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THE BIGGER PICTURE The prediction of drug-target interactions (DTIs) plays a crucial role in drug discov-
ery. In this work, we discover that the high-order correlations in heterogeneous biological networks are
essential for DTI predictions. The hypergraph structure is ultilized to model the high-order correlations in
the biological networks, then the embeddings are generated for the drugs and targets, respectively. Finally,
the interaction between them can be predicted according to the similarity of the embeddings. Our proposed
method has been evaluated on multiple public datasets and the improved performance demonstrates that
the high-order correlations among drugs and targets contribute significantly on DTI predictions, and other
associations besides DTIs are also useful in this task.
Our method can also be used in other scenarios containing complex correlations.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
The continuous emergence of drug-target interaction data provides an opportunity to construct a biological
network for systematically discovering unknown interactions. However, this is challenging due to complex
and heterogeneous correlations between drug and target. Here, we describe a heterogeneous hypergraph-
based framework for drug-target interaction (HHDTI) predictionsbymodelingbiological networks throughahy-
pergraph, where each vertex represents a drug or a target and a hyperedge indicates existing similar interac-
tionsorassociationsbetween theconnectedvertices.Thehypergraph is then trained togeneratesuitably struc-
tured embeddings for discovering unknown interactions. Comprehensive experiments performed on four
public datasets demonstrate that HHDTI achieves significant and consistently improvedpredictions compared
with state-of-the-art methods. Our analysis indicates that this superior performance is due to the ability to inte-
grate heterogeneous high-order information from the hypergraph learning. These results suggest that HHDTI is
a scalable and practical tool for uncovering novel drug-target interactions.
INTRODUCTION

The prediction of drug-target interactions (DTIs) plays a crucial

role in drug discovery.5 However, the biochemical experimental
This is an open access article under the CC BY-N
approaches widely used in wet laboratories are expensive and

time consuming,6 thus slowing down the progress of drug dis-

covery. The ever-growing demand for inexpensive, effective,

and rapid prediction methods has driven the development of
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computational approaches, which provide a cheaper and faster

way to predict potential interactions between drugs and targets.

Conventional computational approaches tend to begin with the

inherent properties of drugs and targets, such as the chemical

structure of drugs and the three-dimensional (3D) structure of

proteins. Molecular docking,7 an important tool in structural mo-

lecular biology and computer-assisted drug design, is used to

predict the binding mode(s) of a ligand with a protein of known

3D structure. Keiser et al.8 use a complementary technique

based on the chemical similarity of ligands to quantitatively group

and relate proteins and discover unexpected ligand-target links.

However, molecular docking predictions cannot be successful

without a known and accurate 3D protein structure, and ligand-

based methods require several known binding ligands.

Recently, machine learning methods9 have attracted more

attention and shown greater promise in drug discovery. Unlike

the aforementioned methods, one key idea of current machine

learning-based approaches is that similar drugsmay share similar

targets and vice versa.1 Typical computational approaches adopt

machine learning methods to catalog the similarities of drugs and

targets based on biological features and then predict DTIs.10–12

Yamanishi et al.13 made the first attempt to predict DTIs based

on biological feature information, such as the similarity between

drug chemical structure and target protein sequence, unifying

the chemical and genomic spaces of known drugs and targets

into pharmacological spaces. Yu et al.14 integrated features

from chemical and genomic space for large-scale drug discovery

using random forest and support vector machine algorithms. Gao

et al.15 used low-level representations such asGeneOntology an-

notations, amino acids sequences, and chemical structural

graphs as inputs to the neural network, generating embeddings

for the targets and drugs, respectively, and then calculating the

similarity between the embeddings to predict the interaction.

This type of approach adequately extracts information from

inherent properties, but problems arise when sufficient and reli-

able information is not available.

In addition to the inherent properties of drugs and targets,

there is increasing interest in exploring the correlations among

drugs, targets, and other biological entities in the data structure

of a heterogeneous biological network. Compared with biolog-

ical feature-based methods, network topology information-

based methods make predictions based on the topology

information of the network.16,17 Several recent attempts have

explored topological structures of model DTIs, with biological

entities such as drugs, targets, side effects, and diseases

denoting vertices in the biological graph and the interactions or

associations indicating edges among them. Campillos et al.18

constructed a network of 1,018 side effect-driven drug-drug re-

lations and validated 13 implied drug-target relations. Cheng

et al.19 compared network-based inference with drug-based

similarity inference and target-based similarity inference ,

showing that the former achieved higher-quality results. Chen

et al.20 integrated and annotated data from public datasets to

build a semantic-linked network. They developed a statistical

model to assess the association of drug-target pairs and

observed that drugs from the same disease area will cluster

together. They noted that this mode of clustering is difficult to

infer based on inherent properties alone. We hypothesized that

correlation among various biological entities can provide useful
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information that cannot be obtained from inherent properties.

