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Abstract: There is a growing interest in using 18F-DPA-714 PET to study neuroinflammation and mi-
croglial activation through imaging the 18-kDa translocator protein (TSPO). Although quantification
of 18F-DPA-714 binding can be achieved through kinetic modeling analysis with an arterial input
function (AIF) measured with blood sampling procedures, the invasiveness of such procedures has
been an obstacle for wide application. To address these challenges, we developed an image-derived
input function (IDIF) that noninvasively estimates the arterial input function from the images ac-
quired for 18F-DPA-714 quantification. Methods: The method entails three fully automatic steps
to extract the IDIF, including a segmentation of voxels with highest likelihood of being the arterial
blood over the carotid artery, a model-based matrix factorization to extract the arterial blood signal,
and a scaling optimization procedure to scale the extracted arterial blood signal into the activity
concentration unit. Two cohorts of human subjects were used to evaluate the extracted IDIF. In
the first cohort of five subjects, arterial blood sampling was performed, and the calculated IDIF
was validated against the measured AIF through the comparison of distribution volumes from AIF
(VT,AIF) and IDIF (VT,IDIF). In the second cohort, PET studies from twenty-eight healthy controls
without arterial blood sampling were used to compare VT,IDIF with VT,REF measured using a reference
region-based analysis to evaluate whether it can distinguish high-affinity (HAB) and mixed-affinity
(MAB) binders. Results: In the arterial blood-sampling cohort, VT derived from IDIF was found to
be an accurate surrogate of the VT from AIF. The bias of VT, IDIF was −5.8 ± 7.8% when compared
to VT,AIF, and the linear mixed effect model showed a high correlation between VT,AIF and VT, IDIF

(p < 0.001). In the nonblood-sampling cohort, VT, IDIF showed a significance difference between
the HAB and MAB healthy controls. VT, IDIF and standard uptake values (SUV) showed superior
results in distinguishing HAB from MAB subjects than VT,REF. Conclusions: A novel IDIF method
for 18F-DPA-714 PET quantification was developed and evaluated in this study. This IDIF provides
a noninvasive alternative measurement of VT to quantify the TSPO binding of 18F-DPA-714 in the
human brain through dynamic PET scans.

Keywords: TSPO PET; neuroinflammation; image-derived input function; kinetic modeling analysis

1. Introduction

In recent years, the role of neuroinflammation has been studied in many neurodegen-
erative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD) [1–4].
Noninvasive measurement of regional brain microglial activation with PET imaging has
become a popular approach for investigation of neuroinflammation in clinical research [5].
The best established and most often used PET imaging biomarker for microglial activation
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is the 18 kDa translocator protein (TSPO), a protein abundant in brain microglia, monocytes,
and other macrophages. A variety of studies have shown the usefulness of the 18F-DPA-714
in research studies of microglial involvement in neurological disorders [6,7]. Despite the
growing usage of 18F-DPA-714 in clinical research, quantification of the 18F-DPA-714 uptake
and binding to TPSO remains a challenge for clinical research studies. Conventionally,
18F-DPA-714 binding is quantified through a kinetic modeling analysis, where the compart-
mental analysis is conducted over the tissue time-activity curves from the dynamic PET
studies. However, the main obstacle for such analysis is the invasive nature of the required
arterial blood sampling procedure to acquire the arterial input function (AIF). Processing
of the arterial blood samples is a time-consuming and complex procedure that affects the
feasibility to include AIF measurement in clinical trials.

To avoid the arterial blood sampling procedures, modeling approaches based on refer-
ence regions are commonly adopted to quantify cerebral tracer binding for PET imaging. To
use a reference region, there is an underlying modeling assumption that the reference region
is devoid of specific binding of the PET tracer. However, in the case of 18F-DPA-714, there
is a widespread distribution of TSPO in the normal brain, and no region can be regarded
as a perfect reference region lacking TSPO binding, especially if microglial activation is
widespread. For example, the cerebellum has been a popular reference region of choice
in the literature for TSPO binding quantification [8–11]. However, it has been well known
that the cerebellum contains a substantial amount of specific binding sites for TSPO trac-
ers [12,13]. Previous reports have suggested that in such cases, reference region methods
may lead to a biased measurement of tracer binding [14]. Moreover, the binding capacity in
the reference region may be altered under pathological or pharmacological conditions. For
example, Gerhard et al. showed that the cerebellum shows elevated TSPO overexpression
with the TSPO tracer 11C-(R)PK11195 in subjects with progressive supranuclear palsy [15].
Increased TSPO tracer binding in the cerebellum has also been observed in AD [16,17]. In
some conditions, there could even be a global elevation of neuroinflammation and TSPO
overexpression throughout the brain [18]. Under such cases, it is nearly impossible to
identify a reference region that can properly serve as a true reference region. As a result,
quantifying TSPO PET with reference region methods may not be an appropriate choice,
especially if a disease or abnormality may cause widespread TSPO overexpression and
microglial activation throughout the brain.

