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ABSTRACT

Introduction: Pseudomonas putida group are
described as low-incidence opportunistic
pathogens, but also as a significant reservoir of
antimicrobial resistance (AMR) genes, including
those of metallo-b-lactamases (MBLs). Our
objective was the molecular and genomic
characterization of MBL-producing P. putida
(MPPP) group isolates from Poland, focusing on
population structures, successful genotypes and
MBL-encoding integrons.
Methods: During a country-wide MBL surveil-
lance in Pseudomonas spp., 59 non-duplicate
MPPP isolates were collected from 36 hospitals
in 23 towns from 2003 to 2016. All of the iso-
lates were subjected to whole-genome
sequencing (WGS), followed by species identi-
fication, multi-locus sequence typing (MLST),

single-nucleotide polymorphism (SNP)-based
phylogenetic/clonality analysis, resistome
determination, and susceptibility testing.
Results: The study collection comprised 12
species, of which P. alloputida (n = 19), P. mon-
teilii (n = 15), and P. asiatica (n = 11) prevailed,
while the others were P. kurunegalensis, P. putida,
P. soli, P. mosselii, P. juntendi, and four poten-
tially new species. MLST classified the isolates
into 23 sequence types (STs) of which 21 were
new, with three main clones, namely P. allopu-
tida ST69, P.monteilii ST95 and P. asiatica ST15.
The isolates produced VIM-like MBLs only, lar-
gely VIM-2 (n = 40), encoded by 24 different
class 1 integrons (ten new), a number of which
occurred also in P. aeruginosa and/or Enter-
obacterales in Poland. The plasmid pool was
dominated by IncP-9, IncP-2, and pMOS94-like
types. Multiple isolates were extensively drug-
resistant.
Conclusions: This study, being one of the most
comprehensive analyses of MPPP so far, has
shown high diversity of the isolates in general,
with three apparently international lineages,
each internally diversified by MBL-encoding
structures.
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Key Summary Points

Why carry out this study?

Pseudomonas putida group are a low-
incidence, though emerging
opportunistic pathogens, and have been
described as a potentially significant
reservoir of antimicrobial resistance
(AMR) genes, including those of metallo-
b-lactamases (MBLs), for Pseudomonas
aeruginosa or other Gram-negatives. So far,
the data on population structures, and
possible hospital-adapted and broadly
spreading lineages, has been scarce.

What did the study ask?

The study was carried out on a unique
group of MBL-producing P. putida (MPPP)
isolates, collected by a routine
surveillance from all over Poland between
2003 and 2015, and its main objectives
were to reveal genome-based clonal
structures of individual species
populations, to compare these to all
isolates available in international
sequence databases, and to analyze their
AMR, mainly MBL, genetic determinants
against Polish MBL-producing P.
aeruginosa and Enterobacterales isolates.

What were the study
outcomes/conclusions?

The MPPP collection turned out to be
highly diverse, however, three major
species, P. alloputida, P. monteilii and P.
asiatica, apparently have segregated
international phylogroups or lineages,
possibly adapted to nosocomial settings.
The isolates were extensively multi-drug-
resistant and largely shared their MBL
determinants with Polish P. aeruginosa
and Enterobacterales isolates from the
same period; however, the hypothesis of
the MPPP being an MBL reservoir for the
other organisms seems to be rather
unlikely in Poland.

What was learned from the study?

Several species of the P. putida group form
populations of dynamic structures,
producing lineages spreading over large
distances and adapting to nosocomial
environments. Readily acquiring
resistance, they contribute to pools of
AMR genes circulating among pathogens
in these settings.