Some recent methods formulate DTI prediction tasks as ‘‘link

predictions’’ in complex networks.17,21,3 TriModel3 represents

heterogeneous topological correlations in the form of a knowl-

edge graph and generates embeddings to predict whether there

is a link between a drug and a target (supplementary note).

Furthermore, similarities based on both inherent properties and

topological correlations can be used to predict DTIs. DTINet1 in-

tegrates diverse inherent properties and topological correlations

through a network diffusion process. It generates representa-

tions for drugs and targets, containing the similarities of vertices

in the biological network, and then performs predictions using

these representations (supplementary note). DeepDTnet2 is

another network-based method that integrates information

based on the inherent properties of drugs and targets (supple-

mentary note). NeoDTI22 also integrates information from hetero-

geneous network data and predicts DTIs by learning the

topological preservation representations of drugs and targets.

In summary, previousmethods have performed DTI predictions

by extracting the similarities betweendrugs and targets.However,

they describe the interactions between drugs and targets in a low-

order manner where only pairwise correlations are taken into

consideration, i.e., one-drug, one-target paradigms. However,

the connections among biomedical entities can be far more intri-

cate than merely pairwise links. For example, a single drug may

be connected to a number of targets (so-calledmulti-target drugs,

which can target various complex diseases as they are ubiquitous

and effective23), and these targetsmay share subtle but important

pharmacological characteristics thatcontribute to the interactions.

When further considering more connections, such as drug-dis-

easeassociationsand target-diseaseassociations, theoverall het-

erogeneous biological network becomes evenmore complex and

emerges in amany-to-manypattern.Under suchcircumstances, it

is important to formulate and explore the underlying higher-order

topological correlations for drug discovery, which is beyond the

capability of the pairwise correlation-based methods. To tackle

this issue,weadopted a heterogeneoushypergraph-basedmodel

to explore complex and heterogeneous correlations for drug-

target interaction prediction (HHDTI) (see section ‘‘experimental

procedures’’ for more details).

Unlike traditional graphs that model pairwise correlations, the

hypergraph can model higher-order correlations and is thus

more flexible and powerful, with the ability to incorporate com-

plex correlations. There are precedents for modeling biological

networks using hypergraphs, but they have not been used to

predict DTIs. Vaida et al.24 modeled relations between pairs of

drugs as a hypergraph and used a two-layer graph convolution

neural network as an encoder to predict drug interactions. Niu

et al.25 used diseases as hyperedges, connected microbes

associated with them, and developed a hypergraph-based

random walk model for microbe-disease association prediction.

Hypergraphs are indeed suitable for modeling drug-target

interaction networks. When a drug-target hypergraph is con-

structed, targets are denoted by vertices, and the interactions

between a specific drug and a certain number of targets can

be modeled by a hyperedge. In this hypergraph, all targets in-

teracting with the same drug are connected by a hyperedge;

therefore, all the target vertices connected by one hyperedge

can be regarded as a set. Rather than a graph edge in a



Figure 1. Schematic flowchart of the HHDTI

pipeline

(A) Illustration of the hypergraph construction.

(B) Given the heterogeneous biological network

in (A), four distinct types of sub-hypergraphs

(drug-target, drug-disease, target-drug, and target-

disease) can be built. Taking the target-drug in-

teractions as an example, we used a hyperedge to

connect all targets that interact with the same drug,

i.e., a hyperedge in the heterogeneous biological

hypergraph represents a drug. These hypergraphs

provide the input for the key and side embedding

learning in (B). The incidence matrix H represents

the sub-hypergraph and serves as the input of the

model, and Vk, Vs, and VS represent the key

embeddings, side embeddings, and structural

embeddings, respectively. m and s, respectively,

refer to the means and variances obtained by the

variational autoencoder when generating the key

embeddings. ‘‘Attention’’ means bi-embedding

attention fusion module.
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heterogeneous biological graph representing a two-order pair-

wise correlation (i.e., indicating direct DTIs), a hyperedge in a

heterogeneous biological hypergraph instead models high-or-

der multilateral (i.e., many-to-many) correlations between tar-

gets and drugs. Moreover, to provide a thorough understanding

of DTIs, we comprehensively integrated several types of con-

nections among various vertices (e.g., drug-target, target-dis-

ease, and drug-disease connections) in the heterogeneous bio-

logical networks. A representation modeled on higher-order

correlations can significantly improve the predication perfor-

mance of DTIs.

