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Abstract: Immunotherapy has revolutionised the treatment of cancers by harnessing the power of the
immune system to eradicate malignant tissue. However, it is well recognised that some cancers are
highly resistant to these therapies, which is in part attributed to the immunosuppressive landscape
of the tumour microenvironment (TME). The contexture of the TME is highly heterogeneous and
contains a complex architecture of immune, stromal, vascular and tumour cells in addition to acellular
components such as the extracellular matrix. While understanding the dynamics of the TME has
been instrumental in predicting durable responses to immunotherapy and developing new treatment
strategies, recent evidence challenges the fundamental paradigms of how tumours can effectively
subvert immunosurveillance. Here, we discuss the various immunosuppressive features of the TME
and how fine-tuning these mechanisms, rather than ablating them completely, may result in a more
comprehensive and balanced anti-tumour response.

Keywords: tumour; immunosuppression; tumour microenvironment; mechanisms; immunotherapy;
fine-tuning

1. Introduction

The tumour microenvironment (TME) is a dynamic ecosystem that is manipulated by
tumour cells to support its growth and subvert immune surveillance. Tumours exhibit vary-
ing degrees of inflammation that can be broadly categorised into immunologically ‘cold’
and ‘hot’ tumours. ‘Cold’ tumours are characterised by increased numbers of immuno-
suppressive cell types such as regulatory T cells (Tregs), myeloid-derived suppressor cells
(MDSCs), M2-switched tumour-associated macrophages (TAMs) and cancer-associated
fibroblasts (CAFs), as well as greater extracellular matrix (ECM) density, and poor oxygen
and nutrient availability [1]. The ‘cold’ phenotype can be subcategorised into ‘excluded’
tumours, which display limited cytotoxic T lymphocyte (CTL) migration to the tumour
periphery but not the tumour core, and ‘ignored’ tumours that are completely devoid
of CTLs [2]. Conversely, ‘hot’ tumours present with improved infiltration of CTLs, natu-
ral killer (NK) cells, and M1 macrophages as well as increased pro-inflammatory and type-I
interferon (IFN-I) signalling [1]. A major focus in the field is to develop new strategies that
reprogram the TME toward the ‘hot’ phenotype, which is generally more responsive to
immunotherapies including immune checkpoint blockade (ICB) and adoptive cell therapy
(ACT). However, treatment-refractory patients commonly exhibit similar or even higher
levels of tumour inflammation compared to those that do respond to therapy [3,4], sug-
gesting that there are still significant deficiencies in our understanding of the molecular
mechanisms underpinning tumour escape versus control. The TME is intrinsically tuned
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to resist natural and therapy-induced anti-tumour immune responses. Notably, many of
these immunosuppressive mechanisms may also exert anti-tumour effects that are critically
overlooked during drug development. This review will specifically highlight the common
molecular drivers of the immunosuppressive TME, and the current strategies being investi-
gated to target these pathways. We also discuss the role of these pathways in regulating
the balance of inflammatory responses in the TME, highlighting their potential importance
in promoting enhanced tumour control.

2. Cytokines
2.1. Interleukin-10

IL-10 is a homodimeric cytokine that is produced by various cell types including T
cells, B cells, macrophages, mast cells, dendritic cells (DCs), granulocytes, and tumour
cells [5,6]. IL-10 binds to IL-10 receptor-alpha, activating the Janus kinase (JAK)-Signal
transducer and activator of transcription (STAT) and protein kinase B (Akt) signalling cas-
cades, thereby phosphorylating the transcription factor STAT3 which then dimerises and
translocates to the nucleus. Additionally, IL-10 signalling mediates the activation of MAFB,
a transcription factor that regulates the polarisation of anti-inflammatory macrophages [7].
While recent work has shed light on its immune-stimulating activity [5], IL-10 was initially
described as a potent inhibitor of pro-inflammatory cytokine production by activated
macrophages and type-I T helper (Th1) cells [8,9]. Effective immune surveillance is gov-
erned by the presentation of tumour antigens by DCs to prime CTLs. However, IL-10 is
known to interfere with this process by reducing the expression of co-stimulatory molecules
or directly dampening T cell receptor (TCR) signalling strength through the re-arrangement
of surface N-glycans [10–12]. Similar phenomena have also been observed in other antigen-
presenting cells (APCs) such as monocytes and macrophages, where IL-10 downregulates
the surface expression of CD86 and major histocompatibility complex (MHC)-II proteins.
IL-10-treated DCs have been shown to promote CTL anergy toward melanoma-specific
antigens, resulting in a loss of cytolytic activity in vitro [11]. Moreover, IL-10-producing
monocytes/MDSCs subvert anti-tumour immunity by inhibiting macrophage-derived
IL-12 and T cell proliferation in carcinoma models [13,14]. A meta-analysis of over 1700 pa-
tients from 21 published studies revealed that elevated serum IL-10 levels were associated
with poor prognosis across most solid and haematological cancers [15]. Zhang et al. re-
cently showed that increased IL-10+ TAMs in biopsies from gastric cancer patients were
associated with poor clinical outcomes and response to chemotherapy [16]. In patients with
lung cancer, IL-10 was not only shown to positively correlate with tumour diameter, but it
was also demonstrated that IL-10 may counteract intra-tumoural programmed cell death
protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) signalling, highlighting the potential
role of IL-10 in mediating resistance to immune checkpoint blockade [17]. Despite strong
evidence suggesting that IL-10 plays an important role in promoting immune tolerance,
numerous studies have also highlighted the anti-tumour potential of IL-10 [18]. This was
exemplified by pre-clinical studies showing that IL-10 improves immune surveillance by
augmenting the effector functions of intra-tumoural CTLs [19]. Moreover, a recent phase I
clinical trial demonstrated that pegylated IL-10 in combination with anti-(α)PD-1 therapy
elicited robust anti-tumour immune responses and an improvement in clinical outcomes in
patients with renal and non-small-cell carcinoma [20]. Taken together, IL-10 plays a dual
role in eliciting immune responses with pro- and anti-tumour properties that need to be
precisely regulated.

2.2. Transforming Growth Factor-β

The TGF-β cytokine family is composed of three variants (TGF-β1, -β2 and -β3) each
of which are initially produced as a latent form before being enzymatically converted
to active TGF-β. Each variant interacts with type-I and type-II serine/threonine kinase
receptors (TGF-βRI and TGF-βRII), which in turn activates the SMAD pathway. The phos-
phorylation of SMAD2/3 then facilitates binding to SMAD4 to form the transcriptional
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complex that accumulates in the nucleus and controls gene expression [21]. TGF-β plays
a pivotal role in tumour immunosuppression by impairing the activation and production
of cytolytic molecules by NK and CTLs [22–24]. Furthermore, TGF-β has been shown to
suppress chemokine receptor expression on CTLs, rendering them incapable of trafficking
to tumours [25]. TGF-β is also responsible for triggering immunosuppressive cascades
by activating forkhead box P3 (Foxp3)+ Tregs, MDSCs and CAFs which also have distinct
anti-inflammatory properties [26–29]. Indeed, elevated levels of TGF-β subtypes are associ-
ated with poor outcomes across numerous malignancies including cutaneous melanoma,
lung, ovarian and triple-negative breast cancer [30–33]. Due to the major role that TGF-β
plays in promoting tumourigenesis, there has been growing interest in therapeutically
targeting TGF-β signalling to improve outcomes in cancer patients. Dodagatta-Marri et al.
recently showed that resistance to αPD-1 therapy in mice with squamous cell carcinoma
was mediated by the induction of immunosuppressive Tregs. However, combinatorial
treatment using αPD-1/αTGF-β ablated this effect and was superior in promoting tu-
mour rejection [34]. Similar findings were observed when using dual αPD-L1/LY364947
(a TGF-βRI kinase inhibitor) therapy, although the efficacy of this regimen was found to
be more effective against the more immunogenic MC38 colon adenocarcinoma cell line,
highlighting a further limitation of the strategy [35]. This synergistic effect with ICB has
also led to the development of bifunctional agents that simultaneously block PD-L1 and
TGF-βRII which has shown promising results in pre-clinical models and phase I clinical
trials [36]. Although TGF-β blockade has shown promising results in combination with
other immunotherapeutic strategies and in pre-clinical models, these findings have yet
to be fully recapitulated across numerous clinical trials [21]. One possible explanation
for this is the direct effect that TGF-β blockade has on cancer cells, given that the loss of
TGF-β signalling promotes mesenchymal–epithelial transition—an important step during
metastasis [37]. Secondly, TGF-β can be shuttled via extracellular vesicles, rendering them
inaccessible to antibody-based therapies [38]. Lastly, TGF-β plays a crucial role in the
formation and maintenance of CD8+ tissue resident memory T cells (TRM) that are a critical
component of the anti-tumour response [39]. While TGF-β has been classically defined
as an anti-inflammatory agent, contrary findings have shed light on its role in tempering
tumour outgrowth and promoting immune homeostasis within the TME.

