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A novel approach for correction 
of crosstalk effects in pathway 
analysis and its application in 
osteoporosis research
Yu Zhou1,2, Yunlong Gao1,3, Chao Xu   1,3, Hui Shen1,3, Qing Tian1,3 & Hong-Wen Deng1,2,3

Osteoporosis is a prevalent bone metabolic disease and peripheral blood monocytes represent 
a major systemic cell type for bone metabolism. To identify the key dysfunctional pathways in 
osteoporosis, we performed pathway analyses on microarray data of monocytes from subjects with 
extremely high/low hip bone mineral density. We first performed a traditional pathway analysis for 
which different pathways were treated as independent. However, genes overlap among pathways 
will lead to “crosstalk” phenomenon, which may lead to false positive/negative results. Therefore, 
we applied correction techniques including a novel approach that considers the correlation among 
genes to adjust the crosstalk effects in the analysis. In traditional analysis, 10 pathways were found 
to be significantly associated with BMD variation. After correction for crosstalk effects, three of them 
remained significant. Moreover, the MAPK signaling pathway, which has been shown to be important 
for osteoclastogenesis, became significant only after the correction for crosstalk effects. We also 
identified a new module mainly consisting of genes present in mitochondria to be significant. In 
summary, we describe a novel method to correct the crosstalk effect in pathway analysis and found five 
key independent pathways involved in BMD regulation, which may provide a better understanding of 
biological functional networks in osteoporosis.

Osteoporosis is the most common metabolic bone disease, mainly manifested as low bone mineral density 
(BMD). One of the key pathophysiological mechanisms of this disease is excessive bone resorption (by osteo-
clasts) over bone formation (by osteoblasts).

Peripheral blood monocytes (PBMs) are an appropriate cell model for studying osteoporosis1. First, PBMs 
may act as precursors of osteoclasts2–5, the bone resorption cells. Particularly for the adult peripheral skeleton 
(e.g., one of the most important skeletal site - femur), circulating monocytes provide the sole source of osteoclast 
precursors6. Second, PBMs can secrete a number of potent cytokines important for osteoclast differentiation, acti-
vation, and apoptosis7–10. Reduced production of PBM cytokines represents a major mechanism for the inhibitory 
effects of sex hormones on osteoclastogenesis and bone resorption11–13. With their abundance and diverse roles in 
bone metabolism, PBMs may thus represent a highly valuable and unique working cell model for dissecting some 
of the important pathogenesis mechanisms underlying various skeletal disorders. In fact, abnormalities in PBMs, 
not only by their percentage in circulation but also by their functional activities, have been linked to a variety of 
skeletal disorders and traits, such as osteoporosis14, rheumatoid arthritis15 and alcoholism16. Therefore, our study 
will use PBMs as a cell model to investigate the pathways associated with osteoporosis.

In recent years, taking advantage of high-throughput technologies, pathway analyses have been performed 
as a crucial step in expression profiling studies for osteoporosis, e.g.17–19. The majority of these analyses applied 
typical approaches to identify the pathways related to BMD variation, such as KEGG and Gene Ontology analysis, 
which treat the pathways as independent. However, because pathways may have regulatory interactions, or some 
genes may overlap with each other in different pathways, the derivation of p-values which aim to quantify the 
significance of the involvement of each pathway in a given phenotype will be affected, which may lead to both 
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false positive and false negative results. The term “crosstalk” was coined by Donato et al.20 to represent the effect 
that pathways influence each other via overlapping genes. By simulation test, they found that three major path-
way analysis methods (Fisher’s exact test, signaling pathway impact analysis and gene set enrichment analysis) 
produced a significant number of false positives due to crosstalk effects, and that crosstalk could be explained by 
the presence of overlapping genes among pathways20. Thus, they proposed a method called Maximum Impact 
Estimation based on maximum likelihood (ML) to correct the crosstalk effects by reassigning each gene to only 
one of the pathways which it originally belongs to.

