
Methods

Incidence rate estimation, periodic testing and

the limitations of the mid-point imputation

approach

Alain Vandormael,1,2* Adrian Dobra,3 Till B€arnighausen,1,4,5,6

Tulio de Oliveira2,7 and Frank Tanser1,6,7,8

1Africa Health Research Institute, KwaZulu-Natal, South Africa, 2Nelson R Mandela School of

Medicine, College of Health Sciences, University of KwaZulu-Natal, South Africa, 3Department of

Statistics, Department of Biobehavioral Nursing and Health Informatics, Center for Statistics and the

Social Sciences, and Center for Studies in Demography and Ecology, University of Washington,

Seattle, WA, USA, 4Heidelberg Institute for Public Health, University of Heidelberg, Heidelberg,

Germany, 5Department of Global Health and Population, Harvard T.H. Chan School of Public Health,

Boston, USA, 6Research Department of Infection and Population Health, University College London,

London, UK, 7Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South

Africa and 8School of Nursing and Public Health, University of KwaZulu-Natal, South Africa

*Corresponding author. 719 Umbilo Road, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban,

4001, South Africa. E-mail: vando026@umn.edu

Editorial decision 18 June 2017; Accepted 29 June 2017

Abstract

Background: It is common to use the mid-point between the latest-negative and earliest-

positive test dates as the date of the infection event. However, the accuracy of the mid-

point method has yet to be systematically quantified for incidence studies once partici-

pants start to miss their scheduled test dates.

Methods: We used a simulation-based approach to generate an infectious disease
epidemic for an incidence cohort with a high (80–100%), moderate (60–79.9%), low
(40–59.9%) and poor (30–39.9%) testing rate. Next, we imputed a mid-point and random-
point value between the participant’s latest-negative and earliest-positive test dates. We
then compared the incidence rate derived from these imputed values with the true inci-
dence rate generated from the simulation model.

Results: The mid-point incidence rate estimates erroneously declined towards the end of

the observation period once the testing rate dropped below 80%. This decline was in

error of approximately 9%, 27% and 41% for a moderate, low and poor testing rate, re-

spectively. The random-point method did not introduce any systematic bias in the inci-

dence rate estimate, even for testing rates as low as 30%.

Conclusions: The mid-point assumption of the infection date is unjustified and should not

be used to calculate the incidence rate once participants start to miss the scheduled test

dates. Under these conditions, we show an artefactual decline in the incidence rate towards
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the end of the observation period. Alternatively, the single random-point method is straight-

forward to implement and produces estimates very close to the true incidence rate.
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Background

The incidence rate is a fundamental concept in infectious

disease epidemiology. It is used to measure the frequency at

which new infection events occur per unit of person-time.1

An important task for any incidence study is to precisely

identify the timing of a new infection event.2 But this is dif-

ficult to do because we cannot, at least in most situations,

test participants on a daily basis. Instead, the current ‘gold-

standard’ approach is to schedule test dates at fixed time

intervals, say on a weekly, monthly or yearly basis.3 In this

case, we can only infer that the infection event occurred at

some time-point between the latest-negative and earliest-

positive test dates. The use of periodic testing to identify the

infection event gives rise to the standard interval censoring

problem.4–8 Even if participants present at all of their

scheduled test dates, we would still not know the exact

amount of person-time that has been contributed since the

start of the study period. The standard interval censoring

problem therefore reflects an enumeration uncertainty in

the denominator of the incidence rate measure.

It is intuitive that our uncertainty of the infection date

will be proportional to the length of the testing interval.

This uncertainty, by inference, will increase once partici-

pants start to miss their scheduled test dates. In sub-

Saharan Africa, for example, reasons for missed HIV test

dates have been associated with work commitments, illness,

transportation costs, frequent migration and the fear of

stigma or discrimination, among many others.9–13 Irregular

testing means that participants will have some probability

of missing a test date that is contiguous to the interval con-

taining the true (but unobserved) infection date. In other

words, missed test dates are likely to extend the width of

the censoring interval across one or more fixed testing inter-

vals. This scenario, which we describe as extended interval

censoring, means that we cannot definitively identify the

testing interval in which the infection event truly occurs.

