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Abstract: The sensing characteristics of toluene gas are monitored by fabricating ZnO nanorod
structures. ZnO nanostructured sensor materials are produced on a Zn film via an ultrasonic process
in a 0.01 M aqueous solution of C6H12N4 and Zn(NO3)2·6H2O. The response of the sensors subjected
to heat treatment in oxygen and nitrogen atmospheres is improved by 20% and 10%, respectively. The
improvement is considered to be correlated with the increase in grain size. The relationship between
the heat treatment and sensing characteristics is evaluated.

Keywords: heat treatment; ZnO nanorod; metal oxide semiconductor gas sensor; toluene gas

1. Introduction

Pollution and toxic gases, such as toluene, in plants and at home, in addition to
outdoors, pose occupational and health hazards. Thus, gas-sensing devices need to be
installed in such places [1–6].

In the past decade, metal-oxide gas detectors have attracted substantial interest owing
to their low cost, flexible production, simple application, a high number of detectable
gases, and potential for integration with semiconductors [7,8]. Various metal-oxide-based
materials are used for gas detection because of their numerous advantages, such as good
response characteristics [9–11].

The function of the semiconductor-type gas sensor is based on the surface change
that occurs during electron exchange with the gas when gas molecules are adsorbed on
the surface of the oxide semiconductor at high temperatures (200–400 ◦C) and change
in electrical conductivity [12]. Semiconductor sensors with nanostructures have a sur-
face area adsorbing as much of the target gas as possible, yielding stronger and more
measurable response characteristics (particularly at low concentrations) [13]. ZnO is a
promising material (II–VI compound semiconductor) having a hexagonal crystal structure
referred to as wurtzite, direct-transition bandgap energy of 3.37 eV, and exciton binding
energy of 60 meV [14,15]. Nanostructures, such as nanorods and nanowires, are among
the main factors that improve the gas-sensing properties of ZnO. In a nanorod structure
having a relatively high surface-area-to-volume ratio, charge exchange actively proceeds
in the oxidation–reduction process, and the electron mobility and charge aggregation are
improved [16–18].
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Several studies have been conducted to analyze the effect of annealing on the quality
of the ZnO nanostructure. Muchuweni et al. reported that the structural properties of a
ZnO thin film fabricated by a hydrothermal synthesis method were improved after heat
treatment, but the optical properties were inferior [19]. Suresh Kumar et al. investigated
the effect of heat treatment of the ZnO seed layer at various temperatures on the change
in ZnO nanocrystals [20]. In this study, we develop a ZnO nanostructured sensor that can
be used for a toluene gas-sensing device installed in a wastewater treatment plant and
analyze its response characteristics. To manufacture the gas sensor, an alumina substrate
was coated with Pt and Zn film as an electrode and seed layer on each side, respectively.
The Pt electrode and Zn film were fabricated by ion plasma and direct-current sputtering
methods, respectively. To turn the deposited zinc film into a zinc oxide film used for the
seed layer, the gas sensors were heat-treated at 600 ◦C for 1 h (primary heat treatment).
Gas sensors of ZnO nanorods were then manufactured by an ultrasonic process in an
aqueous solution [21–23]. An additional heat treatment (secondary heat treatment) was
performed in oxygen and nitrogen atmospheres for 1 h to analyze the sensor’s response
characteristics after the secondary heat treatment. The response characteristics of the
sample subjected to the secondary heat treatment were compared to the characteristics of
the sample subjected to the primary heat treatment. Through an X-ray diffraction (XRD)
analysis, we verified the change in the crystallite size of the ZnO nanostructures under
different annealing conditions.

2. Materials and Methods

As shown in Figure 1, the dimensions of the sensor’s substrate are 4.5 mm × 3.78 mm,
while its thickness is 0.3 mm. It consists of gold electrodes and an Al2O3 substrate. The
resistance of the platinum heater (backside) is approximately 15 Ω. To prevent short circuits,
the electrodes have positioned holes in the semiconductor gas sensors, as presented below.
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Figure 1. Structures of the fabricated sensor’s substrate.