Specifically, HHDTI infers candidateDTIs by fusing two types of

embeddings: key and side embeddings. Key embeddings pro-

vide initial and major vector representations for all drugs and

targets, which are learned using the direct drug-target interaction

information. By contrast, side embeddings offer complementary

representations learned by leveraging disease-relevant informa-

tion. Structural drug-target embeddings are achieved by fusing

the key embeddings with the side embeddings, with HHDTI esti-

mating drug-target similarity to perform DTI predictions. We have

demonstrated that, based on this embedding learning process,
HHDTI consistently achieved higher-quality

prediction results when analyzing several

popular datasets comparedwith alternative

state-of-the-art methods. Comprehensive

evaluations have determined that the pro-

posed HHDTI is a promising and powerful

tool for drug discovery.

RESULTS

Overview of HHDTI
We propose a computational framework

for DTI prediction, called HHDTI, which

captures implicit high-order topological

correlations in heterogeneous biological

networks. HHDTI first uses a generative

model to construct key embeddings from
drug-target and target-drug interactions (Figure 1). It then ex-

tracts drug-disease correlations and target-disease correlations

to generate side embeddings using hypergraph neural networks

(HGNNs).26 Ultimately, HHDTI fuses the key embeddings and

side embeddings and obtains structural embeddings to perform

DTI prediction. Integrating diverse information from heteroge-

neous biological data can assist in determining higher-order to-

pological correlations among different vertices. HHDTI then can

infer potential DTIs by computing and ranking the prediction

scores of all candidate interactions. In summary, embeddings

encode both topological properties and association information,

resulting in a low-dimensional vector space where the distance

between drug-target pairs correlates with their likelihood of inter-

action. More details of the HHDTI framework can be found in the

section ‘‘experimental procedures.’’

Better DTI prediction performance by HHDTI
We initially evaluated the overall prediction performance of HHDTI

using a 10-fold cross-validation procedure. We conducted these

experiments on three public datasets (DTINet_17,1 deep-

DTnet_20,2 and KEGG_MED3) and compared HHDTI with four
Patterns 2, 100390, December 10, 2021 3



Figure 2. HHDTI outperforms other models

when used on all three datasets

(A–C) Experimental results as measured by AUROC

and AUPR. 10-fold cross-validations were per-

formed on (A) DTINet_17, (B) deepDTnet_20, and (C)

KEGG_MED databases to compare the prediction

ability of HHDTI with DTINet, NeoDTI, deepDTnet,

and TriModel (supplementary note). The results of

five trials for each method are expressed as mean ±

SD; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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state-of-the-art network-based drug discovery methods: DTINet,

NeoDTI, deepDTnet, and TriModel. Under the experimental

setting, 10% of the known drug-target interaction pairs and

non-interaction pairs were randomly chosen as the positive and

negative samples, respectively, for testing. The remaining 90%

were used for training. Two widely used metrics, the area under

the receiver operating characteristic (AUROC)27 curve and the

area under the precision-recall (AUPR) curve, were calculated to

comprehensively compare the performance of different methods.

We conducted separate experiments on these three datasets and

found that therewas no data overlap between the training and test

sets within each dataset. The four methods were consistent with

the results provided in the original papers for their corresponding

datasets (Figure 2). However, HHDTI outperformed each of these

competitive baselines, consistently achieving the highest predic-

tion results for all three datasets. All four methods are network-

basedmethods, eachwithminor differences. DTINet, deepDTnet,

and NeoDTI blend the inherent properties of drugs and targets

and the topological correlations among biological entities. For

this reason, bothmethods perform poorly on the KEGG_MED da-
4 Patterns 2, 100390, December 10, 2021
taset, which does not include any informa-

tion related to inherent properties such as

the chemical structures of drugs and the

primary sequences of proteins. Although

these baseline methods attempt to fuse

diverse information in heterogeneous bio-

logical networks, they are still limited in

terms of data modeling as they can only

capture low-order pairwise correlations be-

tween vertices rather than high-order

correlations.

The superior performance of the predic-

tion methods might result from the easy

predictions of homologous proteins or

similar drugs in the dataset. To investigate

this issue, we refer to thework of Luo et al.6

and performed an additional test on the

DTINet_17 dataset without the DTIs

involving homologous proteins (sequence

identity scores >40%). In this test, the

removal of homologous proteins can

reduce the potential redundancy in the

DTIs that may lead to an inflated perfor-

mance evaluation. The test results were

robust even after removing homologous

proteins from the training data, suggesting

that HHDTI capturing high-order correla-
tion information can still achieve good performance and outper-

form other prediction methods even in the absence of similar tar-

gets (Figure S1.).