To address these limitations, we sought to develop an image-derived input function
(IDIF) as a noninvasive surrogate for the AIF measurement. Current methods for extracting
IDIF are usually based on image segmentation techniques that focus on extracting large
arterial structures such as carotid arteries [19,20] or the left ventricle [21]. Due to the rela-
tively low spatial resolution of PET, such methods need to address the activity spillover
and partial volume effects that lead to a mixture of the true blood activity and activity
from surrounding tissue [19,22] or use a few blood samples to correct for the activity
cross-contamination [20]. An IDIF extraction method for mouse TSPO PET imaging has
been developed based on factor analysis by Wimberley et al. [23], but it requires a whole
body scan and may be difficult for human brain PET studies without specialized scan-
ners. Currently there does not seem to be a satisfactory IDIF solution for human TSPO
PET imaging.

In this work, we developed a new IDIF method by using a model-based matrix
factorization (MBMF) to separate the arterial blood and brain tissue radioactivity. We also
developed a unique optimization procedure to scale the extracted IDIF from a normalized
and dimensionless form into the activity concentration of the arterial blood signal. The
developed method was validated through two approaches. First, we validated our method
in a small cohort (n = 5) in which we conducted arterial blood sampling and measured
AIF directly. The calculated IDIF was compared with the measured AIF through a Logan
graphical analysis that measures the volume of distribution (VT). Second, we applied the
IDIF method to a group of healthy controls (n = 28), which had been genotyped for the
polymorphism (rs6971) that determines affinity for 18F-DPA-714 for TSPO [24]. Subjects
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predicted to be high-affinity binders (HAB; rs6971 C/C) and mixed-affinity binders (MAB;
rs6971 C/T) were included in the cohort, while low-affinity binders (LAB, rs6971 T/T) were
not included in the imaging study. Previous investigations have shown a 20–50% higher
VT for 18F-DPA-714 in HAB subjects compared to MAB subjects [12,25]. We evaluated
whether VT measured with IDIF was able to detect these expected differences in binding in
our cohort of healthy controls. Standard uptake values (SUVs) from the 40th to the 60th
minutes post injection were also taken as an alternative reference of comparison between
the HAB and MAB groups.

2. Materials and Methods
2.1. Standard Protocol Approvals, Registrations, and Patient Consents

Two separate cohorts of human subjects were recruited for this study. For cohort 1, all
subjects were recruited under a small pilot study to examine the utility of 18F-DPA-714 imag-
ing for studying neuroinflammation in PD (ClinicalTrials.gov Identifier: NCT03457493).
For cohort 2, human subjects were recruited as part of the larger longitudinal NINDS-
funded Alabama Udall Center observational study examining the role of inflammation
in early PD. Participants were enrolled between March 2018 and May 2021 through the
Movement Disorder Clinic at the University of Alabama at Birmingham. The study was
approved by institutional review board at UAB, and full written consent was obtained on
each participant.

2.2. Participants

For cohort 1, denoted as the blood-sampling cohort in this work, eligible participants
were age ≥30 years and were healthy controls or subjects diagnosed with PD. Control
subjects had no current diagnosis of PD or other neurodegenerative disorder, had no history
of PD in first-degrees blood relatives, and had ≤3 positive response on the PD Screening
Questionnaire [26]. Subjects with PD were diagnosed according to the United Kingdom
Brain Bank criteria by a movement disorder specialist. These criteria require bradykinesia
and at least one of the following: 4–6 Hz resting tremor, rigidity, or postural instability.
There was no restriction to stage of PD for enrollment.

For cohort 2, denoted as the nonblood-sampling cohort, imaging data from MAB and
HAB control subjects enrolled as part of the larger longitudinal NINDS-funded Alabama
Udall Center study prior to May 2021 were used for the analysis. Eligible participants were
age ≥40 years. Control subjects had no current diagnosis of PD or other neurodegenerative
disorder, had no history of PD in first-degrees blood relatives, and had≤3 positive response
on the PD Screening Questionnaire [26]. Subjects were excluded if they had a history of sig-
nificant autoimmune/inflammatory disorder, current treatment with immunosuppressant
therapy, or serious comorbidity that would interfere with study participation.