Inspired by Donato’s study, the goal of this work was to apply crosstalk correction methods to identify the 
pathways associated with BMD variations. Toward this goal, we detected the existence of crosstalk effects by 
classical overrepresentation analysis (ORA) and then applied the ML method to correct these crosstalk effects. 
However, the ML method did not consider correlation among genes. Based on biological perspectives, expres-
sion levels of genes in the same pathway most likely are associated and thus correlated with each other. Here, we 
further propose a novel improved correction approach based on correlation among genes to improve pathway 
analyses, then compare the results from all the three methods. ML method corrects the crosstalk effects by reas-
signing the overlap genes to a unique pathway, but it may generate false positive results because it is mainly based 
on mathematical not biological prediction. Our approach focuses on the interaction between the genes in the 
same pathway and could further improve the correction for crosstalk effects. With the application of the methods 
to osteoporosis research, we identified an independent functional module which may play a different role from 
the pathways they conventionally and originally belong to.

Results
Classical ORA and crosstalk effects.  After gene expression data processing, 591 genes were identified 
as nominal DE genes (p < 0.05) in the “core set genes” (n = 22011). Among the core set genes, 4801 genes were 
present in at least one KEGG pathway and 103 of them were nominal DE genes. Using the classical ORA methods, 
ten pathways were significantly associated with BMD variation (p < 0.05) (Table 1). The most significant pathway 
was oxidative phosphorylation (p-value = 0.0018).

Figure 1 shows the crosstalk effects in the top 12 pathways (ranked by the raw p-values) for BMD variation. The 
oxidative phosphorylation pathway became non-significant when the overlapping genes with any degenerative dis-
eases of the central nervous system (Huntington’s, Parkinson’s, or Alzheimer’s disease) were removed (row 1, column 
5/6/8). Meanwhile, the significance of these three central nervous system diseases disappeared when their crosstalk 
effects with oxidative phosphorylation pathway were eliminated (row 5/6/8, column 1). The same phenomenon was 
found among Huntington’s, Parkinson’s and Alzheimer’s disease pathways. The crosstalk effects also influenced the 
significance of Rig-I-like receptor signaling, cytosolic DNA sensing and regulation of autophagy pathway.

Via the module detection methods described in Methods section, two new independent modules were gen-
erated: 1) Intersection of Alzheimer’s, Parkinson’s, Huntington’s disease and oxidative phosphorylation pathway 
(Intersection_Pak_Oxi_Hun_Alz); and 2) Intersection of Rig-I-like receptor signaling, cytosolic DNA sensing 
and regulation of autophagy pathway (Intersection_Rig_Cyt_Auto). A total of 53 genes were included in the mod-
ule, Intersection_Pak_Oxi_Hun_Alz (Fig. 2), which mainly consists of two gene families: the NADH:ubiquinone 
oxidoreductase (NDUF) family and the ATP Synthase family. These two gene families are mainly involved in the 
energy transfer in the mitochondria and thus the new module represents an independent and specific function 
significance in energy metabolism.

Crosstalk effects correction by ML method.  The ML method was performed to uniquely reassign the 
genes to pathways and correct the crosstalk effects. The pathways that were found significant after correction are 
listed in Table 2. Among the 10 significant pathways identified by the classical ORA method, only the pathways 
for fatty acid metabolism and glycosphingolipid biosynthesis lacto and neolacto series, which were identified 
significant in Table 1, remain significant after the correction of crosstalk effects. Also, instead of the individ-
ual pathways for Alzheimer’s, Parkinson’s, Huntington’s disease and oxidative phosphorylation, the new mod-
ule, Intersection_Pak_Oxi_Hun_Alz, showed significant association with BMD variation after the correction. 

Rank Pathway P-value

1 Oxidative phosphorylation 0.0018

2 RIG I like receptor signaling pathway 0.0029

3 Glycosphingolipid biosynthesis lacto and neolacto series 0.0174

4 Cytosolic DNA sensing pathway 0.0202

5 Huntington’s disease 0.0215

6 Parkinson’s disease 0.0225

7 Regulation of autophagy 0.0256

8 Alzheimer’s disease 0.0388

9 Fatty acid metabolism 0.0471

10 Epithelial cell signaling in helicobacter pylori infection 0.0476

11 Adipocytokine signaling pathway 0.0523

12 Antigen processing and presentation 0.0548

Table 1.  Top 12 significant pathways by ORA analysis (ranked by raw p-values).
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Figure 1.  Detail of the crosstalk effect in pathway analysis. The diagonal cells were the original p-values of Pi 
computed by the classical ORA. The cell [i, j] was the p-value of pathway Pi after eliminating the crosstalk effect 
with Pj. The color of each cell represented the p-value: bright red for p-values close to zero, bright green for 
p-values close to 1.

