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ABSTRACT Desulfosporosinus sp. strain Sb-LF was isolated from an acidic peatland
in Bavaria, Germany. Here, we report the draft genome sequence of the sulfate-
reducing and lactate-utilizing strain Sb-LF.

Dissimilatory sulfate reduction is an important anaerobic carbon mineralization
process in peatlands and mitigates the production of the greenhouse gas methane

(1). Members of the genus Desulfosporosinus are present in wetlands worldwide but
typically at very low relative abundances (2). Despite its low abundance and near-zero
growth, “Candidatus Desulfosporosinus infrequens” SbF1 was a major driver of sulfate
reduction in experimental microcosms established with acidic soil from the Schlöp-
pnerbrunnen II fen (Bavaria, Germany) (2–4). Here, we report the draft genome se-
quence of Desulfosporosinus sp. strain Sb-LF, which was isolated from the same
peatland.

Strain Sb-LF was enriched and isolated as described previously under sulfate-reducing
conditions, with L-lactate as the carbon source (5, 6). Briefly, 10 ml of culture was grown to
stationary phase on freshwater minimal medium (6) amended with sulfate (5 mM) and
L-lactate (10 mM) and harvested by centrifugation. Genomic DNA was isolated using the
DNeasy PowerSoil kit (Qiagen), and sequencing libraries were prepared using the
Nextera XT kit (Illumina) and sequenced on the Illumina HiSeq 2000 platform, yielding
55 million 120-bp paired-end reads. The reads were inspected with FastQC (http://www
.bioinformatics.babraham.ac.uk/projects/fastqc/) and quality trimmed at a Phred qual-
ity score of 10 using the BBDuk function of BBMap v34.94 (https://sourceforge.net/
projects/bbmap/) and retaining 99.89% of the reads. Quality-trimmed reads were
assembled using SPAdes v3.6.2 (7) and, subsequently, iteratively (n � 5) reassembled
with SPAdes v3.11.1 using contigs of �1 kb from the previous assembly as “trusted
contigs” for input and iterating kmers from 11 to 121 in steps of 10. In total, 75.08% of
the quality-trimmed reads used for assembly could be unambiguously mapped back to
the draft genome. The draft genome sequence consists of 30 scaffolds with a total size
of 4,272,165 bp, a G�C content of 42.5%, and an N50 value of 337,508 bp. Based on
CheckM (8), the completeness of the draft genome is 99.9%, with three duplicated
single-copy marker genes.

Taxonomic placement of strain Sb-LF into the genus Desulfosporosinus was verified
using a concatenated alignment of 22 unique marker genes using the GTDB toolkit (9)
and IQ-TREE (10). The most similar genome was that of Desulfosporosinus sp. OL
(GenBank assembly accession number GCA_001936615.1) with an average nucleotide
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identity (ANI) of 81% (alignment fraction, 0.44) (11), well below the intraspecies
threshold of 96.5% (12). Average amino acid identities (AAI) were 74% to 82% to
Desulfosporosinus species (compared to all genomes listed at NCBI, November 2018)
and 78% to “Candidatus Desulfosporosinus infrequens” SbF1 (13), which indicates that
strain Sb-LF represents a novel Desulfosporosinus species.

The genome was annotated using Rapid Annotations using Subsystems Technology
(RAST) (14) and the NCBI Prokaryotic Genome Annotation Pipeline. The genome carries
3,924 coding sequences (CDSs), 13 rRNAs, 92 tRNAs, and 7 noncoding RNAs (ncRNAs).
Genes for the canonical pathway for dissimilatory sulfate reduction with adenylyl-
sulfate reductase (aprBA) and dissimilatory sulfite reductase (dsrAB) as key enzymes are
present. A trimeric sulfite reductase (asrABC), as encoded in other members of the
genus Desulfosporosinus (4), was not detected. The genome contains multiple identified
copies of lactate dehydrogenase genes for putative L-lactate degradation.

Data availability. This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the BioProject number PRJNA529085 and accession number
SPQR00000000. The version described in this paper is version SPQR01000000.
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