All participants underwent genetic testing for the rs6971 SNP associated with TSPO
binding and were classified into low-, mixed-, or high-affinity binders. Low-affinity binders
were not imaged.

2.3. Data Acquisition for the Cohort with Arterial Blood Sampling Procedures

In the blood-sampling cohort, five subjects underwent arterial blood sampling pro-
cedures during their 18F-DPA-714 PET scans. These five subjects included two healthy
controls and three PD patients. The TSPO genotype was determined by measuring the
rs6971 polymorphism of the TSPO gene with single-nucleotide polymorphism (SNP)-based
tests. Three of them were HAB, and two were MAB. Arterial blood samples were collected
through the radial artery catheter under the following sampling settings: one sample per
six seconds for the first minute, one sample per ten seconds for one minute, one sam-
ple per minute for three minutes, and one sample every five minutes for the rest of the
scan, yielding a total of thirty samples for each study. Both the whole-blood and plasma
activity concentrations of 18F-DPA-714 were measured from each arterial blood sample.
The blood samples at the 5th, 15th, 30th, and 60th minutes post injection were analyzed



Diagnostics 2022, 12, 1161 4 of 15

with high-performance liquid chromatography (HPLC) to measure the parent fraction for
unmetabolized 18F-DPA-714 for four subjects of the study. Decay correction was performed
for all blood samples. All subjects underwent dynamic 18F-DPA-714 PET/MR scans. In-
jection dose for 18F-DPA-714 was 5 mCi (185 MBq). The 18F-DPA-714 PET scan with a GE
Signa PET/MR scanner lasted for 60 min for each subject immediately after tracer injection.
Images were reconstructed with OSEM using 4 iterations and 16 subsets into a total of
36 frames, with the frame setting of 12 ten-second, 9 20-second, 5 one-minute, and 10 five-
minute frames. Attenuation correction was involved in the reconstruction process with
MR-based attenuation maps acquired with zero echo time (ZTE) MRI [27]. Time-of-flight
information and point spread functions were incorporated in the PET reconstruction. The
image volume was 256 × 256 × 89 with the pixel size of 1.17 mm and a slice thickness of
2.78 mm. Decay correction was also performed during the PET reconstruction.

2.4. Data Acquisition for the Cohort without Arterial Blood Sampling

The nonblood-sampling cohort included only healthy controls who underwent PET
scans but did not undergo arterial blood sampling during the PET acquisition. Fifteen
subjects out of the 28 healthy controls were HAB, and thirteen subjects were MAB. All
subjects underwent the same PET dynamic acquisition as described previously.

2.5. Image Post-Processing

The reconstructed dynamic PET data underwent two additional image correction
processes. First, we conducted a frame-by-frame 3D PET image registration to minimize
the between-frame misalignment due to the involuntary patient motion during the PET
acquisition. The last frame was used as the reference for the frame-by-frame registration.
Second, partial volume correction was performed for all PET datasets with the geometric
transfer matrix method [28] provided by the PETPVC toolbox [29]. The anatomical maps
were derived from the segmentation results using Freesurfer, which performs subcortical
region segmentation over the T1-weighted scans [30]. All image processing methods
were implemented in MATLAB (version 2020a, Mathworks, Inc., Natick, MA, USA) The
Freesurfer-derived segmentation maps of the prior step were also applied to the PET
dynamic data and used to extract the tissue time-activity curves of the regions of interest.
We chose the following nine regions as target regions of evaluation: putamen, caudate,
thalamus, hippocampus, frontal cortex, temporal cortex, occipital cortex, parietal cortex,
and cerebellum.

2.6. IDIF Extraction Procedure

The IDIF extraction procedure involved three steps: an image segmentation process to
extract arterial voxels, a factorization process to separate the blood signal from the tissue
signal, and a scaling process to set the separated blood signal back to the accurate activity
concentration units. In the first step, we aimed to segment the voxels that are most likely
to be within the carotid arteries. For each subject, we first took the Freesurfer-derived
segmentation maps to determine the lowest slice of the cerebellum and only segment
between this slice and the overall lowest slice in the field of view. For each of those axial
slices, we took the first minute of dynamic frames and searched on the left side for the voxel
with the highest intensity over these six frames. Assuming an approximated diameter of
6 mm for the carotid arteries [31], this voxel was then dilated with a five-by-five diamond-
shaped structural element to form a segmented mask. The same operation was repeated
for the right side of the same image slice to complete the carotid segmentation for this
slice. All the selected slices underwent the same segmentation procedure to complete the
segmentation for carotid arterial blood voxels. With the partial volume effect, the intensity
of the segmented voxels that resemble the arterial blood activities is in fact a mixture of the
arterial blood activities and the surrounding tissues.