Figure 2.  The structure of the Intersection_Pak_Oxi_Hun_Alz module. The edges represented the interaction 
sourced from experimental evidences.
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Furthermore, seven pathways (Leishmania infection, Adipocytokine signaling pathway, Chemokine signaling 
pathway, Glycosaminoglycan biosynthesis chondroitin sulfate, JAK-STAT signaling pathway, Natural killer cell 
mediated cytotoxicity, Protein export) which had not been significant in the classical ORA became significant and 
were considered to be associated with BMD variation after crosstalk effects correction.

Crosstalk effects correction by PCA (principle component analysis) method.  After correcting 
crosstalk effects via the PCA method, the number of significant pathways was much lower than for the ORA 
results or the ML method results (Table 3). The module Intersection_Pak_Oxi_Hun_Alz exhibited the strong-
est association with BMD (p = 0.0052). The fatty acid metabolism and glycosphingolipid biosynthesis lacto and 
neolacto series pathways were confirmed to be significant after the correction by the PCA method. In addition, 
the MAPK signaling pathway was identified as significant only by the PCA method, but not by the other two 
methods.

Simulation.  In simulations, ORA was designed to yield 100% power, but the type I error (false positive rate) 
was 5.0%. For ML method, type I error was 4.1% and type II error was 15.6%. For the PCA method, type I error 
was 1.9% and type II error was 19.4%.

Discussion
In this study, we aimed to identify the important pathways involved in osteoporosis mechanisms by analyzing 
transcriptome-wide gene expression of monocytes in 73 Caucasian females with extremely high or low hip BMD. 
Unlike traditional pathway analysis studies, we adopted a detection and correction approach for crosstalk effects 
among pathways during the analysis process. Furthermore, we proposed and employed a novel method (PCA) 
to correct the crosstalk effects based on the correlation of experimental expression data within pathways or the 
new modules detected and constructed. Since the PCA considered interaction among genes in the same pathway, 
it included more information from the experiment, especially the regulatory networks in the pathways, and gen-
erated biologically more meaningful results for a better understanding of the pathophysiological mechanisms. 
Using a module detection algorithm and the correction methods described in Methods section, we found that 
two pathways were persistently significant in all the results, and importantly, we identified a new independent 
functional module underlying BMD variation.

Rank Pathway P-value

1 Fatty acid metabolism 0.0005

2 Leishmania infection 0.0005

3 Adipocytokine signaling pathway 0.0007

4 Intersection_pak_oxi_hun_alz 0.0042

5 Glycosphingolipid biosynthesis lacto and neolacto series 0.0124

6 Chemokine signaling pathway 0.0256

7 Glycosaminoglycan biosynthesis chondroitin sulfate 0.0351

8 JAK-STAT signaling pathway 0.0351

9 Natural killer cell mediated cytotoxicity 0.0411

10 Protein export 0.0450

11 GNRH signaling pathway 0.0630

12 Viral myocarditis 0.0831

Table 2.  Top 12 significant pathways by ML method (ranked by raw p-values).

Rank Pathway P-value

1 Intersection_Pak_Oxi_Hun_Alz 0.0052

2 Glycosphingolipid biosynthesis lacto and neolacto series 0.0062

3 Cytosolic DNA sensing pathway 0.0117

4 Fatty acid metabolism 0.0149

5 MAPK signaling pathway 0.0335

6 Glycosaminoglycan biosynthesis chondroitin sulfate 0.0558

7 Protein export 0.0615

8 Leishmania infection 0.0630

9 Peroxisome 0.1042

10 Natural killer cell mediated cytotoxicity 0.1132

11 Intestinal immune network for IGA production 0.1221

12 Thyroid cancer 0.1221

Table 3.  Top 12 significant pathways by PCA method (ranked by raw p-values).
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The classical ORA and other prevalent pathway analyses treat pathways as independent20. However, pathways 
in the majority of pathway databases may share genes with each other. Genes may participate in different path-
ways, leading to non-independence among pathways; this is essentially a mathematical/statistical problem that 
will lead to undesired false positive/negative results. Donato et al.20 have shown that the traditional pathway anal-
ysis approaches produced a significant number of false positives due to crosstalk effects. In our ORA results, RIG 
I like receptor signaling pathway was identified as the second most significant pathway underlying osteoporosis. 
However, there is no literature showing the relationship between them. Through the heat map, we observed that 
four pathways (Alzheimer’s, Parkinson’s, Huntington’s disease and oxidative phosphorylation pathway) lost their 
significance when the overlapping genes between any two of them were eliminated. This result suggested that the 
intersection of these pathways determined their significance. Our follow-up analysis further showed that these 
genes should be considered as an independent functional module.

