads, ranging from 76 to 274 bp. A considerable part of the reads
(mean of 42% across samples) was not classified. Most of the classified reads were assigned
to Bacteria, but also Archaea, Fungi, and viruses (Fig. 1). The most dominant phyla (mean
relative abundance of > 10% across samples), among the 90 microbial phyla found,
were Proteobacteria, Actinobacteria, and Acidobacteria.

Data availability. The raw metagenomic sequences are available in the NCBI Sequence
Read Archive (SRA) under the umbrella project PRINA782633. The raw sequences, apps, and
all the outputs of the analyses described here are also available on the KBase platform at
https://www.doi.org/10.25982/113717.182/1864845.
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