Figure 2 shows the sample preparation process. In the pretreatment, as it is not bonded
to the zinc seed layer on the Al2O3 substrate, a platinum film was coated by an ion coater
as a bonding layer. The thickness of the platinum film was approximately 80 Å. The Zn
membrane with a thickness of 1000 Å was vacuum-metalized by a sputtering machine
using metallic zinc as the seed layer. To obtain zinc oxide, the substrates were heat-treated
at 600 ◦C for 1 h in a furnace (primary heat treatment). The substrates were treated with a
dissolving solution of zinc nitrate hydrate [Zn(NO3)2·6H2O] and hexamethylenetetramine
[C6H12N4] in deionized water. To help the nanostructure formation, the solution was
stirred for 1 h by a stirrer. In the sonication procedure, ZnO nanostructures were grown
by a sonicator in the prepared solution. An additional heat treatment (secondary heat
treatment) was performed in oxygen and nitrogen atmospheres for 1 h to analyze the
sensor’s response characteristics after the secondary heat treatment. For the heat treatment,
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an atmosphere furnace was used. At this time, the rate of gas flow into the inside was
2 L/min. The internal pressure was maintained at 1 atm.
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Based on the results of this study, five groups of gas sensors were manufactured with
different ultrasonic treatment energies of 50,000, 150,000, 200,000, 250,000, and 300,000 J,
denoted as U5, U15, U20, U25, and U30, respectively. The measuring system for toluene
gas detection consisted of a power supply, mass-flow controller, data acquisition board,
air, target gas, and circuit board. An experiment was conducted at 350 ◦C to analyze
the response characteristics for gas sensing. Toluene gas (concentration of 100 ppm) was
diluted to 20 ppm with dry air and flowed at a rate of 250 sccm.

The resistance of the sensor was measured. The response (S) was obtained by eval-
uating the ratio of the resistance change of the sensor after gas injection to the resistance
before gas injection:

S (%) =
Rgas − Rair

Rair
× 100. (1)

3. Results and Discussion
3.1. Field-Emission Scanning Electron Microscopy (FESEM) of the Pretreated Sensors

Figure 3 shows FESEM (Hitachi SU8220) images of the morphologies of the ZnO
sensors. U5 and U15 exhibited nanostructures composed of nanoparticles, while U20, U25,
and U30 exhibited nanostructures with nanorods. This indicates that it is possible to control
the shape of the nanostructure by varying the ultrasonic energy, and that the shape of
the nanostructure is changed from nanoparticle to nanorod with the increase in energy.
Jung et al. reported that the length of the ZnO nanorod arrays can be controlled by the
ultrasonication time [21]. In the case of U20, U25, and U30, the length and size of the
nanorods increased with the ultrasonic energy, consistent with the results of Jung et al.
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3.2. Analysis of the Pretreated ZnO Nanostructures

Figure 4 shows the response (%) and recovery (%) of the ZnO nanostructure toxic gas
sensors for 20 ppm toluene gas. When toluene gas molecules contact ZnO, they adsorb
onto the sensor surface and react with the oxygen ions, which are chemisorbed on the
ZnO surface and emit electrons back to the conduction band of ZnO, leading to a potential
barrier to charge transport. The gas-sensing properties are strongly dependent on the
effective extent of active sites on the ZnO surface [24,25].

The responses of U5 and U15 having nanoparticle structures were approximately
40 ± 2%. In the case of U20, U25, and U30 having nanorod structures, the response increased
from 50 ± 2% to 64 ± 3%. This implies that the sensing characteristics of the sensor having
the nanorod structure are better than those of the sensor having the nanoparticle structure.
The response was improved to some extent as the surface area of the nanorods increased. In
contrast, the recovery of the gas sensor with nanoparticle structures was better than that of
the sensor with the nanorod structures. This is likely because, in the case of the nanoparticle
structure, more molecules simply stay on the surface than gas molecules penetrating deep
inside, and the adsorption length is smaller so that they can be removed relatively easily
compared to the nanorod structure.
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3.3. Analysis of the Response Characteristics of the Sensors