Additional association information for DTI prediction
We further investigated how the quantity of potential isolated data

influences DTI prediction results. We extracted all known drug-

target interaction pairs of three different amounts of drugs (20%,

50%, and 80%) within the datasets as positive samples and the

same number of non-interaction pairs as negative samples to

generate the test sets (i.e., there are no knowndrug-target interac-

tion pairs in the training data for these drugs). This experimental

setting simulated the so-called cold-start problem by artificially

creating isolated vertices, resulting in extremely difficult DTI pre-

dictions.Ouranalysisshowedthat thesideembeddingsgenerated

from the association information (i.e., drug-diseaseand target-dis-

ease associations) can help improve DTI predictions to some

extent, despite the absence of any known drug-target interaction

pairs within the training sets (Figure 3). These studies also showed

that additional association information can be captured by the



Figure 3. HHDTI evaluated under cold-start

conditions

(A–C) All known interactions of three different

amounts of drugs (20%, 50%, and 80%) in the da-

tasets (A) DTINet_17, (B) deepDTnet_20, and (C)

KEGG_MED and the same number of negative

samples form the test sets. Specifically, in the first

experiment, 20% of the drug vertexes in the training

set are isolated vertexes; in the second experiment,

50% of the drug vertexes in the training set are

isolated vertexes; and in the third experiment, 80%

of the drug vertexes in the training set are isolated

vertexes. HHDTI_W/O_S means HHDTI does not

use side embeddings for DTI prediction. The results

summarize five trials and are expressed as

mean ± SD.
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proposed HHDTI to enhance DTI predictions, which may provide

new insights into understanding interaction mechanisms among

drugs, targets, and diseases.

High-order topological correlations for DTI prediction
We conducted ablation experiments on the DTINet_17, deep-

DTnet_20, and KEGG_MED datasets, respectively, to study the

advantages and disadvantages of high-order topological correla-

tions relative to low-order pairwise correlations. To this end,we re-

placed the hypergraph representation in HHDTI with plain graph

representations and used this as the comparativemethod (specif-

ically, we constructed standard plain graphs on these three data-

sets and performed a similar key-side embedding learning pro-

cedure as HHDTI for DTI prediction). The experimental results

showed that HHDTI consistently outperformed the low-order cor-

relations-based comparative method when used on either of the

three datasets (Figure 4).

Practical drug discovery
Our goal was to study HHDTI’s capability as a practical tool for

unknown DTI discovery. We chose Target Drug-UniProt Links
(approved) of the DrugBank database4 in

version 5.1.0 for the evaluation, as it con-

tains detailed and complete interaction in-

formation for targets and drugs. Deep-

DTnet2 was chosen as the comparative

method because it achieved the highest

quantitative prediction among the base-

lines. Since there is no disease associa-

tion information in this dataset, we

compared HHDTI (no disease) with Deep-

DTnet. We trained the two methods using

all the data in Target Drug-UniProt Links

(approved) and produced a top-10 target

prediction list for each drug using each

of the two methods (Table S1). Data S1

and S2 are the lists of DTIs predicted by

HHDTI (no disease) and deepDTnet,

respectively, and validated by the litera-

ture. In the lists predicted by both

methods, aside from the known targets

in the training set, we observed that there
was a subset of new predicted DTIs that were unknown in the

training set but had been reported in the literature. Statistical

analysis showed that HHDTI successfully predicted 17.9%

more DTIs than deepDTnet. To further compare HHDTI (no dis-

ease) and deepDTnet, we used ‘‘recall @ top-10’’ as the evalu-

ation metric,28,29 which is defined as the fraction of true inter-

acting targets retrieved in the list of top-10 predictions for a

drug. With this evaluation metric, the average recall at top-10

of HHDTI (no disease) and deepDTNet were 0.0590 and

0.0573, respectively. This indicates that both methods can suc-

cessfully discover targets that interact with a given drug and

that HHDTI (no disease) is more powerful than deepDTNet.

Figure 5 illustrates specific practical drug discovery results

produced by HHDTI (no disease) and deepDTNet. The data in

the training set show that the anti-epileptic drug phenytoin acts

on nuclear receptor subfamily 1, group I, member 2 (NR1I2)

and several targets from the sodium channel family (SCN1A,

SCN3A, and SCN5A). The drug brivaracetam, which is

commonly used in the treatment of partial-onset seizures, is a

ligand of synaptic vesicle protein 2A (SV2A) and inhibits

voltage-gated sodium channels. Existing low-order correlation-
Patterns 2, 100390, December 10, 2021 5



Figure 4. Ablation experiments determine the contribution of high-order topological correlation to HHDTI