2.3. Type-II Inflammatory Cytokines

Type-II inflammation plays a critical role in modulating the anti-tumour immune
response. An imbalance toward type-II inflammation has been associated with the ‘cold’
tumour phenotype compared to ‘hot’ tumours that are enriched with the more cytotoxic
type-I inflammation across multiple cancers [40]. Alarmins such as thymic stromal lym-
phopoietin (TSLP) and IL-33 are essential upstream regulators of the type-II inflammatory
response that are produced by stromal and endothelial cells in response to stress and
cellular damage. TSLP signals through TSLP-receptor (TSLPR) that is found on group 2
innate lymphoid cells (ILC2s), T cells and APCs [41]. Similarly, IL-33 is a member of the IL-1
family and binds to the ST2 receptor found on ILC2s and T cells [42]. Tumour cell-derived
TSLP reprograms myeloid DCs with Th2-polarising activity, and treatment of these mice
with αTSLP antibodies not only diminished this effect but also significantly prolonged
survival in humanised mice [43]. TSLP receptor (TSLPR)o/o mice engrafted with 4T1 breast
tumour cells restored type-I immune responses resulting in slower 4T1 tumour growth
and reduced lung metastasis [44]. Takahasi et al. also demonstrated that fibroblast-derived
periostin could stimulate TSLP by keratinocytes and promote a Th2-dominant TME in
a model for cutaneous T cell lymphoma [45]. Production of TSLP by CAFs within the
TME and IL-4 by basophils in draining lymph nodes (dLNs) drives the polarisation of
Th2 CD4+ T cells and M2 macrophages [46,47]. The IL-33/ST2 axis on Tregs is a key
tumourigenic driver in both skin and colon cancer [48,49], while ST2 deletion enhanced
type-I inflammatory responses that promote clearance of murine mammary carcinoma [50].
This pathway is also responsible for the polarisation of matrix metallopeptidase 9-secreting



Cells 2021, 10, 56 4 of 32

M2 macrophages which accelerate adenocarcinoma metastasis [51]. While the expression
of alarmins in the TME have been classically associated with increased tumour growth
and metastasis, contrary evidence has also positioned them as important regulators of
anti-tumour immunity. TSLP elicits protection against skin carcinogenesis by enhancing
dermal T memory cell immunity [52], which may not be surprising considering TSLPR
naturally complexes with the IL7R to promote CTL memory formation and homeosta-
sis [53,54]. A similar skin cancer model also demonstrates that TSLP enables Th2 formation
which exerts an anti-tumour effect and improves tumour surveillance [55]. In an elegant
model published by Demehri et al., transgenic K14 mice overexpressing dermal TSLP could
successfully arrest breast and pancreatic tumour development, which was associated with
an influx of GATA3+ Th2 cells to the primary tumour site [56]. Similarly, tumour growth
was markedly reduced following IL-33 treatment, which was attributed to an increase in
the migration and viability of cytotoxic eosinophils in a model for colorectal cancer [57].
In addition, IL-33 has been shown to drive anti-tumour CTL and NK cell activity that
reduces melanoma tumour growth and metastasis [58]. Xia et al. further demonstrated
that exogenous IL-33 recapitulates CTL effector functions in IL-33-deficient mice in a colon
carcinoma model [59]. Further reports indicate that ST2 expression on CTLs is promptly
upregulated following polarisation by type-I inflammation, while IL-33 and IL-12 (a canon-
ical type-I inflammatory cytokine) act synergistically to augment the effector functions
of CTLs [60]. This critical finding suggests that a balance of type-I and type-II inflamma-
tion is essential for optimal immune function. Canonical type-II inflammatory cytokines,
including IL-4, IL-5, IL-13 are primarily produced by Th2 cells and ILC2s. Type-II inflam-
matory cytokines, including alarmins in the TME is tightly linked with the induction of M2
macrophages and Tregs [61,62]. Additionally, ILC2 numbers have been shown to correlate
with infiltrating MDSCs in recurrent bladder cancer, where ILC2-derived IL-13 upregulated
the expression of T cell-suppressing genes including ARG1 (encoding arginase-I; ARG1)
and NOS2 (encoding inducible nitric oxide synthase; iNOS) [63]. Durable responses to
ICB correlate with improved Th1/Th17 activity and a concomitant suppression of Th2
immunity [64]. One novel approach to circumvent the type-II-skewed TME is to utilise
Inverted Cytokine Receptor (ICR)-modified CAR T cells that arm, rather than attenuate the
cancer-killing mechanisms of T cells in the presence of Th2 cytokines. Using this strategy,
IL-4/21 ICR (where the ectodomain of the IL-4R is fused to the endodomain of the IL-21R)
CAR T cells were significantly more effective at eradicating IL-4+ tumours in vivo [65]. It is
noteworthy that type-II inflammatory cytokines may be beneficial in eliciting anti-tumour
immune responses. For instance, recent work has demonstrated that targeted knockdown
of TGF-βRII expression on CD4+ T cells augments anti-tumour responses and vascular
remodelling in an IL-4-dependent manner [66,67]. A recent study by Moral et al. supports
this further by showing the ILC2s in pancreatic ductal adenocarcinoma (PDAC) cells are
highly receptive to PD-1 blockade and augment tissue-specific tumour immunity [68].
Remarkably, adoptive transfer of tumour-reactive Th2 cells were successful in promoting
tumour rejection [69]. This is corroborated by other work demonstrating that memory
Th2 cells potently activate cytotoxic NK cells to slow tumour growth [70], suggesting that
a complete ablation of type-II inflammation within the TME may be detrimental to immune
surveillance.