To correct the crosstalk effects, Donato et al.20 provided an approach using maximum impact estimation based 
on maximum likelihood. We also applied this approach to analyze our dataset. However, the results were not as 
good as its applications in other experiments20, yielding results that did not make sense biologically. For example, 
Leishmania infection describes the pathway underlying a disease spread by the bite of certain types of sandflies. 
It is unlikely to be related to osteoporosis and no study found any connection between them. However, it became 
the second most significant pathway after the crosstalk correction using ML.

When a gene is involved in a pathway, its expression levels may affect the expression levels of other genes or be 
affected by other genes in the same pathway. Based on this biologically realistic consideration, our PCA method 
reassigned a given gene to the pathway where it has the strongest connection with the rest of the genes. Compared 
with the ORA or ML results, all the biologically unlikely pathways were excluded from the significant list via PCA 
correction based on the gene expression correlations, while the mitogen-activated protein kinase (MAPK) sign-
aling pathway was identified as significantly contributing to BMD variation. The MAPK signaling pathway plays 
important roles in both osteoblast and osteoclast biology. In particular, for osteoclast differentiation from PBM, 
several studies have confirmed that a p38 MAPK inhibitor, SB203580, could also inhibit RANKL-induced osteo-
clast differentiation21,22. Eugenol, another compound which can mediate attenuation of RANKL-induced NF-κB 
and MAPK pathways, could synergistically contribute to the inhibition of osteoclast formation23. Two pathways, 
fatty acid metabolism and glycosphingolipid biosynthesis lacto and neolacto series, were still significant. Essential 
fatty acid (EFA)-deficient animals have been shown to develop severe osteoporosis24, while inhibition of glycos-
phingolipid synthesis has been proven to affect osteoclastogenesis and reduce osteoclast activation25.

Although links between osteoporosis and Alzheimer’s26, Parkinson’s27 and Huntington’s28 disease have been 
reported, the underlying molecular mechanisms are still unclear. Our new module, which mainly consisted of 
protein families present in mitochondria, was consistently significant for both correction methods. This result 
suggests that mitochondrial activity may play a key role in the relevance of these diseases to osteoporosis. A recent 
study indicated that deletion of NDUFS4 may promote osteoclast differentiation and bone resorption via both 
cell-autonomous and systemic regulation29.

We performed the simulation by the process reported in Donato’s paper20. Compared with the ORA and ML 
methods, the PCA method has the smallest type I error (1.9%). It indicates that PCA method could significantly 
reduce the false positive rate. In simulation or real situation, the number of true non-significant pathways would 
be much larger than the number of true significant pathways. So the small increase of false positive rate will 
remarkably amplify the number of falsely detected significant pathways. Although the PCA method had higher 
type II error than ML method (19.4% vs 15.6%), the commonly used threshold of type II error used in rand-
omized clinical trials was 20%30–32, which was higher than the PCA results. Therefore, the type II error rate of the 
PCA method is still reasonable and acceptable.

There are several limitations of this study. First, PBMs are not equal to osteoclasts. Our results could imply 
the pathophysiological mechanism of osteoporosis, but the findings need further direct validation. Second, the 
current knowledge about signaling pathways are still lacking. In our case, only ~4800 genes out of 22,000 genes 
(microarray data) were able to be annotated to the KEGG pathways. Third, in our method, the construction 
of new modules was based on the Jaccard Similarities between the new modules. In current study, the Jaccard 
Similarities were either 0 or greater than 0.8. Therefore, we merged two modules which have a non-zero Jaccard 
Similarity into a new module. But the Jaccard Similarities could be more various in other studies. Then, the 
threshold should be set to identify the “similar” new modules. The new modules will be merged in to a new mod-
ule when their Jaccard Similarity is greater than the threshold, if not, they will be considered as separate ones in 
the following analysis processes.