To extract the arterial blood activities, it is assumed that all the surrounding tissue
of the selected voxels can be approximated as a single tissue type and shares the same
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tracer uptake kinetics. Accordingly, the activity concentration of a specific voxel i can be
expressed as:

Ci,PET(t) = αiCAIF(t) +(1− αi)CTISSUE(t) (1)

where CPET represents the PET-measured activity, CAIF represents the arterial blood activity,
and CTISSUE represents the surrounding tissue activity. αi is the voxel-dependent mixing
fraction of the arterial blood for the specific voxel.

Assuming there is a total of n segmented voxels and m PET image frames for the
dynamic study, an n-by-m matrix A can be formed by combining Ci,PET from all the m
frames and n segmented voxels. With the goal to extract the underlying arterial input
function CAIF and tissue activity CTISSUE, we developed a novel method that decomposes
the matrix A into a 2-by-m matrix H that contains the two components of CAIF and CTISSUE
and an n-by-2 weighting matrix W so that the difference between A and W*H can be
minimized. Unlike other blind matrix factorization methods, our matrix factorization
method is based on physiological models and shares similar concepts with guided matrix
factorization [32] and knowledge-driven matrix factorization [33] by incorporating the
prior knowledge of underlying factors during the matrix factorization process. During
this model-based matrix factorization (MBMF), it is assumed that CAIF and CTISSUE can
both be modeled and parameterized. Accordingly, the factorization process becomes an
optimization problem that estimates the underlying parameters for CAIF and CTISSUE,
instead of a blind and direct search for the time activity curves of CAIF and CTISSUE. In this
study, we used the 7-parameter input function model developed by Feng et al. [22,34] as:

CAIF(t) = (A1(t− τ)− A2 − A3)e−λ1(t−τ) + A2e−λ2(t−τ) + A3e−λ3(t−τ) (2)

And the tissue time-activity function CTISSUE was modeled as a two-tissue compart-
ment model output as [35]:

CTISSUE(t) = CAIF(t)⊗
K1

(B2 − B1)

[
(k3 + k4 − B1)e−B1t + (B2 − k3 − k4)e−B2t

]
(3)

where
B1,2 =

1
2
[(k2 + k3 + k4)∓

√
(k2 + k3 + k4)

2 − 4k2k4] (4)

We used the trust-region-reflective optimization algorithm within MATLAB’s ‘fmincon’
function to perform the numerical optimization for the CAIF(t) and CTISSUE(t). In each iteration
of the parameter optimization, the parameter set of∅ = {τ, A1, A2, A3, λ1, λ2, λ3, K1, k2, k3, k4 }
at the current iteration was applied to Equations (2) and (3) and then used to form matrix H.
The weighting matrix W at this iteration was derived from MATLAB’s linear system solver
that minimizes the least-square errors. The optimization then searched for the optimal
solution for the parameter set ∅ by minimizing:

∅̂ = argmin(∅)||WH − A||2 (5)

After the convergence of MBMF, optimal ∅ was used to determine the extracted and
normalized functions CNorm,AIF and CNorm,TISSUE that represented the decomposed arterial
blood and tissue components, respectively. Those functions were denoted with ‘Norm’
because they were in a normalized form after the MBMF extraction, where ∑m

j=1 CNorm,AIF,j
equaled to one (j is the frame index). The last step was to scale the extracted CNorm,AIF
from an arbitrary unit to the correct physical magnitude of activity units as CAIF. To scale
CNorm,AIF to the correct units of activity concentration, we related CNorm,AIF to the true AIF
CAIF by a scaling factor sAIF as:

CAIF(t) = sAIFCNorm,AIF(t) (6)
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Similarly, CNorm,TISSUE was related to the true CTISSUE by a scaling factor sTISSUE. The
individual activity of a specific voxel i was estimated by the MBMF extraction as:

C̃i,PET(t) = wi,AIFCNorm,AIF(t)+wi,TISSUECNorm,TISSUE(t) (7)

wi,AIF and wi,TISSUE were the MBMF-estimated mixing fractions for the CNorm,AIF and
CNorm,TISSUE, respectively. Note C̃i,PET is not identical to Ci,PET since it is a weighted
summation of the extracted and estimated functions CNorm,AIF and CNorm,TISSUE.