3. Metabolites
3.1. Tryptophan and Kynurenine

Catabolism of the essential amino acid tryptophan (Trp) by indoleamine 2,3-
dioxygenase-1 (IDO1) is the first and rate-limiting step in the synthesis of nicotinamide
adenine dinucleotide (NAD) which is a critical co-factor involved in glycolysis and oxida-
tive phosphorylation [71]. Immune suppression is triggered by a two-fold effect of IDO
activity by first depleting Trp, and the accumulation of the immunosuppressive metabolite
kynurenine (Kyn). IDO1 is an inducible enzyme produced by a broad range of myeloid
cells (including DCs and macrophages), endothelial cells, mesenchymal stromal cells
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and fibroblasts [72]. Increased IDO1 has been shown to stifle the activation of T cells,
inhibit NK cell function, stimulate Tregs, induce tolerogenic DCs, expand MDSCs and
neovascularisation [73]. The Trp starvation theory proposes that depletion of Trp facilitates
accumulation of uncharged tRNA and activation of the general control nonderepressible
2 (GCN2) pathway and subsequent T cell dysfunction [74]. Trp depletion has been shown
to inhibit mammalian target of rapamycin (mTOR) and protein kinase C in cancer cells and
enhance autophagy and Treg development [75]. Furthermore, a loss of mTOR signalling
may shift the balance of the CTL compartment toward short-lived and suboptimal cytolytic
responses [76]. Accumulation of Kyn is important in maintaining peripheral homeosta-
sis and tempering inflammatory lymphocyte activity. The Aryl hydrocarbon receptor
(AhR) pathway is activated by Kyn which is toxic to lymphocytes and induces CD4+ T
cell differentiation into Tregs [72,77]. AhR dimerises with the AhR nuclear translocator
(ARNT) protein to bind multiple transcriptional co-factors to drive transcription of IL-10
in DCs and NK cells and IL-6 in macrophages and cancer cells [78,79]. As previously
described, IL-10 has a dichotomous role in the TME by eliciting both pro- and anti-tumour
responses. Interestingly, tumour cells expressing high levels of IDO were observed to have
a slower growth rate compared to low IDO expressing cells [80]. Furthermore, higher intra-
tumoural expression of IDO has been correlated with longer survival in multiple cancer
types [81–83] but also worse prognosis in several other cancers [84–88]. The effect of IDO
as an immunosuppressive, pro-tumour factor has been queried due to a lack of efficacy
reported in a recent phase III clinical trial combining the potent IDO inhibitor epacadostat
with αPD-1 therapy in patients with non-resectable and metastatic melanoma [89].

3.2. Adenosine

Purinergic signalling is tightly regulated by the activity of surface ectonucleotidases,
CD39 and CD73. The pair of enzymes are responsible for the conversion of extracellular
adenosine triphosphate (eATP) to adenosine. The release of eATP is a common consequence
of cellular stress including inflammation, hypoxia or ischemia which triggers adenosine
accumulation. Adenosine elicits immunosuppression predominantly through the type-I
purinergic receptors, A2A and A2B as part of a regulatory negative feedback loop [90].
Indeed, the accumulation of adenosine and the expression of CD39 and CD73 are well
described features of the TME [91]. A broad range of immune cells express adenosine recep-
tors including T cells, NK cells, natural killer T cells (NKTs), macrophages, DCs, neutrophils,
mast cells and B cells [92]. The A2A receptor has been shown to promote proliferation
and immunosuppressive function of Tregs [93,94], inhibit T cell proliferation, cytotoxicity
and inflammatory cytokine production [95]. The CD39/CD73 axis fine-tunes macrophage
differentiation and activity by promoting M2 polarisation [96], while A2B agonists pro-
moted infiltration of MDSC in melanoma-bearing mice which was diminished following
A2B blockade [97]. Furthermore, CD73-deficient mice are resistant to carcinogenesis, while
metastasis of CD73+ tumours is significantly impaired following A2A blockade [98,99].
However, in contrast to the established role of adenosine in generating an immunosuppres-
sive TME, other work has highlighted its importance in T cell differentiation. Deletion of
A2A receptors increased tumour growth and impaired CTL and differentiation in a B16F10
tumour model [100]. This is supported in other studies which demonstrate that adenosine
signalling favours the generation of long-lived memory T cell precursors that are protected
against ATP-induced apoptosis [101,102]. Increased expression of CD73 has been observed
in a wide range of cancers and correlated with a worse prognosis [103]. However, con-
tradictory to such evidence, Ineoue et al. [104] found that tumour CD73 and A2A protein
expression in lung adenocarcinoma associated with a better prognosis. Further confus-
ing the prognostic value of CD73, studies have shown expression correlated with better
prognosis in ovarian and breast cancer [105,106]. Nevertheless, the dual-blockade of CD39
and CD73, in combination with αPD-1/αCytotoxic T lymphocyte-associated protein-4
(CTLA-4) was successful in promoting robust anti-tumour T cell immunity in known
therapy-resistant cancer models [107]. The authors also noted that the accumulation of
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eATP following CD39/CD73 blockade promoted the activation and maturation of DCs
and M1 macrophages [107]. This has also led to the development of clinical trials tar-
geting the A2A receptor in patients with refractory renal cell cancer [108]. In summary,
blocking adenosine signalling is a feasible strategy that favourably re-shapes the immune
landscape of the TME, although contradictory findings do suggest that the preservation of
this pathway might be important in regulating T cell homeostasis and the maintenance of
long-lived memory T cell precursors.

3.3. Nitric Oxide

Inducible nitric oxide synthase (iNOS) is a key enzyme involved in the production of
nitric oxide (NO) and is expressed by an array of cells including macrophages, MDSCs,
DCs, NK cells, tumour cells and endothelial cells [109]. NO is critical in many physiological
functions but also has been shown to drive a dual role in tumour development. iNOS is
promptly upregulated upon exposure to external stimuli (such as lipopolysaccharide; LPS),
hypoxia and proinflammatory cytokines (IL-1, IFN-gamma; IFNγ), tumour necrosis factor-
alpha; TNFα) resulting in the production of large quantities of NO [110]. Over-expression
of iNOS has been associated with poor prognosis in a series of human cancers [111–113].
Furthermore, elevated iNOS gene expression in patients has been demonstrated in nu-
merous cancer types, which was contrasted by a lower expression in surrounding healthy
tissue [114,115]. However, other attempts to correlate iNOS expression with patient out-
comes has led to contradictory results, and additional studies have questioned its value
as a prognostic marker [116,117]. Work by various groups have clearly demonstrated
the suppressive effects of NO on T cell function via different mechanisms including the
inhibition of the critical JAK3/STAT5 signalling pathway, inhibition of MHC class II ex-
pression and induction of T cell apoptosis [118–120]. Moreover, NO crucially recruits
MDSCs, Tregs, M2 macrophages and Th2 cells to the TME to propagate the ‘cold’ tumour
niche [121]. Increased expression of NO mediates the upregulation of vascular endothelial
growth factor (VEGF) signalling in the TME which promotes tumour growth and inva-
siveness [110,122]. Xiong et al. demonstrated that NO also inhibited the production of
IL-12 in DCs and M1 macrophages [123]. Multiple groups have demonstrated increased
type-I immunity and IL-12 production in iNOS knockout mouse models after bacterial
infection. Intriguing work from Marigo et al. demonstrated the local iNOS-expressing
DCs cooperate with adoptively-transferred CTLs to orchestrate tumour killing. This study
also demonstrated that the expression of the iNOS-encoding gene, NOS2 correlated with
improved T cell density in tumours and disease-free survival in patients with colorectal
cancer [124]. Klug et al. indicated the ability of low dose irradiation in vivo to polarise
iNOS+ M1 macrophages, which promoted type-I immunity and improved CTL infiltration
via NO-dependent vascular remodelling [125]. Notably, these findings challenge other
lines of evidence showing that the presence of reactive nitrogen species in tumours, such
as NO can impair CTL infiltration via the nitration of T cell-attracting chemokines [126].
Expression of iNOS in CD4+ T cells has also been reported to suppress Treg accumulation in
pre-clinical cancer models and disrupt tumour tolerance by inhibiting production of TGF-
β1 [127]. NO has been classically recognised as a myeloid-derived immunosuppressive
molecule that inhibits T cell survival, function, and migration. However, conflicting reports
also show that NO is indispensable to anti-tumour immunity which is likely determined
by its precise concentration and spatiotemporal abundance in the TME.