Extended interval censoring therefore reflects an enumer-

ation uncertainty in both the denominator and numerator

of the incidence rate measure, which we illustrate with a

straightforward example in Figure 1.

In recent years, a number of advanced and sophisticated

methods have been designed to address the interval censor-

ing problem.14–27 However, there is no clear guidance on

how these interval censoring methods can be used to esti-

mate the incidence rate, and in which situations they

should be applied.28 In practice, epidemiologists are likely

to treat the infection date as a missing data point for which

more familiar imputation methods are available.4 One

popular ad hoc approach, which is the focus of this study,

Key Messages

• Recent evidence suggests that the mid-point of the latest-negative and earliest-positive test dates—the censoring

interval—can be used to infer the timing of the infection event.

• Using a simulation-based approach, we show that the infection date does not occur at the mid-point of the censored

interval once participants start to miss their scheduled test dates.

• Under these circumstances, the mid-point method may lead epidemiologists to falsely conclude that the incidence

rate is declining toward the end of the observation period.

• Imputation of a random infection date within the censored interval, based on a Monte Carlo approach, is straightfor-

ward to implement and produces estimates very close to the true incidence rate.

Figure 1. An example of Standard (Panel A) and Extended (Panel B)

interval censoring. In Panel A, the participant is successfully tested at

each scheduled test date, represented by the solid circles. We know

that the infection event occurs somewhere between the latest-negative

(L) and earliest-positive (R) test date. But we do not know the exact

amount of person-time that should be contributed to the denominator

of the incidence rate measure for the last time interval. In Panel B, the

participant misses two scheduled test dates, as represented by the hol-

low circles. This makes it difficult to determine if the true infection event

occurs in the 3rd or 4th or 5th time interval. In this case, there is an enu-

meration uncertainty in both the denominator and numerator of the

incidence rate measure for each of these time intervals.
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is to impute the infection date at the mid-point of the par-

ticipant’s censored interval.29–42 There is some evidence

that the mid-point method can give a reasonable approxi-

mation of the incidence rate if the standard interval censor-

ing assumption is satisfied.43–45 However, to the best of

our knowledge, the performance of the mid-point method

has not been systematically evaluated for incidence studies

once participants start to miss their scheduled test dates.

To learn more about the mid-point method, we used a

simulation-based approach to generate an infectious dis-

ease epidemic for an incidence cohort with a high (80–

100%), moderate (60–79.9%), low (40–59.9%) and poor

(30–39.9%) testing rate. Our work has implications for in-

fectious diseases studies that use the mid-point method to

address the interval censoring problem.

Methods

Study design

This study is motivated by the low and irregular testing

rate that we have observed in one of sub-Saharan Africa’s

largest HIV seroconverter cohorts.46,47 Despite annual

household visits by trained field-workers, an average cen-

sored interval length of 3.2 years has made it difficult to

infer the timing of the HIV infection event. For this reason,

we use the case of missed HIV test dates to systematically

investigate the limitations of the mid-point method for in-

cidence rate estimation. To do this, we used an epidemic

model to generate HIV infection events for an incidence

cohort (in either an open or closed system) with a fixed

number of scheduled test dates. We then varied the rate at

which participants missed their scheduled test dates and

imputed a mid-point and a random-point value within

each participant’s censored interval. With this approach,

we could then compare the incidence rate derived from

these imputed values with the true incidence rate generated

from the epidemic model.

Incidence cohort

Consider a cohort of i¼ 1, . . . , N study participants who

are enrolled into a longitudinal survey or a randomized

controlled trial. In the former study design, a single cohort

of participants are followed over time; in the latter study

design, participants are randomized to either a treatment

or control cohort and followed over time. Let j denote the

j¼ 1, . . . J intervals between the scheduled test dates for the

observation period. For both study designs, participants

must be HIV-uninfected when they enter into the study, so

that their survival times start at the beginning of the first

interval for a closed cohort or at the beginning of their

entry interval for an open cohort. Survival time stops at the

earliest HIV-positive date or at the end of the observation

period if they remain HIV-negative. The test date could

occur on any day within the testing interval. For this ana-

lysis, we scaled j on the unit interval [0, 1] so that the

length of the testing interval was invariant to the unit of

calendar time (i.e. month, half-year or year, etc.) between

the scheduled test dates.