The heat-treatment effect on the gas sensor characteristics was investigated by heat-
treating the U30 sensor with the highest response in oxygen and nitrogen atmospheres.
The sensors heat-treated in oxygen and nitrogen atmospheres were denoted as U30-O and
U30-N, respectively. Figure 5 shows the response and recovery characteristics of the U30,
U30-N, and U30-O sensors for 20 ppm toluene gas. The response of the U30, U30-N, and
U30-O sensors was 64 ± 3%, 70 ± 3%, and 80 ± 4%, respectively. Thus, an enhancement of
16% was observed between the U30 and U30-O sensors. At 400 ◦C, the toluene gas enabled
injecting more electrons into the depleted layer of ZnO nanorods, which was effective
even if the heat treatment was performed in a nitrogen atmosphere. In particular, it is
considered that the amount of oxygen chemically adsorbed on the ZnO surface increases
by the heat treatment in an oxygen atmosphere, thereby improving the reactivity with the
toluene gas. Contrary to the sensing properties, the recovery properties were weakened for
the heat-treated sensor. It is considered that the high reactivity of the heat-treated sensor
surface slightly interferes with the recovery properties.
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To verify the ZnO nanostructure of the samples, U30, U30-N, and U30-O, the XRD
(Rigaku D/Max-2500) characteristics of each sample were investigated, as shown in Figure 6.
The peaks corresponding to the (110), (101), (110), (103), and (112) directions were observed.
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The peak value of the secondary-heat-treated sensor was increased. The crystallite size
of ZnO was also increased. According to the XRD data, the grain sizes of the ZnO nanorods
were calculated (Table 1). To calculate the grain size (D) of the ZnO nanostructure, the
Scherrer’s equation was used:

D = k
λ

β cos θ
, (2)

where k is a shape factor (0.94), λ is the X-ray wavelength (1.5406 Å), β is the line broadening
at half of the maximum intensity (full width at half maximum (FWHM)) obtained after
subtracting the instrumental line broadening, and θ is the Bragg angle. The grain size of the
U30, U30-N, and U30-O sensors was 190 nm, 200 nm, and 208 nm, respectively. Thus, the grain
size increased by approximately 5% and 10% upon the heat treatment. Thus, according
to the XRD analysis, it is considered that more electrons can penetrate the depleted layer
of the ZnO surface, which can be related to the increase in grain size through the heat
treatment [23].

Table 1. Grain sizes of the original and additionally heat-treated sensors.

Sample Wavelength (nm) 2θ (o) FWHM Crystallite Size (nm)

(a), (c): U30 0.154 31.8246 0.4343 190
(b): U30-N 0.154 31.8168 0.4172 200
(d): U30-O 0.154 31.8299 0.3967 208
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The reproducibility of the response characteristics of the sensors was examined, as
shown in Figure 7. In this test, 20 ppm toluene gas was injected for 5 min, and the sensors
were restored in the air for 15 min. This was repeated five times. During this process,
the three sensors exhibited good reproducibility; the higher response of the U30-O sensor
was maintained.
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The sensing properties for various concentrations of toluene are shown in Figure 8. In
this experiment, the toxic gas response and restoring process were repeated five times with
changed concentrations to 1, 5, 10, 30 and 50 ppm. Toluene gas was injected for 2 min, and
the sensors were restored for 5 min. Each sensor exhibited good detection characteristics in
proportion to the toluene concentration of 1 to 50 ppm. They exhibited excellent sensing
characteristics, even in the low concentration range of 1 ppm. In particular, the sensor
heat-treated in the oxygen atmosphere exhibited the best characteristics and can be used as
a toluene gas sensor in a wide concentration range.
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4. Conclusions

In this study, the sensing characteristics of toluene gas were investigated by fabricating
sensors having a ZnO nanoparticle structure and nanorod structure. The sensor with the
nanorod structure exhibited better sensing characteristics than those of the sensor with the
nanoparticle structure. After the nanorod-structured sensor was heat-treated in oxygen
and nitrogen atmospheres, the sensing characteristics were improved. A macrocapable
state with a higher penetrability was obtained, which could be correlated with the increase
in grain size through the XRD analysis. In the future, the structural characteristics of heat
treatment will be investigated, and the relationship between the heat treatment and the
improvement in sensing characteristics will be clarified.
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