3.4. L-Arginine

Arginase-1/2 (ARG1/2) promotes the catabolism of the amino acid arginine (L-Arg)
into urea and ornithine, which is subsequently broken down into proline and polyamines to
drive collagen synthesis and cell proliferation, respectively [128]. Regulatory myeloid cells
such as M2 macrophages and MDSCs are recognised as the primary regulators of L-Arg
metabolism through the expression of ARG1 during infection and inflammation [129].
Expression of ARG1 is promptly upregulated in these cells in response to Th2 and anti-
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inflammatory cytokines (including IL-4, IL-13, IL-10 and TGFβ) to assist in resolution of
inflammation and promote tissue repair [130]. Many studies have in fact correlated overex-
pression of ARG1/2 and poor prognosis in a variety of cancers types [131–136]. Notably,
the deprivation of L-Arg has been shown to have a direct detrimental effect on tumour
growth by promoting autophagy, apoptosis and cell cycle arrest [137]. However, it is also
well described that the loss of L-Arg metabolism has a profound effect on anti-tumour im-
munity. Deprivation of L-Arg from the microenvironment by regulatory myeloid cells has
a profound effect on the local immune landscape. ARG1 expression by MDSCs favours the
generation of IDO-expressing, tolerogenic DCs [138], while L-Arg deficiency compromises
CD3 zeta chain (CD3ζ) expression on T cells, subsequently impairing TCR signalling, pro-
liferation and IFNγ production [139]. Furthermore, L-Arg availability shifts the metabolic
programs of T cells toward oxidative phosphorylation to promote the generation of a cen-
tral memory phenotype that are endowed with improved survival and anti-tumour activity
in a B16 melanoma model [140]. Indeed, the inhibition of ARG1/2 activity has yielded
positive results across numerous cancer models by reducing myeloid-driven immune sup-
pression [134,141]. However, adoptive transfer of Arg2−/− CTLs was also more efficient at
clearing tumours and synergised with PD-1 blockade, suggesting that CTL-intrinsic ARG2
activity contributes to the suppression of their anti-tumour activity [142]. To date, phase I
clinical trials testing arginase inhibitors have shown some promise in boosting anti-tumour
immunity. However, its progress to the clinic has been limited partly due to the essential
role of ARG in metabolising ammonia which is highly toxic [143,144].

3.5. Prostaglandin-E2

Prostaglandin-E2 (PGE2) is a bioactive lipid generated by cycloxygenase-2 (COX-2)
following the enzymatic conversion from arachidonic acid. In the TME, PGE2 is predomi-
nantly synthesised by myeloid, stromal and cancer cells, and signals through the G protein-
coupled receptor group, EP1-EP4 [145]. PGE2 is recognised as a pan-immunosuppressive
mediator as it inhibits CTLs, NK cells and type-I inflammation, while promoting Treg,
MDSC expansion and type-II inflammation [146]. Indeed, pilot data from a phase I clin-
ical trial has shown that small-molecule inhibitors of EP4 are well tolerated and slowed
disease progression in a proportion of patients with advanced cancers [147], while pre-
clinical studies have demonstrated that COX-2 inhibition synergises with ICB to improve
tumour eradication, highlighting its potential as a therapeutic adjuvant [148]. Despite
strong evidence for its role in dampening anti-tumour inflammation, PGE2 has been im-
plicated in regulating the memory T cell compartment which is an important axis of
tumour control. For instance, PGE2 treatment of umbilical cord blood (UCB) cells lead
to the expansion of TCF7- and eomesodermin (EOMES)-expressing CTLs that display a
stem-like phenotype, thereby improving the immune reconstitution efficiency of UCB
transplantation [149]. In contrast to what has been previously reported, PGE2 selectively
inhibits the expansion of certain Treg subtypes, revealing a pro-inflammatory role for
PGE2 [150,151]. Furthermore, PGE2 has been shown to restore CCR7-dependent migration
of DCs to dLNs, which subsequently improves CTL-DC crosstalk in a prostate cancer
model [152]. This is complicated further by more recent data demonstrating that TLR
agonists in combination with PGE2 promotes mature, cytokine producing DCs with im-
paired antigen cross-presentation activity [153]. These divergent findings may suggest that
nominal PGE2 signalling, possibly through certain EP receptors may be beneficial in certain
aspects of anti-tumour immunity. Collectively, PGE2, in combination with other soluble
factors play a fundamental role in creating an immunosuppressive TME (Figure 1).
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Figure 1. The immune circuitry within ‘cold’ tumour niches is governed by soluble factors such as
cytokines, growth factors and enzyme-regulated metabolites. Immune and stromal cell types send
and receive signals within the tumour milieu which culminates in the generation of an immune
privileged TME that impairs anti-tumour immunity. Abbreviations: T2-C: type-II inflammatory
cytokines, IDO: indoleamine 2,3-dioxygenase, TGF-B: transforming growth factor β, ADO: adenosine,
ARG1: arginase-1, iNOS: inducible nitric oxide synthase, and IL-10: interleukin-10.

4. Impairment of IFN-I Signalling

Type-I interferons (IFN-Is) are a functionally diverse family of cytokines that play
a crucial role in generating potent innate and adaptive immune responses against can-
cer [154]. IFN-Is are indispensable to anti-tumour immunity by enhancing intra-tumoural
CTL-DC crosstalk [155], as well as the augmentation of NK and M1 macrophage activity
in the TME [156,157]. ‘Cold’ tumours are generally characterised by poor immune cell
infiltration and an accumulation of immunosuppressive factors within the TME. Consistent
with this theme, ‘cold’ tumours also restrict endogenous IFN-I activity. In biopsies from
patients with triple-negative breast cancer, tumour-associated plasmacytoid DCs (pDCs)
produced significantly lower amounts of IFNα, which correlated with the accumulation
of intra-tumoural Tregs [158]. IFN-I production by pDCs has also been shown to be com-
promised in the presence of TGF-β and TNFα within breast tumours [159]. Katlinski
et al. demonstrated that the hypoxia-induced downregulation of IFN alpha receptor-1 (IF-
NAR1) in the TME was a central mechanism that impedes the viability of CTLs, generating
‘cold’ tumour niches [160]. Higher expression of interferon regulatory factor-7 (IRF7) gene
signatures in primary tumours has also been linked to prolonged bone metastasis-free
survival in breast cancer [161]. Indeed, the efficacy of current cancer therapies such as
radiotherapy, chemotherapy and immunotherapy rely on intact IFN-I signalling within
tumours [162–164]. Accordingly, agents that induce IFN-I responses (such as poly-I:C and
stimulator of IFN genes; STING agonists) are used widely as adjuvants for current therapies
with moderate success [165,166]. Despite this, there has been mounting evidence that IFN-I
signalling also exerts a detrimental effect on anti-tumour immunity. Persistent tumour
IFN signalling has been shown to drive adaptive resistance to ICB, which was diminished
when mice were pre-treated with JAK inhibitors to block downstream IFN signalling [167].
Furthermore, inflammatory breast cancer (which is a rare and aggressive form of breast can-
cer) is frequently associated with hyper-activation of IFN-I pathways [168]. More recently,
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Effern et al. noted that recurring tumours with significant loss of antigen expression were
associated with more intense IFN signalling [169], suggesting that tumour dedifferentiation
as a mechanism of immune evasion may be driven by overexuberant anti-tumour responses
within the TME. This may also be confounded by the functional heterogeneity of IFN-Is,
where specific IFNα subtypes are clearly more potent primers of the anti-tumour immune
response, although this has only been explored in murine models [154].