Epidemic model

We used a Susceptible-Infected-Recovered (SIR) model to

generate the exact infection dates, denoted by T, over the J

intervals of the observation period. The system of differen-

tial equations for the SIR model is given as:

dS

dt
¼ �k SI þ bN;

dI

dt
¼ k SI; and

dR

dt
¼ �I (1)

which represents the rate at which participants transition

from a susceptible (S) to an infected (I) to a recovered (R)

compartment. Known as the force of infection, k is given by
bc
N, where b is the probability of HIV transmission per con-

tact, c is the rate of contact and N is the population size for

the jth interval. The SIR model also includes a parameter b,

which is the entry rate for participants into the study, where

b¼ 0 for a closed cohort, and the parameter v, which is the

recovery rate for infected participants.

We used realistic parameter values for the SIR model,

based on earlier HIV studies that have been undertaken in

the sub-Saharan Africa context. To this extent, we varied c

within the range of 50 to 120 sexual acts per year based on

data collected from serodiscordant couples across eastern

and southern African sites.48–50 Previous research has

shown considerable heterogeneity in the probability of

HIV transmission per sexual contact, largely due to factors

associated with the viral load level, genital ulcer disease,

stage of HIV progression, condom use, circumcision and

use of antiretroviral therapy (ART).48–51 Following a sys-

tematic review of this topic by Boily et al.,51 we selected

values for b within the range of 0.003–0.008. Further, we

based the recovery rate (v) on the potential for ART to re-

duce the virologic suppression level of the infected popula-

tion. The concentration of HIV RNA in the blood or

genital tract is highly correlated with the onward sexual

transmission of the virus.52,53 Here, we chose values for v

within the range of 0.15–0.35, which are slightly conserva-

tive, but supported by population-based estimates from the

sub-Saharan African context.54,55

For the longitudinal survey, we selected parameter val-

ues to generate a truly stable, increasing and decreasing in-

cidence rate across 5, 10 and 15 testing intervals. For the

randomized controlled trial, we selected an intervention ef-

ficacy E to reduce the HIV transmission rate for the

238 International Journal of Epidemiology, 2018, Vol. 47, No. 1



treatment cohort when compared with the control cohort.

We used the EpiModel package of Jenness et al.56 to imple-

ment the SIR model and performed all remaining calcula-

tions with R software (version 3.3.3). Further details of the

SIR model and the parameter values are provided in

Section 1.1 of the Supplementary Data, available as

Supplementary Data at IJE online.

Standard and extended interval censoring

Our next task was to simulate a testing rate over the obser-

vation period. For this analysis, we considered a successful

HIV test date to be an independent random variable with a

Bernoulli distribution. We denoted this random variable

by H and the probability of a successful test date by

Pr(H¼ 1)¼ p for (0� p� 1).

Using this definition, we could then vary the testing rate

for the incidence cohort by selecting a value for p. For

standard interval censoring, we set p¼ 1.0 to ensure that

all participants would be successfully tested at each of their

scheduled dates. For extended interval censoring, we set

p< 1.0 so that some participants would miss one or more

of their scheduled test dates. As an example, a probability

p¼ 0.6 means that participants would be successfully

tested at their scheduled dates 60% of the time. We con-

sidered a high testing rate to range from 80% to 100%, a

moderate testing rate to range from 60% to 79.9%, a low

testing rate to range from 40% to 59.9% and a poor test-

ing rate to range from 30% to 39.9%.

Due to periodic testing, the infection event is known only

to occur within the censored interval. For both standard and

extended forms of interval censoring, the censored interval

has non-zero length and bounds the infection date so that

Li<Ti<Ri, where Li and Ri are observable random vari-

ables that denote the latest-negative and earliest-positive test

dates of the ith participant. For each participant, we obtained

the censoring dates with Li¼max(Hij:Hij<Ti) and

Ri¼min(Hij:Hij�Ti). Apart from the observed Li and Ri test

dates, the censored interval does not provide any extra infor-

mation on the timing of the participant’s infection event.5

Imputation of the infection dates

For the mid-point approach, we imputed an infection date

for the ith participant using tm
i ¼ (LiþRi)/2. Alternatively,

the mid-point can be obtained by sampling tr
ik dates with

replacement from the set t 2 ½Li; Ri�, where k ¼ 2; . . . ; K;

and then taking the average of these dates, denoted by T .