We performed ablation experiments using the DTINet_17, deepDTnet_20, and KEGG_MED datasets to evaluate the superiority of high-order correlations. The

results summarize five trials and are expressed as mean ± SD; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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based methods, including deepDTNet, make DTI inferences

based on the ‘‘guilt-by-association’’ assumption that similar

drugs may share similar targets and vice versa. Since both

brivaracetam and phenytoin act on similar targets, deepDTNet

predicted that phenytoin acts on a member of sodium channel

family SCN8A. However, deepDTNet failed to predict the inter-

action between phenytoin and KCNH2, which is not similar to

NR1I2 or the sodium channel family. The experimental results

reveal that the problem with these methods is that they are

only able to predict targets that are similar to known targets. In

contrast, HHDTI (no disease) successfully predicted that

phenytoin acts on KCNH2. As shown in Figure 5, the training

data reveal the similarity between NR1I2 and KCNH2 because

both NR1I2 and KCNH2 have interactions with the same drug,

ketoconazole. The two targets NR1I2 and KCNH2 are thus linked

by a hyperedge and are regarded as a set. We first train the

model to find a certain similarity between the targets in the set

and project it into a low-dimensional common feature space as

the embedding of the drug. In the same way, we can obtain

the embedding of the target. The drug embedding and the target

embedding with known interactions are then positioned close to

each other (i.e., the embedding of ketoconazole and the embed-

ding of KCNH2 are close in the low-dimensional feature space).

Since phenytoin and ketoconazole also act on SCN5A, their em-

beddings will also be near each other in the feature space. Due to

the transfer of similarity, HHDTI successfully predicted the inter-

action of phenytoin with KCNH2. The interaction of propafenone

with SCN5A and KCNH2 can also help predict the interaction be-

tween phenytoin and KCNH2. Furthermore, SCN5A and KCNH2

belong to the voltage-gated ion channel superfamily, suggesting

that our method finds some similarity between these two pro-

teins and facilitates us to further explore the role and structure

of the proteins. The high-order topological correlation allows

HHDTI to take full advantage of known interaction information

in the heterogeneous biological network and recall more poten-

tial DTIs in a top-N prediction list.

We conducted additional rigorous testing. We downloaded

the earliest available release (v4.6.0, released on 20 April 2016)

from the DrugBank database.30 Using all the data in Target

Drug-UniProt Links (approved) from this release, we obtained

some results that prove the validity of HHDTI. As shown in Table
6 Patterns 2, 100390, December 10, 2021
S2, these results have been validated in the literature and the

publication time of these literatures is later than April 2016. For

example, the interactions related to the drug celiprolol

(DB04846) in the training set were first documented in the litera-

ture in 2007.31 HHDTI predicts that the drug also interacts with

beta-3 adrenergic receptor (ADRB3, P13945) and alpha-2A

adrenergic receptor (ADRA2A, P08913), and these results were

proved by the literature in 2017.32

DISCUSSION

The HHDTI method presented here is a computational approach

based on hypergraph networks and deep neural networks.

Based on known DTIs, HHDTI extracts the intrinsic characteris-

tics of drugs and targets, models these correlations with a hyper-

graph capable of higher-order modeling, and then enhances

these correlations with complementary information to generate

structural embeddings for both drugs and targets. The major

advantage of the proposed method lies in its powerful capability

of modeling high-order correlations among various entities and

its flexible framework capable of integrating several types of

complementary information. Our study found it can discover

more DTIs that have been previously validated by the literature

than other state-of-the-art computational approaches. It can

therefore identify potential DTI candidates to efficiently guide

validation experiments in the wet laboratory. In the future, we

plan to perform wet experimental validation as a method of

cross-validation through cooperation with drug discovery indus-

try partners, which will help us further improve the framework in

return.

Although network-based methods have been applied,1,2 the

correlation modeling based on one-to-one correspondence

may not produce the essential features reflecting a single drug

acting on multiple targets or multiple drugs acting on the same

target. Integrating network biology and polypharmacology

promises an expanded opportunity for druggable targets,33

which cannot be achieved without effective high-order correla-

tion modeling. Capturing the high-order topological correlations

among various vertices in a heterogeneous biological network

can achieve more accurate and robust prediction performance,

which is worthy of more attention for further study. Although



Figure 5. Predicted and validated DTI examples visualized in a heterogeneous biological network

Predicted and validated DTIs refer to the predicted DTIs that can also be confirmed by known experimental or clinical evidence in the literature. Targets of the

same color belong to the same protein family. HHDTI can discover more interaction targets that are not close to the known interaction targets in terms of protein

family proximity for drugs than the state-of-art network-based method deepDTnet.
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computational approaches have achieved decent results after

years of development, there are still many under-resolved prob-

lems. The biological data used in this study are considered large-

scale datasets, but the number of drug vertices, target vertices,

and DTIs included in each dataset is quite limited.1,3,34,35 For

example, the approved Target Drug-UniProt Links in DrugBank

database (version 5.1.0)4 only contains 2,020 drugs, 2,669 tar-

gets, and 9,796 DTIs. To construct a large-scale comprehensive

heterogeneous biological network, more types of vertices in

addition to drugs and targets should be provided to obtain

complex relationships at different levels.36 It is not easy to

accomplish this task using a single dataset. Fortunately, we

may integrate complementary information from different public

databases. For instance, we can integrate the known drug-dis-

ease associations from Drug Central,37 clinically reported drug

side effects from the Comparative Toxicogenomics Database

(CTD),38 protein-protein interactions data from the Human Pro-

tein Resource Database (HPRD)39 and the HuRI,40 and clinically

reported drug-drug interactions data from the DrugBank data-

base. Even with plenty of data, coping with the noise from mul-

tiple databases is a challenging problem for data integration.