5. Hypoxia

The establishment of a hypoxic TME is a hallmark of solid cancer progression and dra-
matically re-shapes the immune contexture of the TME. The cellular response to hypoxia is
driven largely by hypoxia-inducible factors (HIF-1α, -2α, -3α) which are oxygen-sensitive
transcription factors that are stabilised in the presence of low oxygen concentrations [170].
The relationship between hypoxia and immune suppression in the TME is well established
and is strongly linked to numerous mechanisms described above, including the impairment
of IFN-I signalling, upregulation of immune checkpoint molecules and the upregulation
of extracellular adenosine [170]. Elevated hypoxic gene signatures are a major prognostic
indicator in cancer patients and are frequently associated with immune-privileged (‘cold’)
tumour niches [171,172]. Hypoxia and the induction of lactate metabolism has been re-
ported to promote M2 polarisation of TAMs via the activation of HIF-1, Hedgehog and
mTOR pathways [173,174]. In addition, tumour cell-derived exosomes under hypoxic con-
ditions were also able to reprogram macrophages toward an M2 phenotype [175]. While it
has been demonstrated that elevated HIF-1α signalling in DCs results in Th2-biased ac-
tivation, decreased antigen uptake, and decreased CTL expansion [176–178], other work
has shown that hypoxic stress improved dLN trafficking of DCs via CCR7 and promoted
a highly pro-inflammatory gene expression profile [179,180]. These divergent findings
may be at least partially explained by the activation of HIF-1α-independent pathways and
the prevalence of other metabolic confounders in the TME that subvert cellular function
(i.e., the depletion of glucose, low pH, etc.). Of note, HIF-1α also acts a negative regulator
for pDC development, limiting IFNα production [181]. Hypoxic zones within the TME
are significantly more resistant to CTL penetrance, which represents a major challenge
in T cell-based immunotherapies [182]. The exclusion of CTLs from these regions rely
heavily on the accumulation of immunosuppressive myeloid cells and Tregs that are de-
pendent on various cytokines such as CCL28, CCL5 and TGF-β [183–185]. Knockdown of
hypoxia-induced triggering receptors expressed on myeloid cells (TREM)+PD-L1+ TAMs
in advanced hepatocellular carcinoma (HCC) could successfully rescue CTLs from an ex-
haustive state and restore their cytolytic activity, which was largely attributed to a reduced
recruitment of Tregs to the TME [186]. This is supported by other studies showing that
the use of oxygen supplementation or hypoxia-disrupting drugs in combination with ICB
can also successfully mitigate this effect by reducing MDSC density [182,187]. Hypoxic
stress, mediated by HIF signalling has also been shown to directly regulate T cell differ-
entiation by favouring glycolytic metabolism and effector transition that eventually leads
to exhaustion [188]. CART cells, under hypoxic conditions in vitro displayed significantly
less proliferative and cytokine-producing activity compared to those under normoxia [189].
Moreover, hypoxia has been shown to induce defects in mitochondrial function that lead
to CTL exhaustion [190]. Conversely, Palazon et al. demonstrated that intrinsic HIF-1α
signalling was essential for CTL infiltration and effector function, highlighting the impor-
tance of HIF-1α in the adaptation of CTLs to the hypoxic TME [191]. While this seemingly
contradicts the detrimental role of hypoxia and HIF signalling in CTLs, it is important to
consider that tumour cells can out-manoeuvre this metabolic adaptation by also deplet-
ing glucose from the TME, thereby diminishing the activity of CTLs that rely heavily on
glycolysis for energy production [192]. Interestingly, CTLs reprogrammed to utilise fatty
acid catabolism under oxygen and glucose deprivation could recapitulate their cytolytic
activity, rendering them more responsive to ICB [193]. These metabolic changes in the TME
also have a direct effect on tumour cells and their ability to evade immune responses, as
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combined oxygen and glucose starvation decreases their presentation of tumour antigens
on MHC class I to avoid recognition by CTLs [194]. Hypoxia and various mechanisms of
immune suppression interface heavily and mutually support each other to promote tumour
growth, highlighting the enormous challenge presented when designing new therapies
that successfully address both issues.

6. Extracellular Vesicles

Extracellular vesicles (EVs) are lipid bilayered nanoparticles that shuttle various bioac-
tive components, such as RNAs, proteins and lipids between cells. Tumour-derived EVs
(T-EVs) bearing Fas ligand (FasL) and TNF-related apoptosis-inducing ligand promote CTL
apoptosis [195–197]. Similarly, T-EVs expressing membrane-associated TGF-β1 enhanced
Treg function while impairing NK and CTL activation [198]. Other lines of evidence demon-
strate that T-EVs promote M2 macrophage polarisation which accelerates cancer growth
and metastasis [199,200]. Moreover, exosomes produced by these macrophages have been
shown to contain micro-RNAs (miRNAs) that dysregulate the balance of Treg:Th17 cells
in ovarian cancer [201]. EVs produced by other anti-inflammatory cells such as Tregs
and MDSCs also dampen CTL and type-I inflammatory responses by delivering various
miRNAs or immunomodulatory proteins [202–204], suggesting that EVs produced by both
tumour and immune cells in the TME help propagate the ‘cold’ tumour niche to suppress
anti-tumour immunity. EVs within the TME are also major mediators of therapy resistance
in cancer patients. Richards et al. showed that CAFs-derived EVs could elicit chemotherapy
resistance in PDAC cells via the upregulation of the Snail pathway [205], while similar
resistance to chemotherapy has been demonstrated via the delivery of macrophage-derived
EVs containing miR-21 and miR-365 [206,207]. In a melanoma model, tumour cells shed-
ding EVs mediated chemotherapy resistance by promoting M2 macrophage polarisation
and upregulating IL10 and ARG1 expression in stromal cells [208]. Additionally, PD-L1+

EVs produced by cancer cells are a prominent mechanism of immunotherapy resistance by
acting as off-target decoys for αPD-1 monoclonal antibodies that are used to reinvigorate
anti-tumour T cell immunity [209]. Although targeting EVs within the TME may be a plau-
sible approach to ameliorating tumour immunosuppression, a critical study by Wolfers
et al. showed that T-EVs deliver tumour antigens to DCs to enable CTL cross-priming [210].
Other work has highlighted the role of DC-derived EVs in delivering peptide-loaded MHC
and co-stimulatory molecules to cancer cells, improving their immunogenicity [211].

7. Exclusion of T Cells from the Tumour Bed and Disruption of T Cell Homeostasis

T cells, in particular CTLs are considered one of the key effectors in mediating anti-
tumour immunity. Indeed, a defining characteristic of ‘cold’ tumours is the exclusion of
CTLs from the tumour bed. Several factors contribute to the impairment of CTL infiltration
into tumours, including mechanisms described above such as hypoxia and the accumu-
lation of anti-inflammatory cells. These conditions that are hostile to CTLs also disrupt
the chemokine signalling pathways that are essential to CTL trafficking. TME-residing
MDSCs promote the nitration of CCL2 via the production of reactive nitrogen species,
impairing the trafficking of CTLs to the tumour site and trapping them in the surrounding
stroma [126]. Additionally, increased concentrations of CCL27, CCL5 and CXCL10 in
tumours have been associated with better mobilisation of CTLs to the TME [212–214].
Tumour cell-derived galectins have been shown to impair the activities of IFNγ-induced
chemokines, CXCL9/10/11 by decorating ECM glycans and subsequently trapping intra-
tumoural IFNγ [215]. Conversely, CAFs can directly impede CTL trafficking by secreting
CXCL12 which, at high concentrations deters CTL migration [216]. The tumour vasculature
also undergoes significant remodelling to stifle the migration of CTLs to the tumour bed.
Upregulation of VEGF, IL-10 and PGE2 at the tumour site cooperatively promotes Fas
ligand expression on tumour endothelial to elicit apoptosis of CTLs, but not Tregs [217].
Furthermore, VEGF signalling and local NO production induces defects in the structural
arrangement of adhesion molecules on tumour endothelial cells to impair CTL extrava-
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sation [218]. Lastly, the ECM architecture laid out by CAFs physically constrains CTLs to
areas of lower collagen and fibronectin density, which was reversed following collagenase
treatment [219]. Collectively, tumour cells can manipulate its local milieu to suppress
multiple mechanisms of CTL migration to the TME (Figure 2).
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Figure 2. The TME perturbs multiple mechanisms of T cell migration to avoid immune surveillance.
Cancer cells can impede with CTL trafficking to the tumour bed at multiple levels including the
loss of extravasation capacity, disrupted chemokine gradients and physical constraints including
increased ECM deposition and poor oxygen availability.