INTRODUCTION

Pseudomonas is one of the most abundant and
diverse genera in the bacterial kingdom, con-
sisting of nearly 300 valid species (https://lpsn.
dsmz.de/genus/pseudomonas; accessed on April
8, 2022) [1, 2]. All these have been split into 16
groups, of which those of P. fluorescens and P.
putida are the most numerous [1]. The latter one
comprises common rhizosphere and freshwater
dwellers, capable of metabolizing a wide range
of biogenic and xenobiotic compounds [3],
however, also capable to cause infection [4–7].
These may demonstrate multi- or extensive
drug resistance (MDR and XDR, respectively),
namely non-susceptibility to at least one agent
in at least three classes of antipseudomonadal
drugs, and non-susceptibility to at least one
agent in all but one or two classes, respectively
[8]. MDR and XDR are associated with various
antimicrobial resistance (AMR) determinants,
including class B carbapenemases or metallo-b-
lactamases (MBLs), which hydrolyze most of b-
lactams and are not inhibited by any of the
currently used b-lactamase inhibitors [9, 10]. Of
all MBLs, VIM and IMP types, usually encoded
by class 1 integrons, are the most frequent in
pseudomonads [4–6, 9–15]. In several cross-
sectional population studies, it has been sug-
gested that the P. putida group may act as a
significant AMR reservoir [4, 11, 13, 16], how-
ever, not all authors have shared this opinion
[17]. Out of 51 species currently included in the
P. putida group, a small portion have only been
repeatedly identified in nosocomial infections,
namely P. alloputida, P. monteilii, P. asiatica, P.
kurunegalensis, and P. juntendi [4, 6, 18]. For the
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majority of those, the broader population clo-
nal structures and potentially epidemic geno-
types remain almost unexplored [19]. The aim
of this analysis was to reveal the species com-
position and molecular epidemiology of the
MBL-producing P. putida (MPPP) group isolates,
collected in Poland over a 13-year period, fol-
lowing our previous studies on MBL-producing
P. aeruginosa (MPPA) [20–22].

METHODS

Bacterial Isolates

Pseudomonas putida group isolates were sent
along with P. aeruginosa to the National Refer-
ence Centre for Susceptibility Testing (NRCST)
in Warsaw as putative MBL producers within
the MBL surveillance in Pseudomonas spp.
[20, 22]. These were tested with MBL pheno-
typic and molecular assays, as previously
described [22, 23]. Between January 2003 and
January 2016, 59 confirmed MPPP isolates were
collected from 34 hospitals and two outpatient
clinics in 23 cities in 14/16 main administrative
regions of Poland (Table 1). Most of the strains
were isolated from infections (n = 51, 86%),
with urinary tract infections (UTIs) being the
most frequent (n = 26, * 50%), followed by
bloodstream infections (n = 9, * 17.5%). One
MPPP isolate from 2003 (isolate 2596/03) was
partially characterized before [20]. The study
was considered to be exempt for approval by a
Polish ethical commission since it was an
in vitro retrospective study on bacterial isolates
cultured during routine medical procedures and
collected for epidemiological purposes, not
involving patients or their personal data.

Molecular Analyses and Plasmid Profiling

All isolates were typed by pulsed-field gel elec-
trophoresis (PFGE), as previously described [22],
and their VIM-encoding integrons were ana-
lyzed by PCR and sequencing, as reported [20].
New integron variants were submitted to the
INTEGRALL database for numbering and char-
acterization of new gene cassettes [24]. Plasmid

profiling was done with the S1 nuclease
(TaKaRa, Otsu, Japan) assay [25].

Antimicrobial Susceptibility Testing

Custom MICRONAUT-S plates with 14
antipseudomonadal antimicrobials (Merlin
Diagnostika GmbH, Berlin, Germany) were used
to evaluate minimum inhibitory concentrations
(MICs). Results were interpreted according to
the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) recommenda-
tions (https://eucast.org), except for gentam-
icin, for which the Clinical Laboratory
Standards Institute (CLSI) criteria (http://clsi.
org) were used.