In summary, we performed pathway analysis on gene expression data of monocytes for osteoporosis and 
detected the crosstalk effects among pathways. To correct the crosstalk effects, we applied a novel method based 
on the correlation of gene expression levels to reduce false positive results and obtained a better understanding of 
biological networks underlying osteoporosis.

Materials and Methods
All the methods were conducted in accordance with the rules and guidelines of the Institutional Review Boards 
of University of Missouri Kansas City and Tulane University. The Institutional Review Boards of University of 
Missouri Kansas City and Tulane University approved the study. Written informed consent was obtained from all 
participants before inclusion in the study.

Subjects and BMD measurements.  Subjects for the study came from our microarray-based 
transcriptome-wide profiling research of PBMs in 73 Caucasian females with extremely high vs. low hip BMD33. 
(High BMD group: ZBMD > +0.84, n = 42 vs Low BMD group: ZBMD < −0.52, n = 31). Strict exclusion criteria 
were used to exclude individuals with diseases that might affect bone metabolism.
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The hip BMD (g/cm2) of each subject was measured using a Hologic dual energy x-ray absorptiometer (DXA) 
scanner, Hologic QDR-4500 (Hologic Corp., Waltham, MA). The machine was calibrated daily. The coefficient 
of variation of the DXA measurements for BMD was 0.9%. The obtained BMD value was then transformed into 
a Z score, which is the number of standard deviations a subject’s BMD differs from the mean BMD of a healthy, 
ethnic-, gender-, and age-matched reference population. The detailed characteristics of subjects are shown in 
Table 4 and the early study33.

Experimental procedures.  To generate the expression profiles, PBMs were isolated from whole blood using 
a monocyte-negative isolation kit (Miltenyi Biotec Inc, Auburn, CA) following the manufacturer’s recommenda-
tion. Then, total RNA from monocytes was extracted using Qiagen RNeasy Mini kit (Qiagen, Inc., Valencia, CA) 
and we used Agilent Bioanalyzer (Agilent, Santa Clara, CA) to control the RNA quality before each array exper-
iment, where RNA integrity number (RIN) should be no less than 7.0. Preparation of cDNA, hybridization, and 
scanning of the mRNA expression levels by the GeneChip Human Exon 1.0 ST Array (Affymetrix, Santa Clara, 
CA) were performed according to the manufacturer’s protocol. The raw microarray data for this cohort have been 
submitted to GEO (Gene Expression Omnibus) under the accession number GSE56814.

Data preparation.  For microarray data analysis, all raw CEL files were imported and processed by the 
Affymatrix analysis tools in oligo package (version 1.14.0) in R (version 2.3.0). The probe IDs were annotated 
with their corresponding official gene symbols via annotation file (pd.huex.1.0.st.v2). Due to the higher level of 
evidence supporting the existence of a particular exon, we only analyzed “core” (annotated by RefSeq) probesets 
and we excluded the probesets without gene symbol annotation. When multiple probe IDs were matched to the 
same gene symbol, the probe ID with the lowest p-value was selected to represent that gene. Robust multiarray 
average method34 was applied to normalize the array signals35 and differential expression analysis was performed 
using Student’s t-test through the Bioconductor’s (version 2.7) LIMMA (linear models for microarray data) pack-
age (version 3.6.9)36,37. Because the sample size was limited (although still among the largest of such studies in the 
field), we used raw p-value < 0.05 as threshold for nominally significant differential expression (supplementary 
Table 1).

Membership matrix preparation.  In this study, we constructed a dataset which represents the intersection 
of genes present in at least one KEGG pathway and the genes measured by the GeneChip Human Exon 1.0 ST 
Array. In total, we obtained 186 pathways and 4801 genes that overlapped between KEGG dataset (c2.cp.kegg.
v4.0.symbols.gmt) and our microarray dataset for further pathway analysis. In these genes, 103 were identified as 
differentially expressed (DE) genes (at the nominal significance level of p < 0.05) by the methods described above.