CTLs that do successfully migrate into the TME are required to integrate an array
of pro- and anti-inflammatory signals to appropriately endow them with cancer-killing
activity. Infiltrating CTLs that maintain memory and stem-like properties are superior in
mediating long-term anti-tumour immunity, while durable response to immunotherapy
relies on the expansion of these subsets [220,221]. While it is indisputable that ‘hot’ tumours
are skewed toward a Th1, pro-inflammatory phenotype that supports the effector functions
of CTLs, there is emerging evidence that many “pro-tumour” factors play a critical role
in regulating this protective T cell niche in the TME. For instance, IL-10 and TGF-β have
been implicated in the maintenance of TRM populations in tumours [222–224], while the
induction of TCF7 gene expression (a key transcription factor that regulates T cell stemness
and longevity) has also been shown to be controlled by a core transcription factor group that
includes the master Th2 regulator, GATA3 [225]. Moreover, type-II inflammatory cytokines
such as TSLP regulate the balance of antigen-specific memory CTLs by cooperating with
IL-7 signalling [54]. Conversely, cytokines such as IL-12 and IFN-I can counteract the
generation of long-lived memory T cells to favour terminal differentiation and eventual
exhaustion when produced in excess [226–228], suggesting strong pro-inflammatory cues
within the TME may drive the formation of short-lived effector CTL responses that are
unfavourable in establishing anti-tumour immunity (Figure 3).
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effector T cell populations in the TME. ‘Cold’ tumour niches contain an abundance of canonical
immunosuppressive factors that create an immune-privileged TME. Conversely, ‘hot’ tumours that
contain excessive amounts of pro-inflammatory factors may disrupt the balance of effector-memory
CTL populations, resulting in short-lived effector responses. In contrast, a balance of pro- and
anti-inflammatory signals in the TME may endow CTLs with improved cytolytic responses that are
long lived.

8. Inhibitory Receptors
8.1. T Cell Immunoglobulin and Mucin Domain-Containing 3 (TIM-3)

T cell immunoglobulin and mucin domain-containing 3 (TIM-3) is a type-I transmem-
brane protein and member of the immunoglobulin (Ig) superfamily that is upregulated on
activated T cells and associated with a terminally differentiated effector state. TIM-3 has
been shown to interact with several ligands including galectin-9 (Gal-9), phosphatidylser-
ine (PtdSer), high mobility group box protein B1 (HMGB1) and carcinoembryonic antigen
related cell adhesion molecule 1 (CEACAM-1) [229]. Interaction of TIM-3 with its ligand’s
triggers phosphorylation of two tyrosine residues, releasing human leukocyte antigen B
(HLA-B)-associated transcript 3 (BAT3) and allowing TIM-3 to exert its inhibitory func-
tion [230]. TIM-3 expression is dependent on the type-I master regulator, T-box transcrip-
tion factor 21 (T-BET) [231]. Under inflammatory conditions, IL-12 and IL-27 induces TIM-3
expression and T cell dysfunction via T-BET and nuclear factor, interleukin-3 regulated
(NFIL3), respectively [232,233]. In CTLs, signalling via the nuclear factor of activated
T cells (NFAT) has been shown to play a role in also regulating TIM-3 expression and
subsequent exhaustion [234]. It has recently been demonstrated that the interaction of
TIM-3 with CEACAM1 is required for the T cell inhibitory function of TIM-3 in cancer [235].
In addition, TIM-3 is also expressed at high levels on tumour-infiltrating Tregs [236–238]
and their presence is associated with advanced disease and the nodal metastasis in patients
with NSCLC [236]. High levels of TIM-3 expression in the TME correlate with suppression
of T cell responses and T cell dysfunction in cancer [239,240]. In line with this, a recent
meta-analysis demonstrates that TIM-3 expression is significantly associated with worse
overall survival in patients with solid cancer [241]. Consistent with a role in the negative
regulation of anti-tumour immunity, there is extensive pre-clinical data demonstrating the
therapeutic benefit of blocking TIM-3 signalling, mostly in conjunction with PD-1 block-
ade [242]. These encouraging pre-clinical results have led to development of TIM-3 blocking
antibodies for clinical use, with several studies reporting early clinical findings and strong
safety profiles when used in combination with αPD-1/PD-L1 or decitabine [243–245].

8.2. Lymphocyte Activation Gene-3 (LAG-3)

Lymphocyte activation gene-3 (LAG-3; CD223) is member of the Ig superfamily of
receptors with structural similarities to CD4. LAG-3 conventionally binds to MHC II. how-
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ever, there is also evidence of its interaction with galectin-3 (Gal-3), LSECtin, and fibrinogen
like protein 1 (FGL1) [246]. LAG-3 acts as a TCR co-receptor that is upregulated following
antigen exposure [247]. In line with this, IL-12 a potent inducer of IFNγ, is known to upreg-
ulate LAG-3 expression on activated human T cells along with IL-2 and IL-7 [248]. In the
TME, chronic antigen stimulation and inflammation maintains LAG-3 expression on T cells
and where it is commonly co-expressed with other immune checkpoints such as PD-1 and
Tim-3 [249,250]. In addition, LAG-3 is constitutively expressed on suppressive Tregs [251]
where it interacts with MHC II on DCs inhibiting proliferation and maturation [252]. LAG-
3+ Tregs in the TME secrete high levels of immunosuppressive cytokines, IL10 and TGFβ,
which act to dampen the anti-tumour immune response and magnify Treg activity [252].
In murine studies, blockade of LAG-3 alone or in combination with anti-PD-1 has been
shown to enhance the anti-tumour CTL response and inhibit tumour growth [253–255].
In humans, a meta-analysis revealed that elevated LAG-3 expression is consistently as-
sociated with poor prognosis across multiple cancers [256]. Due to the fundamental role
of LAG-3 plays in T cell dysfunction, early in-human clinical trials have demonstrated
promising results of LAG-3 blockade in combination with αPD-1 in patients with advanced
malignancies [257–259]. In addition to its membrane-bound form, LAG-3 can be shed
from the surface by proteases, yielding soluble LAG-3 (sLAG-3). Notably, sLAG-3 has
been demonstrated to elicit an immunostimulatory effect on APCs which promotes robust
type-I and tumour-reactive CTL responses [260–262]. Indeed, high levels of sLAG-3 is
associated with improved prognosis in patients with gastric cancer and correlates with
serum levels of IL-12 and IFNγ [263]. Harnessing this feature of sLAG-3, clinical trials
utilising recombinant sLAG-3 together with ICB have also shown encouraging results in
early clinical trials [264,265], highlighting its potential role as a therapeutic adjuvant.

8.3. T cell Immunoreceptor with Ig and ITIM Domain (TIGIT)

T cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibition motif
(ITIM) domains (TIGIT) belongs to the family of poliovirus receptor (PVR)-like proteins
and is expressed on activated T cells, Tregs and NK cells [266]. TIGIT, which normally
binds CD155 and CD112 on DCs and tumour cells, exerts its immunosuppressive function
through numerous mechanisms, such as its direct binding to tumour expressing CD155 to
trigger T/NK cell inhibition, outcompeting its co-stimulatory counterpart, CD226 on the
T/NK cell surface and by indirect means including the activation of immunosuppressive
DCs and Tregs following CD155-CD226 recognition [267]. Indeed, overexpression of TIGIT
has been associated with poor prognosis in numerous cancers including bladder, gastric,
lung adenocarcinoma and HCC [268–271]. Like other inhibitory receptors, TIGIT expres-
sion is a hallmark of T cell exhaustion [272]. Kurtulus et al. highlighted that elevated
TIGIT demarcates a highly dysfunctional CTL subset in tumours, while demonstrating
that TIGIT signalling orchestrates the expansion of Tregs that dampen local anti-tumour
immunity [273]. Notably, tumour CD155 (the binding partner for TIGIT) expression has
been linked with resistance to αPD-1 therapy in patients with metastatic melanoma [274],
while expression of CD155 on cancer cells ablates CTL activation via CD226 degrada-
tion [275]. Overcoming this, dual blockade of PD-1/TIGIT could successfully recapitulate
anti-tumour CTL and NK cell responses in pre-clinical mouse models [276–278]. Collec-
tively, encouraging pre-clinical data has prompted the commencement of numerous clinical
trials utilising αTIM-3, αLAG-3 and αTIGIT as a new class of checkpoint inhibitors for
patients with treatment-refractory cancers (Table 1).
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Table 1. Clinical trials underway using therapeutics against TIM-3, LAG-3 and TIGIT (clinicaltrials.gov).