To show this, let the probability density function of a uni-

form distribution be f ðtÞ ¼ 1=ðR� Lþ 1Þ with mean

lT ¼ ðLþ RÞ=2. According to the Law of Large Numbers,

the sample mean T of T1; . . . ; TK random variables con-

verges to lT in probability as K increases in size, where

T!p lT .57 For the single random-point approach, we set

k ¼ 1 and sampled a value tr
i1 from a uniform distribution

bounded by [Li; Ri�.

Calculating the incidence rate

We used the infection dates (T) generated by the SIR model

to calculate the true incidence rate, denoted by h. Using the

standard formula,1 hj is the number of new infection events

(E) divided by the person-time (PT) contributed for the jth

interval. Thus,

hj ¼

XN

i¼1
Eij

XN

i¼1
PTij

� 100; (2)

where Eij ¼ 1 if T occurs within the jth interval (otherwise

Eij ¼ 0). We express hj as a rate per 100 person-units, since

j is scaled on the unit interval [0, 1]. Equation (2) can also

be described as an instantaneous incidence rate because it

is calculated at fixed time points over the observation

period.58 The numerator of Equation (2) makes it clear

that the infection events are being counted over the length

of the jth testing interval. In some instances, the length of j

will be less than the length of the aggregating interval: e.g.

when test dates are scheduled on a monthly basis but the

infection events are counted over 1-year intervals. When

calculating this instantaneous measure, we assumed that

the length of the testing interval j was always equal to the

length of the aggregating interval.

We also calculated the cumulative incidence rate from

the start of the observation period to the end of the jth

interval, changing the notation slightly so that j ¼ ½1; j�.
Boily et al.58 have shown that the cumulative incidence rate

ratio (CIRR) is a more appropriate measure for evaluating

the intervention efficacy of a randomized controlled trial.

We calculated the CIRR by dividing the cumulative inci-

dence rate of the treatment cohort by the cumulative inci-

dence rate of the control cohort, so that ĥ
CIRR

j ¼ ĥ
Inter

j =ĥ
Ctrl

j .

For the cumulative incidence rate, we note that the length

of the aggregating interval [1, j] will always be greater than

the length of the testing interval for j> 1.

We estimated the incidence rate after imputing an infec-

tion date within each participant’s censored interval.

Because the testing rate is a function of a stochastic process

(i.e. H has a Bernoulli distribution), it was necessary to ob-

tain more than one incidence rate estimate in order to

quantify the uncertainty introduced by our simulation-

based approach. Let ĥj denote the estimated incidence rate

for the jth time interval. To calculate ĥj , we right censored

the data at the imputed values and indexed the resulting

dataset with (d). We then obtained ĥ
ðdÞ
j for d ¼ 1; . . . ;D

datasets using the standard formula, so that

E½ĥj� ¼ 1
D

XD

d¼1
ĥ
ðdÞ
j . For this analysis, we set D¼ 1000.
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Measures of accuracy

To evaluate the accuracy of the mid-point and single

random-point methods, we calculated the deviation between

the estimated and true incidence rate for the jth interval. We

used two principal measures for this purpose: the bias or

error, which is given by �½ĥj� ¼ E½ĥj� � hj, and the mean-

square error, MSE½ĥ� ¼ E½ĥ � h�2. Using these two measures,

we also calculated the mean absolute percentage error as

MPE½ĥj� ¼ 100
J

XJ

j¼1
j E½ĥ j��hj

hj
j and the root mean-square de-

viation as RMSD½ĥj� ¼
ffiffiffiffiffiffiffiffiffiffi
MSE
p

. The mean percentage error

(MPE) and RMSD give a single measure of accuracy for each

imputation method over the entire observation period.

