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Abstract: In this study, an AlGaN/GaN high-electron-mobility transistor (HEMT) was grown through
metal organic chemical vapor deposition on a Qromis Substrate Technology (QST). The GaN on the
QST device exhibited a superior heat dissipation performance to the GaN on a Si device because of
the higher thermal conductivity of the QST substrate. Thermal imaging analysis indicated that the
temperature variation of the GaN on the QST device was 4.5 ◦C and that of the GaN on the Si device
was 9.2 ◦C at a drain-to-source current (IDS) of 300 mA/mm following 50 s of operation. Compared
with the GaN HEMT on the Si device, the GaN on the QST device exhibited a lower IDS degradation
at high temperatures (17.5% at 400 K). The QST substrate is suitable for employment in different
temperature environments because of its high thermal stability.

Keywords: QST substrate; back-barrier layer; high thermal conductivity

1. Introduction

GaN is widely used in high-frequency and high-power next-generation devices be-
cause of its two-dimensional electron gas (2DEG) concentration, high carrier mobility,
low ON resistance, and high breakdown voltage [1–3]. GaN has demonstrated increasing
potential for a wide range of applications. Sapphire and Si are commonly used as sub-
strate materials for GaN; however, their low thermal conductivity limits heat dissipation
from device-level self-heating during the operation of high-electron-mobility transistors
(HEMTs) and may influence the electrical characteristics, reliability, and performance of
HEMTs [4–6]. Thus, for most applications, replacement substrates such as SiC or GaN
are used to improve the device performance; however, their high cost is problematic. The
poly-aluminum nitride (AlN) substrate (QST) is promising for GaN-based HEMTs because
of its high thermal dissipation efficiency and high mechanical strength.

Another key concern is the large lattice mismatch between GaN and substrates. Cur-
rently, the lattice mismatch in buffer layers is compensated with Fe and C doping, which
causes the semi-insulating layer to increase the breakdown voltage and reduce the leakage
current of the device. However, the Fe-doped buffer layer may have memory effects of
the Fe diffusion associated with high growth temperatures [7–9], whereas severe current
collapse can result from the trapping effects related to deep acceptors in the C-doped buffer
layer [10–12]. In this study, a back-barrier (BB) layer was added to the buffer layer to reduce
the influence of the doped acceptor between the channel and buffer layers. This composite
buffer layer increased the withstand voltage of the relevant fabricated device and reduced
the current collapse effect. In addition, because of the different thermal conductivities of
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AlGaN and GaN [13], the AlGaN BB layer influences the substrate heat dissipation capabil-
ity, which is also a key index for radiofrequency (RF) and power device applications [14].
Therefore, this study added the composite buffer layer on a high-heat-dissipation QST
substrate to reduce the low-heat-dissipation effect caused by the AlGaN BB layer. Because
of the high thermal conductivity of the QST core, the thermal resistance of a QST substrate
is lower than that of a Si substrate, and the QST substrate can reduce the effect of heat on a
device [15].

2. Device Structure

The epitaxial layers for Al0.24Ga0.76N/GaN RF HEMTs were grown through metal
organic chemical vapor deposition (MOCVD) on high-thermal-conductivity QST and Si
substrates. Prior to the preparation of the buffer and active layers, an AlN nucleation layer
was grown to compensate for the lattice mismatch and reduce the dislocation density in the
fabricated devices. Then, a high-isolation Fe- or C-doped GaN buffer layer was prepared.
A 50-nm Al0.05Ga0.95N BB layer was first grown to increase the conduction band energy in
the buffer layer and reduce the leakage current. Subsequently, a 300-nm GaN channel layer
was prepared. A 0.5-nm-thick AlN spacer layer contributed to the reduction in interface
roughness and enhanced the carrier mobility of a 2DEG, and an 18-nm-thick Al0.24Ga0.86N
barrier layer was deposited. Finally, a 2-nm GaN cap layer was deposited through MOCVD
to reduce the surface oxidation and leakage current of the AlGaN barrier layer. The HEMTs
with high thermal dissipation efficiency and mechanical strength were fabricated on a
poly-AlN substrate (Figure 1).
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respectively. As illustrated in Figure 3c, the Si device had the best Ion/Ioff ratio and sub-
threshold swing (SS) of 5.57 × 104 and 0.19 V/dec, respectively. The Ion/Ioff ratio and SS of 
the QST device were 2.38 × 103 and 0.57 V/dec, respectively. The results revealed that the 
total dislocation of the GaN on the QST device was greater than that of the GaN on the Si 
device; thus, the GaN on the QST device had a higher drain-to-source leakage current (IDS) 

Figure 1. Cross-sections of the GaN on QST, with LG, LDS, and WG being 1, 4, and 50 µm, respectively.