With the information from the KEGG database, we established a (m + n)*k membership matrix X (Table 5), 
where columns represent pathways (k is the number of pathways, k = 186) and rows represent genes (n is the 
number of DE genes, n = 103; m is the number of non-DE genes, m = 4698). In the matrix, genes are ranked 
in ascending order of p-values from the differential expression analysis. The top n (n = 103) rows represent DE 
genes with p-values < 0.05. The m rows represent non-DE (NDE) genes. So for each cell Xi,j of matrix X, if gene i 
is included in pathway j, Xi,j = 1; otherwise Xi,j = 0.

Menopausal status

High BMD Low BMD

N Age Hip BMD Z score N Age Hip BMD Z score

Premenopausal 16 51.0 (1.8) 1.54 (0.52) 15 50.0 (2.0) −0.93 (0.36)

Postmenopausal 26 54.0 (1.8) 1.28 (0.46) 16 52.6 (2.5) −1.17 (0.60)

Total 42 52.9 (2.3) 1.38 (0.49) 31 51.4 (2.6) −1.05 (0.51)

Table 4.  Basic characteristics of subjects for monocyte microarray analyses. Note: Age and hip BMD Z score are 
shown as mean (standard deviation).

P1 P2 P3 … Pk

g1 0 0 0 … 1

g2 1 1 1 … 0

g3 0 1 0 … 0

⋮ ⋮ ⋮ ⋮ … ⋮

gn−1 1 0 1 … 0

gn 1 1 0 … 1

gn + 1 0 0 1 … 0

⋮ ⋮ ⋮ ⋮ … ⋮

gn + m 1 0 1 … 0

Table 5.  Example of a (m + n)*k membership matrix X.
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Pathway analysis by classical overrepresentation approach.  We performed classical overrep-
resentation analysis (ORA) using Fisher’s exact test to assess the significance of each pathway. For example, 
Table 6 is the contingency table used to compute the significance of pathway Pi. ai represents the number of DE 
genes present in pathway Pi (count of 1 s in column i from row 1 to row 103); bi represents the number of NDE 
(non-differentially expressed gene) genes in pathway Pi (count of 1 s in column i from row 104 to row 4801). The 
result generated by ORA indicates the probability of the number of DE genes contained in pathway Pi being equal 
to or higher than expected by chance.

Crosstalk effect test.  To test the crosstalk effect in pathway analysis for our dataset, if a pathway Pi shares 
genes with another pathway Pj, we removed the intersection part from Pi and recalculated the significance of the 
remaining element Pi\j in Pi via ORA. We then used the p-value of Pi\j for each pair of pathways [i, j] to establish a 
k*k matrix, where k was equal to the number of pathways and the diagonal cells were the original p-values of Pi. 
Both rows and columns were ordered ascendingly by the original p-values of Pi. The crosstalk effects were intui-
tively shown (Fig. 1) by converting this matrix into a heat map of the negative log p-values.

Novel module detection.  In Fig. 1, we could find that some genes consisted of a module shared by several 
statistical significant pathways. If we removed this module, these pathways became non-significant. So, the result 
implied that this module played key function in the disease and was more important than the original designated 
pathways.

To search the key modules among the pathways sharing some common genes, a novel module detection 
method was applied to pathway pairs. The process is described in detail in ref.20. Briefly, for an arbitrary pair of 
pathways Pi and Pj, a module could be created when all three following conditions are satisfied:

	(1)	 Both Pi and Pj should have significant results in ORA
	(2)	 Neither Pi\j nor Pj\i should be significant
	(3)	 The intersection of the two pathways should have a significant ORA result

For any pair of modules Mi and Mj (i ≠ j), which have large Jaccard Similarity, we merged the two modules into 
a new module. Jaccard Similarity is defined as equation (1).

∩
=

| |

| | | |
mJS

M M
M Mmin( , ) (1)
i j

i j

All the Jaccard Similarities we calculated are either 0 or a value greater than 0.8; therefore, when any two mod-
ules have a non-zero Jaccard Similarity, they were merged into a new module.

The new modules were then removed from the pathways with which they overlap. The newly created modules 
as such and 186 KEGG pathways with new modules excluded were analyzed by crosstalk correction methods in 
the following. After module detection, membership matrix was expanded to 188 columns, with Column 187 and 
Column 188 representing new modules.