Whole-Genome Sequencing and In Silico
Analysis

All study isolates were short-read sequenced
using Illumina HiSeq platform (Illumina, San
Diego, CA, USA). Reads were trimmed by
Cutadapt 1.16 (https://cutadapt.readthedocs.io/
en/stable/) and assembled with SPAdes 3.10.0
[26]. Species identification was done using type
strains genome collection (Table S1), and
applying a two-step approach [1]: calculation of
the average nucleotide identity scores (ANI; cut-
off, C 96.5%) with FastANI v. 1.32 [27], fol-
lowed by digital DNA-DNA hybridization
(dDDH; cut-off C 70%) [28]. The in-sample
single-nucleotide polymorphism (SNP)-based
clonal analysis was performed for three main
species, using BioNumerics version 7.6.3, with
an oldest MPPP isolate of each species as a ref-
erence. All isolates of the Pseudomonas genus
(n = 11,836) were downloaded from GenBank
and PubMLST (https://pubmlst.org/organisms/
pseudomonas-putida) databases on September
1, 2021. These were identified to the species
level, and then all P. putida group isolates of the
species identified among the Polish isolates
(n = 265) were subjected to multi-locus
sequence typing (MLST) using mlst (https://
github.com/tseemann/mlst) [29]. The phyloge-
netic analysis of Polish and international iso-
lates was done within each species group by
kSNP v. 3.1.2 [30]. This tool was also used to
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oś
ci
er
zy
na

(H
G
3)

Sp
ut
um

In
21

36
(I
n2
13
6)

*
80

kb
In
cP
-9
e

89
1/
07

K
oś
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calculate SNP numbers between the isolates and
their species-specific references (defined as
above). Phylogenetic trees were plotted by iTOL
v5 (https://itol.embl.de/). Resistomes of the
study and international isolates were deter-
mined with AMRFinderPlus [31]. Plasmid
incompatibility groups (Inc) were assigned by
ABRicate (https://github.com/tseemann/
abricate), using PlasmidFinder [32] and custom
databases (including IncP-2, -7, -9, pMOS94
lineage rep genes and/or oriV regions)
[12, 33, 34], with detailed classification to
individual Inc subgroups [33, 35].

Nucleotide Sequence Accession Numbers

Sequences of new integrons have been pub-
lished under following accession numbers:
In1659-In1663, OL880459-OL880463; and
In2133-In2138, OL880464-OL880469. A new
VIM variant, VIM-77, has been assigned the
number MZ947163.1. Genomes and SRA data
was deposited under the GenBank BioProject
PRJNA788750 (JAJSPO000000000-
JAJSRU000000000; SRR17284949-
SRR17285007).

RESULTS

Species Distribution and General Clonal
Analysis

When compared to P. aeruginosa, the P. putida
group constitute a small fraction of all MBL-
producing pseudomonads in Poland (* 5%)
[22]; however, the 59 MPPP isolates turned out
to be highly diverse, representing 12 different
species (Tables 1 and S2). The most abundant
were P. alloputida (n = 19), recently derived
from P. putida [36], P. monteilii (n = 15), and P.
asiatica (n = 11), being a heterotypic synonym
of P. shirazica [36, 37]. The remaining isolates
were of the recently reported P. kurunegalensis
[1], and P. putida (n = 3 each), and P. soli, P.
juntendi and P. mosselii (n = 1 each). Five isolates
were of four new species, separated based on
ANI and dDDH approaches: Pseudomonas sp.
#10 and #12 described previously [1], and #14

and #15 distinguished here. Pseudomonas sp.
#14 is related to P. sichuanensis (ANI score,
93.9%), whereas #15 is similar to #4 (95.7%) [1]
and P. peradeniyensis (95.6%). MLST classified
the organisms into 23 species-specific STs, of
which 21 were new [29].