We further derived:

C̃i,PET(t) =
ωi,AIF

sAIF
·CAIF(t)+

ωi,TISSUE

sTISSUE
·CTISSUE(t) (8)

From Equation (1), it was assumed that the mixing fractions of the AIF and tissue
activity should sum up to one under ideal situation. Therefore, the optimal values of sAIF
and sTISSUE were optimized by minimizing:

ŝAIF, ŝTISSUE = argmin(sAIF , sTISSUE)

n

∑
i=1

(
ωi,AIF

sAIF
+

ωi,TISSUE

sTISSUE
− 1)

2
(9)

where ŝAIF and ŝTISSUE denoted the optimized scaling factors for extracted AIF and tissue
activity, respectively. n denoted the total number of segmented voxels. We used the trust-
region-reflective optimization algorithm with MATLAB’s ‘fmincon’ function to perform the
numerical optimization for minimizing Equation (5). The estimated ŝAIF was then plugged
into Equation (6) to scale the IDIF into the correct physical units.

2.7. Metabolite Correction

Since the IDIF method extracts the whole-blood activity and cannot separate the
metabolite signal from the unmetabolized tracer, we used a population-based approach
to convert the extracted IDIF to a metabolite-corrected plasma time-activity curve [36,37].
With the metabolite data and plasma time-activity curves measured in the blood-sampling
cohort, the individual parent fraction was multiplied to the plasma-to-whole blood activity
fraction. The individual composite fraction was averaged for each time point at the 5th, 15th,
30th, and 60th minutes and then fitted to a single exponential function with constant [37,38].
As a result, the corrected IDIF is expressed as:

CIDIF,MCPC(t) = ŝAIFCN,AIF(t)(1− 0.29(1− e−0.03t)) (10)

where t is in the unit of minutes, and MCPC denotes metabolite-corrected plasma concen-
tration of activity.

2.8. 18F-DPA-714 Quantification

Quantification of 18F-DPA-714 binding was estimated through the Logan plot, where
the distribution volume (VT) was approximated by the graphical analysis [39,40]. Logan
plot analysis was based on the 30th to the 60th minutes of data [41]. For the blood-
sampling cohort, the distribution volume VT was calculated from the metabolite-corrected
AIF, denoted as VT,AIF. The distribution volume was also calculated from the metabolite-
corrected IDIF, denoted as VT,IDIF and compared to VT,AIF. For each subject, nine target
regions were chosen from the Freesurfer segmentation and calculated for VT,AIF and VT,IDIF.
For the nonblood-sampling cohort, VT,IDIF was calculated with the same steps described.
The distribution volume with respect to the reference region, denoted as VT,REF, was also
computed with the cerebellum time-activity curves using the Logan graphical analysis.

2.9. Statistical Analysis

In the blood-sampling cohort, VT,IDIF was compared against the reference VT,AIF with
data presented as mean ± SD. Error percentage, presented as mean ± SD, was calculated
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for VT,IDIF using VT,AIF as the gold standard value. Linear mixed-effect model was used to
examine the correlation between VT,IDIF and VT,AIF, treating the subject as a random effect
with or without the region as a fixed effect.

In the nonblood-sampling cohort, the subjects were divided into the HAB and MAB
groups based on the individual genotypes of TSPO binding. The VT,IDIF of the HAB
group was compared to that of the MAB group through an unpaired two-sample t-test.
Significance was set as p < 0.05. The same analysis was also performed for the SUV as well
as VT,REF to evaluate their differences between the HAB and MAB groups. Linear mixed
effect model was used to evaluate whether there was a significant difference between the
HAB and MAB under SUV, VT,IDIF, and VT,REF, respectively, adjusting for the effects of
region with subject as a random effect.