Real-world example

To empirically demonstrate the performance of the mid-

point and random-point methods, we used data from a

Figure 2. Compares the performance of the mid-point method (left column) against the single-random point method (right column) for a longitudinal

survey with 5 testing intervals. The solid line is the true incidence rate and the non-solid lines represent the estimated incidence rates for a high

(80–100%), moderate (60–79.9%), low (40–59.9%), and poor (30–39.9%) testing rate. We show that the mid-point incidence rate artefactually

increases in the early stages, and then decreases in the later stages, of the observation period once the testing rate drops below 80%. Details of

the epidemic models are discussed in Section 1.1 of the Supplement.
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population-based HIV surveillance programme based in

the northern KwaZulu-Natal province of South Africa.59

Since 2004, trained field-workers have visited over 10 000

households annually and repeatedly tested 17 400 adults

(>15 years of age) for HIV antibodies. We calculated the

annual HIV incidence rate for this cohort using the meth-

odology described above.

Results

We observed that the mid-point method did not give accur-

ate incidence rate estimates once the testing rate dropped

below 80%. The poor performance of the mid-point

method can be clearly seen in Figure 2, which shows the re-

sults for a longitudinal survey with an open cohort of size

N¼ 1000. Here, the mid-point imputed incidence rate

artefactually increases in the early stages, and then artefac-

tually decreases in the later stages, of the observation

period once participants start to miss their scheduled test

dates. We report similar mid-point incidence rate results

for sample sizes >500 participants, for both open and

closed cohorts, and for 10 and 15 scheduled test dates

(shown in Supplementary Figures 1 and 2, available as

Supplementary Data at IJE online).

Table 1 shows the percentage errors for both imputation

methods when compared with the truly stable incidence

rate presented in Row 1 of Figure 2. For example, in the

fifth testing interval, the decline in the mid-point estimate is

in error of 9.05%, 27.07% and 40.63% for a moderate,

low and poor testing rate, respectively (see Row 5 of the

upper panel in Table 1). Table 2 shows the MPE results for

the incidence rate estimates presented in Figure 2. For ex-

ample, the mid-point MPE is in the range of 23.28–38.11%

for a low and poor testing rate, when compared with a

range of 1.60–4.42% for the single random-point method

(see Rows 3 and 4 of Table 2). The MPE results for 10 and

15 scheduled test dates are presented in Supplementary

Table 1, available as Supplementary Data at IJE online; see

also Supplementary Table 2, available as Supplementary

Data at IJE online, for the RMSD results.

Figure 3 shows the CIRRs for a randomized controlled

trial in which N¼ 2000 participants were assigned to ei-

ther a control or treatment cohort. The mid-point method

significantly overestimates the efficacy of the treatment

Table 1. Shows the percentage bias results for the mid-point (MP) and single random-point (SRP) methods

Testing rate

High (80–100%) Moderate (60–79.9%) Low (40–59.9%) Poor (30–39.9%)

MP SRP MP SRP MP SRP MP SRP

Longitudinal survey

1 –2.95 –0.21 –20.51 –1.02 –36.77 –2.46 –45.07 –2.52

2 0.81 0.38 11.81 1.19 21.32 1.35 26.5 0.95

3 0.29 0.00 9.68 0.98 30.88 2.31 47.93 2.64

4 0.70 0.11 4.53 –0.84 0.37 –1.58 –7.88 –1.42

5 0.84 –0.14 –9.05 –0.49 –27.07 –0.29 –40.63 –1.75

Randomized controlled trial

1 –3.60 –0.96 –21.97 –6.65 –38.99 –10.81 –45.97 –12.55

2 –0.82 –0.23 –3.46 –1.89 –6.80 –3.00 –9.11 –4.31

3 –0.29 0.00 1.46 –0.18 6.09 0.03 8.77 –0.75

4 –0.02 0.14 2.01 0.56 4.77 1.29 5.21 0.90

5 0.33 0.33 1.73 1.73 3.20 3.20 3.11 3.11

The upper panel results correspond with the incidence rates presented in Row 1 of Figure 2. We do not include the remaining results from Figure 2 due to limi-

tations of space. The lower panel results correspond with the CIRRs presented in Figure 3. Overall, the MP method gives a higher percentage bias for lower testing

rates when compared with the SRP method.