Of the main species, P. alloputida and P.
monteilii have been observed in multiple Polish
regions in contrast to P. asiatica, limited almost
exclusively to Warsaw (Table 1, Figure S1). In
each of these, a spread clone/subclone could be
found. In P. alloputida it was ST69 of a single
pulsotype (pulsotype D; n = 15/19), in P. mon-
teilii it was ST95 of two pulsotypes (O and L;
n = 9/15), and in P. asiatica it was ST15 of a
single pulsotype (Q; n = 9/11). The oldest isolate
in the collection, 2596/03 [20], represented the
P. alloputida ST69 major clone.

MBL Types and VIM-Encoding Integrons

The isolates produced six VIM-like MBLs, of
which VIM-2 prevailed (n = 41), followed by
VIM-4 (n = 13) (Table 1). A single P. asiatica
ST97 isolate had a new variant, VIM-77, differ-
ing by a single mutation (N165D) from VIM-2.

Twenty-four, including ten new VIM-en-
coding class 1 integrons were distinguished;
similar elements, differing from each other by
one cassette/mutation only, were clustered into
types (Tables 1 and S3). The variety of the
integron content was observed even within the
more prevalent P. alloputida ST69, P. monteilii
ST95 and P. asiatica ST15 clones. The most
prevalent types were In461 (n = 15), In238
(n = 8), In1008 (n = 8), and In2136 (n = 7), all
spread across the species and clones. In461
occurred in six species/eight STs, with a cluster
of P. asiatica ST15 isolates from Warsaw (n = 6).
It has been a Poland-specific structure observed
since 2003, including the early P. alloputida
ST69 2596/03 isolate [20]. In461 has dissemi-
nated broadly in Polish MPPA with highly
conjugative IncP-2-like plasmids [21], however,
in MPPP this correlation was weaker (Table 1).
In238 types (In237, In238, In2015, In2137), all
with a 169-bp duplication in their blaVIM-1-like
cassettes [22, 38, 39], were found in five species/
six STs. In238 had been identified first in the
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Polish index MPPA from 1998 [39], and together
with related elements, over years it has diffused
in P. aeruginosa and Enterobacterales in Poland,
Hungary and Greece [22, 38, 40–42]. In1008
types (In1008, In2134) were observed in isolates
of four species/six STs. These have spread in
Polish P. aeruginosa and Enterobacterales since
2001 [20, 22, 38]; interestingly, In1008 was
reported also in P. monteilii in Spain [6]. The
new In2136 types (In2133, In2136) with dupli-
cated blaVIM-2 cassettes, occurred mainly in a
cluster of P. alloputida ST69 (n = 6). Similar
duplications, though of other blaVIMs, have
been found in P. aeruginosa from Japan [43] and
Spain [44], and in Citrobacter freundii from the
US (GenBank acc. No. KP975074). Apart from
In461, In238 and In1008 types, several other
integrons (In56, In70, In249, In1446, In1654,
In1646, In1649) have been observed in Polish
MPPA and VIM-positive Enterobacterales too
[20, 22, 38] (M. Biedrzycka and R. Izdebski,
unpublished data); however, only two elements
(In2015 and In1446) were identified first in
MPPP and then other organisms. In summary,
VIM integrons have been one of the key factors
of the MPPP genetic diversity. The high number
of common elements with P. aeruginosa and
Enterobacterales indicates that the P. putida
group has participated readily in the circulation
of AMR determinants among Gram-negatives in
Poland [4, 11, 13, 16, 45].

Plasmid Content

The S1 analysis visualized at least one plasmid
(\50 to * 460 kb) in * 65% of the MPPP
isolates (n = 38); the highest number of such
isolates were in P. alloputida (17/19) (Table 1).
This was a notably higher score than in MPPA
(* 42%) (results not shown) [22]. Typing
revealed a variety of replicons, including IncP-9
(n = 17) and IncP-2 (n = 10). The self-transmis-
sible IncP-9 plasmids, associated with metabolic
functions and/or resistance to drugs and heavy
metals, have been divided into eight subgroups
(a–h), with three (a, e, g) linked with AMR [33].
Four subgroups (a, c, e, g) were identified in the
study collection, of which e dominated (n = 14).
IncP-2 replicons occurred in isolates of five