The sample imbalance problemmay also be raised by collecting

only positive sample information and ignoring information for

non-interaction pairs. Furthermore, even an evaluated DTI may

be rejected in the future.4 We believe that a high-quality, large-

scale dataset that integrates various classes of information will

significantly progress the development of computational

approaches.

By convention, the HHDTI selects drug-target pairs with no

known interactions as negative samples. These negative sam-

ples are potentially positive, making it difficult to select genuine

no-interaction drug-target pairs.
The proposed HHDTI method can be further expanded to

incorporate more topological information (e.g., drug side ef-

fect associations) and other types of information. For

example, the similarity computed from the inherent property

information of drugs and targets, such as drug chemical sim-

ilarity and protein sequence similarity, can also be modeled in

the form of hypergraphs to explore the high-order correlations

in this respect, which will be considered in our future research.

Importantly, although HHDTI was developed for DTI predic-

tions, it can also be used as a general framework to address

link prediction-related problems in other fields (e.g., drug

interactions).
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for code and data should be directed to and

will be fulfilled by the lead contact, Yue Gao (gaoyue@tsinghua.edu.cn).

Materials availability

This study did not generate any physical materials.

Data and code availability

The four datasets used in the experiments can be found in DTINet,1 deep-

DTnet,2 TriModel,3 and DrugBank database https://doi.org/10.1093/nar/

gkx1037.4 HHDTI source code can be downloaded from https://github.com/

iMoonLab/HHDTI.

The framework of the HHDTI

The framework of the proposed HHDTI is shown in Figure 1. Taking the biolog-

ical hypergraphs as input, HHDTI can achieve prediction performance that out-

performs other state-of-the-art methods by simultaneously optimizing both the

high-order association capture process and the DTI prediction model in an end-

to-end manner. We first construct hypergraphs to model the biological network

and then employ a structural embedding learning framework to capture the
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high-order correlation and generate structural embeddings for both targets and

drugs. The interaction likelihood between a given drug and target is predicted by

estimating the similarity of their structural embeddings. Specifically, for drug i

and target j, the DTI score can be computed as SigmoidððFS
dÞiððFS

t ÞjÞ
TÞ, where

FS
d andFS

t denote the drug structural embeddings and target structural embed-

dings, respectively. These low-dimensional structural embeddings, FS
d or FS

t ,

are generated by fusing key and side embeddings by a biembedding attention

fusion module; drug (target) structural embeddings FS
d (F

S
t ) are generated by

fusing the key drug embeddings Fk
d (F

k
t ) and side drug embeddings Fs

d (F
s
t ).
Heterogeneous hypergraph modeling of biological networks

Biological networks in this work present both direct and indirect relationships

between drugs and targets. A heterogeneous biological network Gh = {Vh, Eh}

refers to a biological network containing multiple types of vertices and edges,

where Vh represents the set of vertices and Eh represents the set of edges. In

our biological network, the sets of vertex types O include {drug, target, dis-

ease}, the sets of correlation types R include {drug-target interaction, target-

drug interaction, drug-disease association, target-disease association}.

Given different types of correlations, a heterogeneous multiple hypergraph

G= fV r = fv1; :::; vMr g;Er = fe1; :::; eNr gg with Mr vertices and Nr hyperedges

is constructed to model the biological networks, where r represents different

types of correlations and r = 1, 2, 3, 4. In this work, the heterogeneous hyper-

graph modeling of the biological networks is illustrated in Figure 1A. For each

correlation, we achieve an individual sub-hypergraph. We achieve four types

of sub-hypergraph in total. The heterogeneous hypergraph modeling results

are four incidence matrices, which can be represented by H˛RM3N, where

Hi,j = 1 if vertex i has connected with hyperedge j; otherwise,Hi,j = 0. We obtain

four types of incidence matrices (Hdr-ta, Hta-dr, Hdr-di, Hta-di) based on R. Both