Table 2. Mean percentage bias results for the mid-point (MP)

and single random-point (SRP) methods

Longitudinal survey RCT

Stable Increasing Decreasing Cumulative

Incidence Incidence Incidence Incidence

Rate Rate Rate Rate Ratio

Testing Rate MP SRP MP SRP MP SRP MP SRP

High 1.12 0.17 1.21 0.40 1.54 0.32 1.01 0.33

Moderate 11.12 0.90 11.42 0.81 12.31 1.65 6.13 2.20

Low 23.28 1.60 24.13 2.2 26.56 3.57 11.97 3.67

Poor 33.6 1.86 33.12 1.93 38.11 4.42 14.43 4.33

Shows the mean percentage bias results for the mid-point (MP) and single

random-point (SRP) methods. Results correspond with the estimates pre-

sented in Figures 2 and 3 (for five scheduled test dates). We show that the MP

method introduces a greater degree of bias into the incidence rate estimates

once participants start to miss their scheduled test dates.
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intervention in the early stages of the observation period.

For example, the attributed efficacy is in error of 45.97%

and 38.99% in the first of five scheduled test dates under a

poor and low testing rate, respectively (see Row 1 of the

lower panel in Table 1). However, the mid-point estimates

converged to the true incidence rate at the end of the obser-

vation period. Overall, the MPE for the mid-point method

is in the range of 1.01–14.43% when compared with a

range of 0.33–4.33% for the single random-point method

(see Columns 7 and 8 of Table 2).

We show, in Figure 4, the results for the two imputation

methods using data from our population-based HIV

surveillance programme. The estimates from the mid-point

method are consistent with our simulation results. We see an

increase and then a decrease in the HIV incidence rate at the

beginning and end of the observation period, respectively.

These annual estimates can be compared with the random-

point method, which suggests that the HIV incidence rate

has been relatively stable over the 2004–15 period.

Discussion

Our results show that the infection event does not occur at

the mid-point of the censored interval once participants

Figure 3. Compares the performance of the mid-point method (left column) against the single-random point method (right column) for a randomized

controlled trial with 5 scheduled test dates. The solid line is the true cumulative incidence rate ratio (CIRR) and non-solid lines are the estimated

CIRRs for a high (80–100%), moderate (60–79.9%), low (40–59.9%), and poor (30–39.9%) testing rate. No treatment effect is represented by a CIRR ¼ 1.

We show that the mid-point method significantly overestimates the treatment effect at the beginning of the observation period, although deviations

from the true CIRR are attenuated at the last scheduled test date. Details of the epidemic models are discussed in Section 1.1 of the Supplement.

Figure 4. Compares the HIV incidence rates for the mid-point method (left) and single randompoint method (right) using data from a population-

based HIV surveillance program (N� 17 400) in the KwaZulu-Natal province of South Africa. The dramatic difference in the estimates is due to a wide

censoring interval (on average 3.2 years), which exposes the limitations of the mid-point method. This is because the mid-point method concentrates

the imputed infection events at the middle of the observation period once participants start to miss their scheduled test dates. In this case, we would

falsely conclude that the incidence rate rapidly increased in the beginning and then sharply decreased toward the end of the observation period. As

our simulation results demonstrate, the single-random point is a far more accurate method for incidence rate estimation, which shows that the HIV in-

cidence rate in our study population has been relatively stable over the last 10 years.
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start to miss their scheduled test dates. Under these condi-

tions, the mid-point method gives systematically biased in-

cidence rate estimates. Importantly, we found that the

instantaneous incidence rate artefactual increased in the

early stages, and then artefactually decreased in the later

stages, of the observation period. This pattern became

more extreme as we systematically increased the probabil-

ity of missing a scheduled test date, e.g. the decline in the

incidence rate was in error of 9%, 27% and 41% for a

moderate (60–79.9%), low (40–59.9%) and poor (30–

39.9%) testing rate, respectively, in the later stages of the

observation period. We observed this trend irrespective of

a truly stable, increasing or decreasing incidence rate, for a

closed and open cohort, for a range of sample sizes and for

a different number of scheduled test dates.