species with large plasmids in S1 profiles (* 320
to 460 kb) and often In461, which, like in MPPA
[21], might indicate the In461 location on IncP-
2 megaplasmids. Such highly transmissible
plasmids of multiple functions have been
broadly identified in pseudomonads as impor-
tant AMR platforms [46, 47], and seem to be
common in Polish MPPP and MPPA populations
(* 15%) [21]. Twelve isolates harbored plas-
mids of the recently identified pMOS94 lineage,
having 94–100% nucleotide identity to the
original repA-oriV sequence [12]. These plasmids
have been shown to frequently carry MBL genes
in pseudomonads from over last 20 years [12].
VIM-encoding plasmids and the direct context
of VIM integrons in the MPPP isolates have
been subjected to a separate detailed study (P.
Urbanowicz and M. Gniadkowski, manuscript
in preparation).

Resistome and Susceptibility Testing

The resistome analysis revealed a variety of
acquired AMR gene patterns, provided mainly
by 14 b-lactamase- and 30 aminoglycoside-
modifying enzyme-encoding genes (Table S4).
Individual resistomes contained 3–15 genes,
and an average isolate had * 7.1 genes. Among
the main species, P. asiatica had the highest
number of AMR genes per isolate (* 9.0) when
compared to P. monteilii and P. alloputida (* 6.8
and * 6.5, respectively). Most of the strains
were XDR [8], with almost uniform resistance to
b-lactams and fluoroquinolones, and varying
resistance to aminoglycosides (Table S5). All
isolates were susceptible to colistin.

Clonality and Phylogeny of the P.
alloputida Isolates

The results of the in-sample SNP comparison
were congruent with typing, clustering the ST69
isolates, and separating sporadic clones (Fig-
ure S2). The total number of polymorphic
positions was 65,097 and SNP numbers between
any and the reference isolates ranged from 51 to
51,451 SNPs (Table S6). SNP numbers in pairs of
closest-related isolates were 11-51,328 in the
whole sample, and 11-109 within the ST69
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group, indicating relatedness within that.
Inferred phylogeny of the 19 Polish and 73
international isolates defined as P. alloputida
(Table S7), corresponded to the recent analysis
with several clonal complexes (CCs) distin-
guished (Fig. 1) [19]; however, the CC1 from
that report did not meet the ANI/dDDH species
inclusion criteria used here, thus was excluded
from our study. All Polish ST69 isolates grouped
within CC7, together with 14 strains from all
over the world, mostly of non-clinical back-
ground. This CC was previously described as the
most clonal, with the highest number of
acquired AMR and virulence factors genes [19].
Two MDR strains from Japan, NBRC111121 and
GTC 16473 [19], were more related to the study
ST69 isolates, distanced by 581 and 916 SNPs to
the early 2596/03 isolate. This may indicate a
par excellence international lineage adapted to
hospital environments, locally acquiring vari-
ous AMR determinants. The remaining Polish
isolates of sporadic STs grouped together with
several others within CC4, making it the second
numerous and one of the most diverse P. allo-
putida CCs.

Clonality and Phylogeny of the P.
monteilii Isolates

The SNP-based phylogeny using the isolate
985/06 as a reference segregated the STs, clus-
tering the main ST95 clone (Figure S3). This
population was more homogeneous than P.
alloputida, with 13,683 polymorphic sites over-
all, and 56–8,934 SNPs between the reference
and any other isolate. Isolates in the ST95 group
were related with each other, differing by 38–78
SNPs (Table S6). The international P. monteilii
isolates sequenced (n = 32; Table S8) fell into
two main phylogroups; all Polish isolates
belonged to one of these, and the ST95 clone
formed a specific cluster within this group
(Figure S4). The international isolates of the
phylogroup were from all over the world, and
were mainly clinical isolates, including those
from Brazil with VIM or IMP MBLs. The second
phylogroup consisted of the isolates of envi-
ronmental or unknown origins.