Product Description Clinical Stage Cancer(s) Trial No.

A. TIM-3

Sym023
(Symphogen) IgG1 mAb 1

Advanced solid cancer
or

lymphoma

NCT03489343
NCT03311412

TSR-022
(Tesaro) Humanised IgG4 mAb 2 HCC, melanoma,

advanced solid cancers

NCT03680508
NCT02817633
NCT03307785

LY3321367
(Eli Lilly and Co) IgG1k, Fc silent 1 Melanoma, MSI-H and

advanced solid cancer
NCT03099109
NCT02791334

MBG453
(Novartis) Humanised IgG4 mAb 2 AML, CMML-2,

MDS, GBM

NCT04150029
NCT04266301
NCT03946670
NCT03066648
NCT03940352
NCT02608268
NCT03961971

BGB-A425
(BeiGene) IgG1, variant, Fc silent 1/2 Advanced/

Metastatic solid cancer NCT03744468

ICAGN02390
(Incyte) IgG1k, N297A, Fc silent 1 Advanced solid cancer,

melanoma
NCT03652077
NCT04370704

BMS-986258
(Bristol-Myers Squibb) IgG1, Fc silent 1/2 Advanced solid cancer NCT03446040

RO7121661
(Hoffman-La Roche)

PD-1/TIM-3 bispecific
Ab 1

Melanoma, NSCLC,
SCLC, ESCC, urothelial

cancer

NCT03708328
NCT03869190

B. LAG-3

IMP321 *
(Immunopet)

LAG-3-Ig fusion
protein 1/2

Breast cancer,
advanced solid cancers,

NSCLC, HNSCC

NCT02614833
NCT03252938
NCT03625323

Relatlimab #

(Bristol-Myers Squibb)
IgG4 mAb 2

Uveal melanoma,
CRC, sarcoma,

melanoma

NCT04552223
NCT03642067
NCT04095208
NCT03470922

LAG525
(Novartis) IgG4 mAb 2 Breast cancer, advanced

solid cancer, melanoma

NCT03499899
NCT02460224
NCT03742349
NCT03484923

MK-4280
(Merck) Humanised IgG4 1/2

HL, NHL, BCL,
NSCLC, RCC,

advanced solid cancer

NCT03598608
NCT02720068
NCT03516981
NCT04626479
NCT04626518

REGN3767
(Regeneron) IgG4 mAb 1 BC, advanced cancers NCT03005782

NCT01042379
TSR-033
(Tesaro) Humanised IgG4 mAb 1 Advanced solid cancers NCT03250832

NCT02817633
Sym022

(Symphogen) Fc inert mAb 1 Advanced solid cancer,
lymphoma

NCT04641871
NCT03311412

INCAGN02385
(InCyte) Fc-engineered IgG1k 1/2 Melanoma NCT04370704

MGD013
(MacroGenics)

Humanised
LAG3-PD-1 bispecific

Ab
1/2 GC, HCC, advanced

solid cancers

NCT04212221
NCT03219268
NCT04178460

FS118
(F-star)

Humanised
LAG3-PD-L1 bispecific

Ab
1 Advanced solid cancer NCT03440437
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Table 1. Cont.

Product Description Clinical Stage Cancer(s) Trial No.

C. TIGIT

BMS-986207
(Bristol-Myers Squibb) IgG1 mAb, FcγR null 1/2 EC, OC, Myeloma,

advanced solid cancer,

NCT04570839
NCT02913313
NCT04150965

IBI939
(Innovent) IgG1 mAb 1 Advanced cancer NCT04353830

BGB-A1217
(BeiGene) Humanized IgG1 mAb 1 Metastatic solid

tumours NCT04047862

Tiragolumab †

(Genentech)
IgG1 mAb 1–3 NSCLC, SCLC, ESCC,

BC

NCT03563716
NCT04300647
NCT04543617
NCT04584112

Etigilmab
(Mereo BioPharma) Humanised IgG1 mAb 1 Advanced solid cancer NCT03119428

Vibostolimab
(Merck) Humanised IgG1 mAb 1/2 GC, NSCLC, PC,

melanoma,

NCT02964013
NCT02861573
NCT04305054
NCT04303169
NCT04165070
NCT04305041

Domvanalimab
(Arcus Biosciences) Humanised IgG1 mAb 1 Advanced solid cancer,

NSCLC
NCT03628677
NCT04262856

ASP8374
(Potenza) IgG4 mAb 1 Advanced solid cancer NCT03260322

NCT03945253
# 28 studies recruiting/active, not recruiting, 4 not yet recruiting, 1 withdrawn; * 3 studies recruiting/active, not recruiting, 6 completed,
1 not yet recruiting; † 13 studies recruiting, 1 active, not recruiting, 1 not yet recruiting. Abbreviations: HCC: heptocellular carcinoma;
MSI-H: microsatellite instability high; AML: acute myeloid leukemia; CMML: chronic myelomonocytic leukemia; MDS: myelodysplastic
syndrome; GBM: glioblastoma multiforme; NSCLC: non-small-cell lung cancer; SCLC: small-cell lung cancer; ESCC: esophageal squamous
cell carcinoma; HNSCC: head and neck squamous cell carcinoma; CRC: colorectal cancer; HL: Hodgkin’s lymphoma, NHL: non-Hodgkin’s
lymphoma; BCL: B cell lymphoma; RCC: renal cell carcinoma; BC: breast cancer; GC: gastric cancer; EC: endometrial cancer; OC: ovarian
cancer; PC: prostate cancer.

8.4. Cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4)

CTLA-4 (CD152) is a member of the Ig superfamily and is highly expressed on acti-
vated T cells and constitutively expressed on Tregs [279]. The primary function of CTLA-4
is to outcompete and block CD28 co-stimulation by binding the B7 molecules on APCs
(CD80/CD86) to elicit downstream T cell inhibition [280]. Cell-extrinsic mechanisms also
come into play by stripping B7 molecules from APCs following CTLA-4 engagement via
trans-endocytosis [281], and reverse CTLA-4-B7 signalling that activates immunosuppres-
sive IDO activity in DCs [282]. Furthermore, CTLA-4 plays a pivotal role in maintenance
of Tregs and their immunosuppressive activity [283]. In humans, the correlation between
high levels of CTLA-4 expression and poor outcome is well established in several types
of cancer [284]. In pre-clinical studies, blockade of CTLA-4 led to rejection of lymphoma,
colorectal, renal and fibrosarcoma cancer cell lines in mice [285] and activation of hu-
man tumour-specific CTLs [286]. These studies led to the development of ipilimumab,
a fully human αCTLA-4 IgG1 monoclonal antibody (mAb), that demonstrated improved
survival outcomes in a key phase 3 study of patients with previously treated metastatic
melanoma [287]. This pivotal trial led to Ipilimumab being the first immune checkpoint
blockade therapy approved by the Food and Drug Administration (FDA) in 2011 for pa-
tients with advanced melanoma, a disease stage for which there was no previous standard
of care therapy that prolonged survival. Since then, αCTLA-4 blockade has been examined
extensively in pre-clinical studies and clinical trials as a single agent and in combination
with chemotherapy [288–290], radiotherapy [291–293], cancer vaccination [294], and other
immunotherapies [295–297]. However, it is the combination of αPD-1/αCTLA-4 blockade
that has demonstrated the greatest therapeutic efficacy in the clinic, with ipilimumab



Cells 2021, 10, 56 16 of 32

(αCTLA-4) and nivolumab (αPD-1) approved for treatment of patients with advanced solid
tumours (Table 2).