drugs and targets employ the same structural embedding learning framework

to generate the structural embeddings. For conciseness, we next present how

drug structural embeddings are generated from this structural embedding

learning framework.
Drug structural embedding learning

We introduce a Bayesian deep generative model that is a framework for

unsupervised learning on a hypergraph-structured data-based variational

auto-encoder41 to learn drug key embeddings from Hdr-ta and employ the

HGNN26 model to generate the drug side embeddings from Hdr-di. For the

drug-target interaction hypergraph Hdr-ta, this Bayesian generative model

is instantiated as a vertex encoder, which models the similarity and correla-

tions of the drugs interacting with the same target. The vertex encoder

(Figure 1B, vertex encoder) performs a nonlinear mapping from the observed

space Hdr-ta to the common latent space F0
dr�taby

F0
dr�ta = fðHdr�taWdr�ta + bdr�taÞ (Equation 1)

where fð ,Þ is a nonlinear activation function to enable our model to approxi-

mate a nonlinear function.42 Based on our experiments (Figure S2), we adop-

ted the hyperbolic tangent tanhðxÞ= ðexpðxÞ�expð�xÞÞ=ðexpðxÞ + expð�xÞÞ
for the activation function due to its simplicity and superiority of performance.

Wdr�ta˛RDin3Dout and bdr�ta˛RDout are the weight and bias learned by the

encoder, and Din andDout are the dimensionalities ofHdr-ta andF0
dr�ta, respec-

tively. After obtaining F0
dr�ta, two individual fully connected layers are used to

estimate the means mdr-ta and variances sdr-ta:

mdr�ta = f
�
F0

dr�taW
m

dr�ta + bm

dr�ta

�
(Equation 2)

sdr�ta = f
�
F0

dr�taW
s
dr�ta + bs

dr�ta

�
(Equation 3)

where Wm
dr�ta;W

s
dr�ta˛R

Dout3D and bm
dr�ta;b

s
dr�ta˛R

D are the learnable weights

and biases, respectively. The dimensionality of the drug key embedding Fk
d

is D, and we sample this by

Fk
d = mdr�ta +sdr�ta1ε (Equation 4)

where ε � N(0, I), and 1 stands for the element-wise product.
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The key embeddings characterize the high-order topological correlations

from the direct relationships between targets and drugs. Recent studies

have found that integrating multiple types of information can improve predic-

tion accuracy.43 For example, drug side effects are observable phenotypic ef-

fects resulting from drugs acting on genetic off-targets in human bodies.44

Phenotypic side effect similarity can be used to infer whether two drugs share

a target.18 Hu et al.45 found that targets can be used as bridges to link drugs

and diseases. Inspired by these studies, we integrated additional types of as-

sociation correlations in HHDTI to provide complementary information so that

the method can predict correctly even in the case of extreme challenges like

the cold-start problem.

As shown in Figure 1B, we learn drug side embeddings from the drug-dis-

ease incidence matrices (Hdr-di) to provide complementary information for

the drug key embeddings. This is achieved by the HGNN26 model (Figure 1B,

hypergraph convolutional layers). HGNN consists of hypergraph convolutional

layers that encode high-order correlations:

ConvhðH;XjWÞ = f
�
ðDvÞ�1

2HðDeÞ�1
HTðDvÞ�1

2XW
�

(Equation 5)

whereDv andDe are the diagonal degreematrices of the vertex and hyperedge

respectively, with ðDvÞk;k =
PL
j = 1

Hk;j being the degree of vertex and

ðDeÞj;j =
PN
k =1

Hk;j being the degree of hyperedge. X denotes the vertex features,

W is the learnable weight matrix, and ($)T is the transposition operator.

The output of the HGNN model is the side embeddings, which represent

high-order correlations. The adopted HGNNhas two hypergraph convolutional

layers. Taking the drug side embedding learning on Hdr-di as an example, each

layer can be formulated as

Fs
d
ðlÞ = Convh

�
Hdr�di ;F

s
d
ðl�1Þ

���Wðl�1Þ
�

(Equation 6)

where F
sðl�1Þ
d , F

sðlÞ
d , and W(l�1) are the input, output, and trainable weight ma-

trix of the (l-1)-th layer, respectively. The vertex feature X is the inherent prop-

erties of the drugs, and we replaced with an identity matrix for F
sð0Þ
d = X = I.

Then, we employ attention modules to fuse the key and side embeddings

into a shared vector space to construct low-dimensional structural embed-

dings. We propose the bi-embedding attention fusion (Figure 1B, attention)

to compute the coefficientsui to give different weights to the key embeddings

and side embeddings:

ui =
exp

�
f
�
FiWi +bi

�
,Pi

�
P
j˛k;s

exp
�
f
�
FjWj +bj

�
,Pj

� (Equation 7)

where Fiði˛k; sÞ stands for key embeddings or side embeddings and

Wi˛RD3D0
, bi˛RD0

, and Pi˛RD031 are trainable parameters for embeddings

Fi, respectively. D0 is dimensionality of the trainable parameters. The overall

structural embeddings FS can be achieved by

FS = ukFk +usFs (Equation 8)

where Fk and Fs are the key and side embeddings, respectively.
Target structural embedding learning