Clonality and Phylogeny of the P. asiatica
Isolates

In the P. asiatica sample, the number of poly-
morphic positions was 37,169, and SNP num-
bers between any of the isolates and the
reference, isolate 2869/09, were 10-36,461
(Table S6). Pairs of closest relatives differed by
12-36,461 in the whole sample, and 12-83
within the major ST15 subclone, evidencing
relatedness of its isolates (Figure S5). When
compared with the international strains avail-
able (n = 40; Table S9; Figure S6), remarkably
frequent carbapenemase producers, the Polish
ST15 isolates formed a clade with five ST15
isolates from other countries, almost all having
blaVIM genes (in other integrons, though). In
general, the study isolates were related mostly
to French ones, and in case of the ST15 major
subclone it was the strain PC9/HB3267 (distant
by 163 SNPs from the reference), showed to be
highly resistant and pathogenic in various
models [48, 49]. Like in P. alloputida ST69, this
might indicate an international lineage of P.
asiatica, particularly adapted to nosocomial
settings.

Phylogeny of Minor Species

The results of phylogenetic analyses of the
study isolates representing minor species
against representatives of these from other
countries are shown in Tables S10–S17 and
Figures S7–S13. Even though the Polish isolates
segregated with some organisms into individual
lineages or branches, in general no specifically
close relationships were revealed. However, an
interesting case was P. kurunegalensis, of which
nine international sequenced isolates were
identified and compared with the three Polish
isolates (Table S10). The two ST114 isolates were
related to two nosocomial Chinese strains (Fig-
ure S7), separated by 143-146 SNPs from the
reference isolate 3456/12, and sharing the same
VIM integron, In528. The third isolate of ST46
turned out to be related to an MBL-negative
isolate from the US (292 SNPs), forming toge-
ther an outlier branch within the P. kurune-
galensis phylogenetic tree.
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Fig. 1 SNP-based phylogenetic tree of 19 sequenced P. alloputida Polish isolates compared with the international genomes
available in GenBank and PubMLST. Numbers correspond to original numbers of the study isolates or GenBank assembly
numbers. Their red, green, or grey backgrounds indicate clinical, non-clinical or unknown origin, respectively. The strain
names, countries and years of isolation, and attributed STs are specified at the corresponding GenBank assembly numbers.
The presence of carbapenemase gene is marked with colored circles. The study Polish isolates are bolded. Strains analyzed
previously [19] are assigned to original clonal complexes (CC2–CC7) and indicated in colors according to that report. The
tree was constructed using kSNP v3.1.2 [30] and visualized with iTOL. The names of countries were coded with ISO3166-1
alpha-2 standard
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DISCUSSION

The P. putida group of environmental origin are
emerging opportunistic pathogens, usually
affecting immunocompromised patients. In
recent years these have been increasingly
responsible for an array of infections, from
keratitis and UTIs in catheterized patients, to
catheter-related bacteremia [7]. In a recent
report from China, 44 cases of community- and
hospital-acquired P. putida infections were
described, of which 75% were MDR. One fourth
of the patients had the urinary catheter inserted
[50]. Similarly, a recent paper from Germany
underlined the catheter insertion as a risk factor
for infection, and out of a total of 89 P.
putida group strains recovered, 41 isolates
(46.1%) harbored the blaVIM MBL genes. The
frequent and broad AMR of P. putida may facil-
itate successful spread in hospital settings with
high antibiotic pressure, exemplifying ability of
these organisms to adopt to critical environ-
mental conditions [17]. At the same time, there
are no societies’ treatment recommendations
for P. putida infections since these are newly
emerging human pathogens with still not many
cases. The treatment is usually conducted with
antibiotics active against P. aeruginosa. How-
ever, a high percentage of MDR strains observed
worldwide and also in our study makes the
choice of effective antibiotic difficult. Suscepti-
bility profiles presented here limited the treat-
ment options mostly to colistin, acting as a last-
resort drug.