Table 2. Clinical applications of αCTLA-4/αPD-1 drugs combinations and the seminal studies that lead to their FDA
approval (clinicaltrials.gov and fda.gov).

Product Combination(s) Cancer Type(s) Seminal Study

A. CTLA-4

Ipilimumab Nil Melanoma NCT00094653
(Bristol-Myers Squibb) Surgery Melanoma NCT00636168

Nivolumab Melanoma NCT01844505
Nivolumab RCC NCT02231749
Nivolumab MSI-H/dMMR CRC NCT02060188
Nivolumab HCC NCT01658878

Nivolumab and limited
Chemotherapy NSCLC NCT03215706

Nivolumab Malignant pleural mesothelioma NCT02899299

B. PD-1

Cemiplimab
(Regeneron) Nil Cutaneous SCC NCT02760498

Pembrolizumab Nil Melanoma NCT01866319
(Merck) Surgery Melanoma NCT02362594

Nil NSCLC NCT01295827
NCT02220894

Doublet platinum-based
Chemotherapy NSCLC NCT02039674

Carboplatin and paclitaxel NSCLC NCT02775435
Axitinib RCC NCT02853331

Nil MSI-H/dMMR CRC NCT02563002
Nil SCLC NCT02054806

NCT02628067
Platinum and FU HNSCC NCT01848834

Nil HNSCC NCT02358031
Nil Gastric cancer NCT02335411
Nil ESCC NCT02564263
Nil HCC NCT02702414
Nil MCC NCT02267603

Lenvatinib Endometrial cancer NCT02501096
Nil cSCC NCT03284424

Paclitaxel or gemcitabine and
carboplatin TNBC NCT02819518

Nil Urothelial cancer NCT02335424
NCT02625961

Nil PMBCL NCT02576990
Nil Classical HL NCT02453594

NCT02684292
Nivolumab Nil NSCLC NCT01642004

(Bristol-Myers Squibb) Nil RCC NCT01668784
Nil Classical HL NCT02181738

NCT01592370
Nil HNSCC NCT02105636
Nil Urothelial Carcinoma NCT02387996
Nil MSI-H/dMMR CRC NCT02060188
Nil HCC NCT01658878

Surgery Melanoma NCT02388906
Ipilimumab SCLC NCT01928394

Nil ESCC NCT02569242

NSCLC: non-small-cell lung cancer; RCC: renal cell carcinoma; MSI-H: microsatellite instability high; dMMR: mismatch repair deficient;
CRC: colorectal cancer; SCLC: small-cell lung cancer; HNSCC: head and neck squamous cell carcinoma; ESCC: esophageal squamous
cell carcinoma; MCC: Merkel cell carcinoma; cSSC: cutaneous squamous cell carcinoma; TNBC: triple-negative breast cancer; PBMCL:
Primary mediastinal large B-cell lymphoma; HL: Hodgkin’s lymphoma: TMB-H: tumour mutational burden high.

clinicaltrials.gov
fda.gov
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8.5. Programmed Cell Death Protein 1 (PD-1)

PD-1 (CD279) is another membrane-bound co-inhibitory receptor with Ig-like domains.
However, unlike CTLA-4, PD-1 expression is more broadly expressed across hematopoietic
and non-hematopoietic cells. PD-1 binds its cognate ligands, PD-L1 and PD-L2 which
are membrane proteins also found on numerous cell types including APCs, endothelial
cells, cancer cells, mast cells and lymphocytes [298]. In T cells, PD-1 engagement by
PD-L1/PD-L2 triggers several immunosuppressive mechanisms by interfering with both
downstream TCR and CD28 signalling, while directly inducing the expression of regu-
latory transcription factors such as basic leucine zipper transcriptional factor ATF-like
(BATF) [299]. In the TME, PD-1 is highly expressed on tumour-infiltrating lymphocytes,
where it is commonly associated with a population of dysfunctional or “exhausted” T cells
that co-express multiple immune checkpoint molecules and display a unique epigenetic
landscape compared with effector and memory T cells [300]. The expression of PD-L1 on
tumour cells has been studied extensively as a mechanism of subverting T cell immunity,
which has been reported in a variety of solid cancers [301] and often associated with poor
overall survival [302]. The success of targeting the PD-1/PD-L1 signalling axis in pre-
clinical studies lead to the prompt development mAbs against this pathway in the clinic.
Pembrolizumab (Keytruda; Merck) is a humanized IgG4 αPD-1 monoclonal antibody that
was the first PD-1 targeting immunotherapy to receive FDA approval in 2014 for treat-
ment of patient with advanced melanoma [303,304]. Since then, PD-1/PD-L1 inhibitors,
commonly paired with CTLA-4 blockade (ipilimumab) have been used extensively across
many advanced solid cancers with modest clinical efficacy (Table 2). Despite its success,
resistance to ICB is routinely observed among cancer patients, where lower levels of muta-
tion burden, and reduced intra-tumoural PD-1/PD-L1 and MHC-I expression are common
drivers of ICB resistance [305]. In addition, the use of αPD-1/PD-L1 upregulates alterna-
tive checkpoint molecules such as TIM-3 which may also be targetable in combination
therapies [306]. Interestingly, chronic IFN signalling in the TME leads to the upregulation
of tumour-derived inhibitory molecules such as PD-L1 which act to resist ICB and promote
CTL dysfunction [307]. While IFNs have proven to be a critical axis in eliciting anti-tumour
immunity, it is conceivable that sustained IFN signalling confers several adaptive resistance
programs to ICB due its ability to exert strong selective pressures.

9. Conclusions

Solid tumours display remarkable heterogeneity both within and across various
cancer types, which reflects the diversity of response rates to immunotherapy between
patients [308]. Current advances in precision medicine have enabled the stratification of
those that are more likely to benefit from immunotherapy. For instance, the quantitative
measurement of CD3+ T cells within the tumour core and invasive margin has been
useful in predicting clinical responses to treatment in patients with colorectal cancer [309],
while other work has shown that an absence of intra-tumoural PD-L1 expression is more
likely to blunt the therapeutic effects of αPD-1 ICB [310]. Another well-recognised predictor
of treatment response also includes tumour mutational burden (TMB), where cancer types
that exhibit higher rates of TMB, such as melanoma and cutaneous squamous cell tend to
benefit the most from ICB [308]. These metrics do have their limitations and still cannot
account for the vast majority of individuals that fail to respond to therapy. However,
with the advent of next generation sequencing (NGS), new insights can now be garnered
by unveiling the complex intercellular networks at exquisite single-cell resolution in the
TME. Although it is indisputable that some molecular pathways clearly subvert tumour
immunosurveillance (i.e., hypoxia and inhibitory receptor expression); many have both pro-
and anti-tumour activities. It is therefore intuitive that a ‘hot’ and ‘cold’ TME is an overly
simplistic binary representation of the local immune contexture and that additional tumour
subtypes across this spectrum need to be investigated further (Figure 4). Our review
highlights the necessity of balancing pro- and anti-inflammation in the TME to mobilise
the host immune system against cancer and establish long-term anti-tumour immunity.
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With the use of modern molecular profiling techniques, the identification of patients with
varying degrees of tumour inflammation, including those that are potentially ‘overheated’
will lead to the improvement of more personalised therapeutics that maximise clinical
responses for patients with advanced solid tumours.
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of CTLs that are activated by endogenous IFN-I and other pro-inflammatory stimuli produced by neighbouring cells.
However, these can be subverted by an imbalance of anti-inflammatory factors that also reduces their trafficking to the
tumour site. Conversely, too much inflammation may impair the cytolytic activities of CTLs, triggering immune escape.
This intense inflammation mediated by conventional anti-tumour factors such as IFN-Is also upregulate T cell inhibitory
molecules (TCIMs) on tumour cells that drive the adaptive resistance to immunotherapy.
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