An important limitation of the mid-point method is that

it clusters the imputed the infection events at the middle of

the observation period. This is because there are more left

(latest-negative) and right (earliest-positive) test date com-

binations that give a mid-point in the middle interval of the

observation period than all other combinations for the re-

maining testing intervals. We provide a simple and intuitive

example of this mid-point behaviour in Section 2.1 of the

Supplementary Data, available as Supplementary Data at

IJE online. A better approach, based on the Monte Carlo

methodology, would be to impute a single random infection

date within the participant’s censored interval, obtain an es-

timate from the resulting dataset, repeat this procedure sev-

eral times and then take the average of the estimates for

each interval. We show in this paper that the single random-

point method approach makes less restrictive assumptions

about the infection date when compared with the mid-point

method (even for testing rates as low as 30%).

A number of advanced interval censoring methods have

been developed within a survival analysis and Cox propor-

tional hazards framework.14,15,17–19,22,23,25,60 Some of

these interval censoring methods can be found in statistical

software programs such as SAS, Stata and R.27,61–64 But

these programs do not directly or intuitively estimate an in-

cidence rate for continuous or discrete time periods as far

as we can tell. We do acknowledge an approach by Hsu

et al.,60 who used the auxiliary information of participants

to identify a set of nearest neighbours and then imputed

multiple HIV infection times from a non-parametric distri-

bution based on this neighbourhood.60 Importantly, their

method produced more accurate survival rates and hazard

ratios when compared with the single random-point

method. However, the authors did not directly extend their

approach to estimate the incidence rate over time. Their

method could be adapted for such a purpose; however, a

potential improvement in accuracy would have to be traded

for the convenience of the single random-point method.

We comment on the findings of Skar et al.,45 who con-

cluded that mid-point dating is a valid approach for

population-based HIV incidence studies with regular test-

ing intervals. Here, they are describing the performance of

the mid-point method under the standard interval censor-

ing assumption. But missed test dates are an unavoidable

consequence of the periodic testing for an infectious dis-

ease. The surprising finding of our analysis is that partici-

pants need to be tested more than 80% of the time to

produce accurate mid-point incidence rate estimates. If a

high testing rate cannot be achieved, then we discourage

use of the mid-point method for incidence rate estimation.

Indeed, this method would lead us to falsely conclude that

the HIV incidence rate in our study area has been dramat-

ically declining over the last 3 years (as shown Figure 4). In

contrast, results from the random-point method suggest a

stable incidence rate over time, which are confirmed by the

findings of an external phylodynamic analysis using HIV

sequence data from the same incidence cohort.65 In conclu-

sion, if an ad hoc imputation method is to be considered,

then the single random-point method, as described in this

paper, is straightforward to implement and produces esti-

mates close enough to the true incidence rate.

Supplementary Data

Supplementary data are available at IJE online.
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32. Dubé K, Zango A, van de Wijgert J et al. HIV incidence in a co-

hort of women at higher risk in Beira, Mozambique: prospective

study 2009–2012. PloS One 2014;9:e84979.

33. Cawley C, Wringe A, Slaymaker E et al. The impact of voluntary

counselling and testing services on sexual behaviour change and

HIV incidence: observations from a cohort study in rural

Tanzania. BMC Infect Dis 2014;14:1.

34. Gray R, Kigozi G, Kong X et al. The effectiveness of male cir-

cumcision for HIV prevention and effects on risk behaviors in a

post-trial follow up study in Rakai, Uganda. AIDS (London,

England) 2012;26:609.

35. Kiwanuka N, Ssetaala A, Nalutaaya A et al. High incidence of

HIV-1 infection in a general population of fishing communities

around Lake Victoria, Uganda. PLoS One 2014;9:e94932.

36. Naicker N, Kharsany AB, Werner L et al. Risk factors for HIV

acquisition in high risk women in a generalised epidemic setting.

AIDS Behav 2015;19:1305–16.

37. SPARTAC Trial Investigators. Short-course antiretroviral

therapy in primary HIV infection. N Engl J Med 2013;2013:

207–17.

38. Ramjee G, Wand H, Whitaker C et al. HIV incidence among

non-pregnant women living in selected rural, semi-rural and

urban areas in Kwazulu-Natal, South Africa. AIDS Behav 2012;

16:2062–71.