Device fabrication began with mesa isolation by using an inductively coupled plasma
system with a BCl3 + Cl2 mixed gas in a reactive ion etching chamber. Subsequently, a
metal film of ohmic contacts was prepared through electron beam evaporation (e-Gun)
with multilayered Ti/Al/Ni/Au (25, 130, 25, and 80 nm, respectively; drain-to-source
distance LDS = 4 µm). To form an ohmic contact, we annealed the corresponding device
at 875 ◦C for 30 s in a nitrogen-rich environment by using a rapid thermal annealing
system. In the gate process, a Schottky gate (device gate length LG = 1 µm; gate width
WG = 50 µm) was defined through electron beam evaporation, and the gate metal was
formed using Ni/Au (25 and 80 nm, respectively). A metal film of interconnected Ti/Au
(25 and 80 nm, respectively) was deposited to reduce the contact resistance. Finally, a
100-nm Si3N4 passivation layer was deposited through plasma-enhanced chemical vapor
deposition.

Figure 2 presents the X-ray diffraction (XRD) results of GaN on QST and Si. The (002)
and (102) XRD profiles cover angles of 15◦–19◦ and 22◦–27◦, respectively, along the omega
axis. Furthermore, the full width at half maximum (FWHM) values for the (002) and (102)
planes of the QST and Si devices were 628/673 and 1244/897 arcsec, respectively. The total
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dislocation of GaN on QST was 9.01 × 109/cm2 and that of GaN on Si was 5.18 × 109/cm2.
The dislocation was calculated using the XRD FWHM results as follows [16,17]:

Nscrew =
FWHM2

002
4.35 × b2

screw
, Nedge =

FWHM2
102

4.35 × b2
edge

(1)

Ntotal = Nscrew + Nedge (2)

where Nscrew and Nedge are the screw and edge dislocation density, respectively, and b is the
Burger’s vector.
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Figure 2. XRD results and total dislocation of the GaN on QST and Si.

3. Experimental Result and Discussion

To study the effect of the QST substrate on the device performance, we measured the
drain-to-source current (IDS)–gate-to-source voltage (VGS), IDS–VDS, and IGS–VGS charac-
teristics of the fabricated devices using an Agilent 4142B semiconductor parameter analyzer
(Figure 3). The drain-to-source current (IDS) and output transconductance (gm) versus
gate-to-source voltage (VGS) at VDS were 10 V for a VGS sweep of −6 to 2 V. The saturation
currents of GaN on Si and QST were 543 and 545 mA/mm, respectively, at a VGS value of 2
V and a VDS value of 10 V. Figure 3b depicts the comparison of the ON-resistance (RON)
values for the devices with GaN on Si and QST, which were 4.44 (RON_Si) and 5.2 Ω·mm
(RON_QST), respectively. As illustrated in Figure 3c, the Si device had the best Ion/Ioff ratio
and subthreshold swing (SS) of 5.57 × 104 and 0.19 V/dec, respectively. The Ion/Ioff ratio
and SS of the QST device were 2.38 × 103 and 0.57 V/dec, respectively. The results revealed
that the total dislocation of the GaN on the QST device was greater than that of the GaN
on the Si device; thus, the GaN on the QST device had a higher drain-to-source leakage
current (IDS) at a VGS of −6 V. Figure 3d presents the small-signal measurements of the
QST, and Si devices collected using an Agilent network analyzer. These measurements
indicated that the maximum current gain (f T) and maximum power gain (f max) of the Si
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device were 4.5 and 11.6 GHz, respectively. The f T and f max values of the QST device were
7.2 and 9.1 GHz, respectively.
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Figure 3. (a) Transfer characteristics (IDS–VGS) at VDS = 10 V with a VGS sweep of −6 to 2 V, (b) IDS–VDS output current at
a VGS sweep of −6 to 2 V with a step of 1 V, (c) off-state leakage current curves of the drain (log-scale IDS–VGS) and gate
(IGS–VGS), and (d) small-signal characteristics of the QST and Si devices.