To the best of our knowledge, this work has
been one of the broadest and most compre-
hensive analyses of MDR nosocomial isolates of
the P. putida group so far, and one of a few such
WGS studies. Its strong element was the use of
the most updated taxonomy of the organisms
[1], which allowed for the precise classification
of the isolates and their targeted comparisons
with international strains, and for distinction of
two potentially new species. Apart from P.
alloputida [19], specific data on the other species
is still rather scarce and usually concerns single
isolates or limited outbreaks
[4–7, 11–14, 16, 18, 51]. Moreover, to our
knowledge, this is the 1st report on MBL-

producing clinical isolates of P. soli, P. juntendi,
Pseudomonas #14 and #15.

The study revealed predominance of P. allo-
putida, P. monteilii and P. asiatica in the entire
group (* 76% in total), which in general cor-
responds to other reports [5, 6, 18, 51] and
numbers of genomic sequences available at the
time of the study. The clonality and phyloge-
netic analyses revealed the presence of three
lineages, one per each of the major species, of
the apparently broad geographic distribution,
which may be considered to be epidemiologi-
cally ‘successful’ clones. The internal variety of
these clones, illustrated not only by the lack of
MBLs in many of their international members,
but also by the diversity of MBLs and their
genetic determinants when present, suggests
that the clones have been spreading basically as
MBL-negatives, and then locally acquiring dif-
ferent MBL-encoding structures.

The Polish MPPP isolates shared a remarkable
number of VIM integrons with MPPA and
Enterobacterales circulating in the country
[20, 22, 38] (M. Biedrzycka and R. Izdebski,
unpublished data), proving extensive on-site
exchange of these elements between different
populations of Gram-negative bacteria. How-
ever, it has been not possible to assign the P.
putida group the role of the AMR/MBL reservoir,
as postulated in several earlier reports
[4, 11, 13, 16], because most of the integrons
have been found first in the other species. Pre-
viously we have analyzed[ 1300 Polish MPPA
isolates from the same period, identified during
the same surveillance program [20–22, 52].
Keeping in mind huge population size differ-
ences between the two groups of organisms, it
should be noted that the P. putida group was
relatively more diversified, and seemingly more
frequently hosted plasmid DNA. As it was
mentioned above, the MPPP and MPPA shared
multiple VIM integrons with each other, and in
both groups In461 often correlating with con-
jugative IncP-2 megaplasmids was the most
frequent element. However, its contribution in
MPPP was higher than in MPPA (* 25% ver-
sus * 18%) but the correlation with the IncP-2s
was looser (* 47% versus * 85%) [21]. The
MPPA population was remarkably dominated
by four STs (ST235, ST111, ST273, ST654; *
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73%), whereas the contribution of the three P.
alloputida, P. monteilii and P. asiatica major STs
(ST69, ST95 and ST15, respectively) to all MPPP
was apparently lower (* 61%). In both groups
most of the main clones internally varied, e.g.
by VIM integrons; however, in MPPA these have
segregated several bona fide epidemic genotypes
(ST-pulsotype-integron) that were responsible
for * 60% of all MPPA infections. In MPPP only
two small clusters of P. alloputida ST69 (with
In2136 types) and P. asiatica ST15 (with In461)
might be presumably identified as counterparts
of the MPPA epidemic organisms.

This work has a limitation, being the age of
the MPPP isolates; however, still this has been a
relatively big group representative for specific
and rare opportunistic pathogens, collected by a
targeted surveillance over[ 10 years and all
over a country. Therefore, the study has made
an important contribution to understanding
the taxonomy, phylogeny, and dynamics of
clinical populations of emerging pathogens,
contributing to a pool of AMR genes.
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