39. Wagman JA, Gray RH, Campbell JC et al. Effectiveness of an

integrated intimate partner violence and HIV prevention inter-

vention in Rakai, Uganda: analysis of an intervention in an exist-

ing cluster randomised cohort. The Lancet Global Health 2015;

3:e23–33.

244 International Journal of Epidemiology, 2018, Vol. 47, No. 1



40. B€arnighausen T, Tanser F, Gqwede Z et al. High HIV incidence

in a community with high HIV prevalence in rural South Africa:

findings from a prospective population-based study. AIDS 2008;

22:139–44.

41. Reniers G, Slaymaker E, Nakiyingi-Miiro J et al. Mortality

trends in the era of antiretroviral therapy: evidence from the

Network for Analysing Longitudinal Population based HIV/

AIDS data on Africa (ALPHA). AIDS 2014;28:S533–42.

42. Tanser F, B€arnighausen T, Hund L et al. Effect of concurrent sex-

ual partnerships on rate of new HIV infections in a high-

prevalence, rural South African population: a cohort study.

Lancet 2011;378:247–55.

43. Remis RS, Palmer RW. Testing bias in calculating HIV incidence

from the Serologic Testing Algorithm for Recent HIV

Seroconversion. AIDS 2009;23:493–503.

44. White EW, Lumley T, Goodreau SM et al. Stochastic models to

demonstrate the effect of motivated testing on HIV incidence es-

timates using the serological testing algorithm for recent HIV

seroconversion (STARHS). Sex Transm Infect 2010;86:506–11.

45. Skar H, Albert J, Leitner T. Towards estimation of HIV-1 date of

infection: a time-continuous IgG-model shows that seroconver-

sion does not occur at the midpoint between negative and posi-

tive tests. PloS One 2013;8:e60906.

46. Tanser F, Hosegood V, B€arnighausen T et al. Cohort

Profile: Africa centre demographic information system (ACDIS)

and population-based HIV survey. Int J Epidemiol 2008;37:

956–62.

47. Larmarange J, Mossong J, B€arnighausen T et al. Participation dy-

namics in population-based longitudinal HIV surveillance in

rural South Africa. PloS One 2015;10:e0123345.

48. Hughes JP, Baeten JM, Lingappa JR et al. Determinants of per-

coital-act HIV-1 infectivity among African HIV-1–serodiscord-

ant couples. J Infect Dis 2012;205:358–65.

49. Gray RH, Wawer MJ, Brookmeyer R et al. Probability of HIV-1

transmission per coital act in monogamous, heterosexual, HIV-

1-discordant couples in Rakai, Uganda. The Lancet 2001;357:

1149–53.

50. Wawer MJ, Gray RH, Sewankambo NK et al. Rates of HIV-1

transmission per coital act, by stage of HIV-1 infection, in

Rakai, Uganda. J Infect Dis 2005;191:1403–9.

51. Boily M-C, Baggaley RF, Wang L et al. Heterosexual risk of

HIV-1 infection per sexual act: systematic review and meta-

analysis of observational studies. The Lancet Infectious Diseases

2009;9:118–29.

52. Quinn TC, Wawer MJ, Sewankambo N et al. Viral load and het-

erosexual transmission of human immunodeficiency virus type 1.

New Engl J Med 2000;342:921–9.

53. Cohen MS, Chen YQ, McCauley M et al. Prevention of HIV-1

infection with early antiretroviral therapy. New Engl J Med

2011;365:493–505.

54. Jain V, Liegler T, Kabami J et al. Assessment of population-

based HIV RNA levels in a rural east African setting using a

fingerprick-based blood collection method. Clin Infect Dis 2012;

56:598–605.

55. Tanser F, Vandormael A, Cuadros D et al. Effect of population

viral load on prospective HIV incidence in a hyper-endemic rural

South African community: a population-based cohort study.

Under review, 2017.

56. Jenness SM, Goodreau SM, Morris M. EpiModel: Mathematical

Modeling of Infectious Disease. R Package Version 102, 2014.

57. DeGroot MH, Schervish MJ. Probability and Statistics, 4th edn.

Pearson, 2012.
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