To explore the influence of ambient temperature on the device characteristics, we
performed variable-temperature measurements on the two devices. Figure 4a illustrates
the IDS–VGS characteristics measured from 300 to 400 K with a 25-K step. As depicted in
Figure 4b, after 100 K, the SS for the GaN on Si HEMT increased by 1.32 times, whereas
that of the GaN on the QST device increased by 1.14 times. Between 300 and 400 K, the
leakage current of the QST device ranged from 2.9 × 10−5 to 6.1 × 10−5 mA/mm and
that of the Si device ranged from 1.4 × 10−6 to 7 × 10−6 mA/mm. The leakage current
variation of the QST device was lower than that of the Si device and nearly twice at VGS
= −6 V because the QST substrate has a high thermal conductivity, which enables it to
disperse heat effectively. As presented in Figure 4c, the maximum saturation currents of
the Si device at 300 and 400 K were 538 and 396 mA/mm, respectively, at a VDS of 10 V. The
external temperature affected the device current, which decreased by nearly 26.5% as the
temperature increased from 300 to 400 K. At 300 and 400 K, the currents of the QST device
were 547 and 451 mA/mm, respectively, at a VDS of 10 V; thus, the current decreased by
almost 17.5% with an increase in the temperature from 300 to 400 K. The IDS degradation
of the GaN on QST (17.5%) was 9% smaller than that of the GaN on Si (26.5%) when the
devices were operated in a high-temperature environment (400 K), as shown in Figure 4d.
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The normalized RON ratio of the GaN on QST and Si increased by 1.32 and 1.57 times,
respectively, as the temperature increased from 300 K to 400 K. The results depicted in
Figure 4 indicate that the QST substrate can be used at relatively high temperatures because
of its high thermal conductivity.
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Temperature is a crucial consideration for device reliability. We measured the surface
temperature distribution in both devices under operation at a high current and observed
the self-heating effect of the different substrates. The surface temperature maps presented
in Figure 5a,b were obtained according to the infrared radiation intensity measured by
an IRM P384G detector. They determined the emissivity calibration of the QST and Si
substrate devices within 50 s of operation at a current of 300 mA/mm. As illustrated in
Figure 5a,b, the surface peak temperatures of the Si device ranged from 36.9 ◦C to 46.1 ◦C
and those of the QST device ranged from 36.6 ◦C to 41.1 ◦C. Because the GaN on QST
dissipated heat quickly, the temperature outside the operating device did not increase
considerably. The heat of the GaN on Si did not dissipate; however, after 22 s of device
operation, the temperature detected using the thermal imager for the GaN on Si was higher
than that of the GaN on QST. Because of the slow heat dissipation of the Si substrate, heat
accumulated in the buffer layer and substrate and diffused to the area outside the element.
This phenomenon caused the temperature of the area outside the operating element to
approach that of the operating element itself when the thermal imager was measuring the
temperature. As illustrated in Figure 5c, at the end of the operation, after approximately
60 s, the device naturally cooled down. Compared with the GaN on Si, the GaN on QST
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exhibited a higher temperature decrease. The results revealed that self-heating affected
the QST substrate less than the Si device. Because the thermal conductivity of the GaN
on the QST device was higher than that of the GaN on the Si device, the heat dissipation
performance of the GaN on the QST device was superior, with the device operating at an
IDS of 300 mA/mm and a VDS of 10 V.
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Figure 5. Analysis of the thermal image measurements for (a) GaN on QST and (b) GaN on Si, and (c) The analysis of the
thermal behavior at an IDS of 300 mA/mm.

4. Conclusions

This study explored the characteristics of AlGaN/GaN HEMTs grown on QST and Si
substrates. Because of the material characteristics of the QST substrate, the GaN on this
substrate had more heat dissipation than did the GaN on a Si substrate. Measurement and
analysis results indicated that compared with the GaN on the Si substrate, the GaN on the
QST substrate had a higher heat dissipation rate. Moreover, the effect of device operation
at high temperatures was weaker for the GaN on the QST substrate than for the GaN
on the Si substrate; thus, GaN on QST substrates is more suitable for high-temperature
operations than is GaN on Si substrates. The high-thermal-conductivity QST substrate
not only enabled the device to operate stably in a high-temperature environment but
also exhibited strong performance in terms of the self-heating effect. The effective heat
dissipation characteristic of this substrate indicates the potential of engineered substrates
as effective RF platforms for 5G microcell or macrocell base stations.
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