Crosstalk correction methods: maximum impact estimation based on maximum likelihood and 
principle component analysis.  Maximum Likelihood (ML) method.  Donato et al.20 developed this algo-
rithm, aimed at establishing an underlying pathway impact matrix where each gene contributes to one and only 
one pathway to correct the crosstalk effects. They named this matrix Z as maximum impact matrix and matrix 
Z had the same structure with the membership matrix X. But in matrix Z, for each gene i, one row Zi had only a 
one in column j (Zi,j =1) and zeros elsewhere. It represented that gene i had the strongest influence on pathway j 
than on other pathways which also included gene i. If there were no crosstalk effect, the matrix X and the matrix 
Z would be equal.

The authors used a likelihood-based estimation to calculate the similarity between the matrix Z and observing 
membership matrix X. They provided an expectation maximization approach to maximize the similarity by an 
iterative algorithm. The details of this method were shown in the ref.20. Finally, ORA was conducted on maximum 
impact matrix Z instead of membership X after matrix Z was established.

Principle Component Analysis (PCA) method.  Instead of calculating the maximum likelihood of the observed 
membership matrix, our PCA method takes into account the association among mRNA expression levels based 
on real experimental data, which are more likely to be biologically meaningful and realistic.

We established a matrix of mRNA expression data, where columns represent subjects and rows represent 
genes. For each pathway j (1 <  = j <  = k, after module selection, k = 188 in our study), the following process was 
conducted:

Pi Pi
c Total

DE ai n − ai n

NDE bi m − bi m

Total ai + bi (n + m) − (ai + bi) n + m

Table 6.  The contingency table used to compute the significance of pathway Pi.
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	(1)	 Select all the rows of the genes in pathway j and construct a new matrix Ej.
	(2)	 Create a (m + n)*k matrix C (with the same size as the membership matrix after module selection) to 

record the correlation coefficients. Each cell of matrix C, Ci,j is computed as follows:

	 (a)	 If gene i is not included in pathway j, Ci,j = 0; otherwise:
	 (b)	 If gene i is included in pathway j, remove gene i from matrix Ej. Use Ej/i to denote the rest of the 

matrix.
	 (c)	 Conduct PCA on matrix Ej/i to compute first principle component (PC1) of Ej/i, whose length should 

be equal to the column number of Ej/i.
	 (d)	 Compute the Pearson correlation coefficient between PC1 of Ej/i and each row of gene i, which was 

removed from Ej previously. Assign the greatest correlation coefficient to Ci,j.
	(3)	 After obtaining matrix C, we create the maximum impact matrix Z by PCA method. We assume the cor-

relation coefficients between gene i and matrix Ej/i should reflect the contribution of gene i to pathway p. 
Therefore, Zi,p = 1 if Ci,p = max{Ci,j│1 ≤ j ≤ k}, otherwise Zi,p = 0.

	(4)	 Conduct ORA on matrix Z.

In this method, via PCA on expression data of the rest genes in pathway j, we used the first principal compo-
nent Ej\i to represent pathway j without gene i. When the P value for correlation between Ej\i and expression level 
of gene i is the lowest, we assumed that it means gene i has the highest association with pathway j and assigned 
gene i to pathway j.

New module structure.  To explore and visualize the biological relationships among genes in the new mod-
ule detected, STRING v10.0 software was used to build the topological structure of the new module38. All the 
parameters were set to the default values and the interaction between genes were only sourced from experiments.

Simulation process.  Because PCA considered the correlation between genes, we used real data described 
above in membership matrix preparation as the reference set (including 4801 genes) for simulation analysis. We 
conducted the simulation according to that described in Donato’s paper20. Briefly, for each pathway Pi, we cal-
culated the number ni of DE genes that would make Pi significant by Fisher Exact Test. We simulated a situation 
as following. There are 100 DE genes in the reference set and ni of them belong to Pi. So pathway i should be sig-
nificant in Fisher Exact Test. In this case, we used the reference set to randomly pick ni genes from Pi and 100- ni 
genes that are not in Pi, and calculated the Fisher Exact Test significance of all other pathways. Since the 100- ni 
genes that are not in Pi are randomly chosen from the reference set, no other pathway should be significant. In this 
simulation, the hypothesis is true for the Pi, while the null hypothesis is true for all other pathways. We repeated 
this simulation 1,000 times for each pathway Pi, and each time we applied the ORA, ML and PCA methods to 
calculate the significance of all the pathways.
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