By contrast, the target structural embedding learning uses the target-drug

interaction hypergraph and the target-disease association hypergraph as in-

puts. It models the similarity and correlations of the targets interacting with

the same drug to generate the target key embeddings Fk
t through a vertex

encoder (with the same structure as the vertex encoder in drug structural

embedding learning). It also uses the HGNN26 model to generate the target

side embeddings Fs
t from Hta-di and fuses the target key embeddings and

target side embeddings by biembedding attention fusion to obtain target

structural embeddings FS
t .
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DTI prediction

The DTI predictions are produced from the reconstruction space A, which is

achieved by computing the likelihood of the drug and target structural

embeddings.

A = Sigmoid
�
FS

d

�
FS

t

�T�
(Equation 9)

where sigmoid($) is the sigmoid activation function. We optimize the variational

lower bound L:

L = Eq

�
log p

�
A
��FS

d ;F
S
t

��� b
�
KL

�
q
�
Fk

d

��A�����p�Fk
d

��
+ KL

�
q
�
Fk

t

��A�����p�Fk
t

���

(Equation 10)

where KL[q($)||p($)] is the Kullback-Leibler divergence between q($) and p($).

Varying b encourages different learned representations by changing the

degree of applied learning pressure during training. Referring to the work of

the variational autoencoder, we further take Gaussian priors pðFk
dÞ=Q

i pð4d
i Þ=

Q
i Nð4d

i

��0; IÞ andpðFk
t Þ =

Q
j pð4t

j Þ =
Q

j Nð4t
j

���0; IÞ. Eq[log p($|$)]

is the likelihood of reconstruction space A learned by HHDTI.

Model evaluation metrics

We introduced two evaluation metrics, the AUROC curve and the AUPR curve,

to evaluate prediction performance. A confusion matrix is shown in Figure S3.

In the receiver operating characteristic (ROC) space, the ROC curve gives a

pair of x and y values where x is the false-positive rate (FPR) and y is the

true-positive rate (TPR). We connected all points obtained by changing the

cutoff to create the ROC curve.

TPR =
TP

TP+FN
(Equation 11)

FPR =
FP

TN+FP
(Equation 12)

where true-positives (TPs) and false-positives (FPs) are positive samples

correctly predicted as positive and negative samples incorrectly predicted

as positive, respectively. True-negatives (TNs) are negatives correctly identi-

fied as negative. False-negatives (FNs) correspond to positives incorrectly pre-

dicted as negative.

The precision-recall curve is plotted in a comparable way to the ROC curve

but with the x axis being recall and the y axis being precision:

recall =
TP

TP + FN
(Equation 13)

precision =
TP

TP + FN
(Equation 14)

As discussed in previous work,46,47 AUPR can provide a better assessment

when the data for testing are highly skewed (supplementary note).

Datasets

The three public datasets proposed in DTINet,1 deepDTnet,2 and TriModel3

(named DTINet_17, deepDTnet_20, and KEGG_MED, respectively) as well

as the Target Drug-UniProt Links (approved) from the DrugBank database

(version 5.1.0)4 were used for evaluation.

The data in DTINet_17 were collected from public databases. Drug vertices,

protein vertices, and disease vertices were obtained from the DrugBank data-

base (version 3.0),48 the HPRD database (release 9),39 and CTD,38 respec-

tively. The known DTIs were imported from the DrugBank database (version

3.0),48 and the drug-disease and target-disease associations were extracted

from the CTD.38

The deepDTnet_20 dataset was also derived from the integration of informa-

tion in multiple databases. The DTIs were collected from the DrugBank data-

base (version 4.3),30 the Therapeutic Target Database,49 and the PharmGKB

database.50 The drug-disease association information came from the Drug-

Bank database (version 4.3),30 Drug Central,37 and repoDB.51 The drug-dis-

ease association data were integrated from the bioinformatics data sources

CTD38 and HuGe navigator.52
The KEGG_MED dataset was larger than the above two datasets and was

extracted from multiple databases, including KEGG,53 DrugBank database,54

InterPro,55 and UniProt.56

The Target Drug-UniProt Links (approved) dataset was extracted from the

DrugBank database (version 5.1.0).4

More specific information regarding the four datasets is shown in Table S3.

For more information about the datasets, please refer to the works of DTINet,

deepDTnet, TriModel, and DrugBank database (version 5.1.0).

Statistical analysis

All statistical analyses were performed using GraphPad Prism software

(version 8.0.2). The data shown in the study were obtained from at least five

independent experiments. Values in different experimental groups are ex-

pressed as the mean ± standard deviation. p < 0.05 was considered statisti-

cally significant.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100390.
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