3. Results
3.1. IDIF Predicts AIF

In the first cohort of five subjects, arterial blood sampling was performed to measure
the AIF. We then compared the distribution volume calculated with the AIF (VT,AIF) and
IDIF (VT,IDIF) to determine whether IDIF is an appropriate surrogate for measurement
of 18F-DPA-714 quantification. The extraction process of the IDIF in one subject of the
blood-sampling cohort is demonstrated in Figure 1 for the three steps: segmentation, signal
decomposition, and scale optimization. Figure 1a shows the summed PET image over the
first 60 s post tracer injection as a maximum intensity projection. Figure 1b,c show one
axial slice within the neck area and the segmented contour for the carotid arteries. The
extracted tissue and blood components are shown in Figure 1d, and the IDIF after the scale
adjustment is plotted in Figure 1e with the measured arterial input function (AIF). The
IDIF curve demonstrated a satisfactory agreement with the AIF curve. ωi,AIF

sAIF
averaged

0.28 ± 0.30, and ωi,TISSUE
sTISSUE

averaged 0.55 ± 0.36 across the five subjects. The comparison of
IDIF and AIF for the other four subjects in the blood-sampling cohort is shown in Figure S1.
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Putamen 2.44 ± 0.52 2.30 ± 0.52 −5.7 ± 7.7 2.61 ± 0.47 2.43 ± 0.59 −7.7 ± 9.7 2.19 ± 0.95 2.12 ± 0.79 −2.7 ± 5.4 
Caudate 1.91 ± 0.48 1.81 ± 0.50 −5.4 ± 11.9 1.91 ± 0.60 1.83 ± 0.61 −3.8 ± 16.4 1.93 ± 0.70 1.79 ± 0.73 −7.6 ± 3.8 
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Temporal 3.45 ± 0.86 3.34 ± 1.08 −4.5 ± 11.5 3.73 ± 0.92 3.65 ± 1.33 −4.2 ± 15.7 3.03 ± 1.29 2.86 ± 1.12 −4.8 ± 2.8 
Occipital 2.96 ± 0.55 2.78 ± 0.55 −6.1 ± 7.3 3.15 ± 0.45 2.95 ± 0.57 −6.5 ± 9.9 2.69 ± 1.05 2.52 ± 0.92 −5.5 ± 4.8 
Parietal 3.13 ± 0.52 2.97 ± 0.47 −5.0 ± 7.0 3.26 ± 0.45 3.08 ± 0.51 −5.7 ± 8.7 2.93 ± 0.97 2.79 ± 0.80 −3.9 ± 4.1 

Cerebellum 3.16 ± 0.60 2.95 ± 0.58 −6.4 ± 7.1 3.35 ± 0.55 3.11 ± 0.67 −7.4 ± 9.7 2.87 ± 1.14 2.70 ± 0.97 −5.0 ± 1.5 

Figure 1. Demonstration of the IDIF extraction. (a) The coronal maximum intensity projection (MIP)
of the summed early frames of the DPA-714 scan of one subject. (b) One axial slice of the neck area
at the early frame. (c) The segmented regions (green contour) for carotid artery over the same slice.
(d) The MBMF-extracted time-activity curves for the blood and tissue components. Note both curves
are in the normalized and dimensionless form. (e) The resultant IDIF (blue circle) after the magnitude
is re-scaled by the proposed method. The activities measured with arterial blood sampling are plotted
as red stars, showing a satisfactory agreement between AIF and IDIF.

Table 1 summarizes the VT derived from the AIF and IDIF for the nine target regions
in the blood-sampling cohort. The overall error for VT,IDIF was −5.8 ± 7.8% against the
reference VT,AIF. In all regions, the mean error of VT was less than 10% across all subjects.
The amount of error for VT in the healthy controls is similar in the PD patients. Figure 2
shows the scatter plot and the Bland–Altman plot for VT,IDIF and VT,AIF of all the target
regions and demonstrates a satisfactory agreement between them. In the linear mixed
effect model analysis, the overall VT,IDIF and VT,AIF were highly correlated with each other
(p < 0.001), adjusting for the effect of regions.
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plotted against VT,AIF. The statistical test also showed a strong correlation through the mixed effect
model analysis. (b) The Bland–Altman plot for VT,IDIF and VT,AIF.
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Table 1. Comparison between the VT,AIF and VT,IDIF in the blood-sampling cohort. Overall error is
−5.8 ± 7.8% for VT,IDIF when compared to VT,AIF. The error does not appear to be dependent on the
target region.

All (n = 5) PD (n = 3) HC (n = 2)

VT,AIF VT,IDIF Error % VT,AIF VT,IDIF Error % VT,AIF VT,IDIF Error %

Putamen 2.44 ± 0.52 2.30 ± 0.52 −5.7 ± 7.7 2.61 ± 0.47 2.43 ± 0.59 −7.7 ± 9.7 2.19 ± 0.95 2.12 ± 0.79 −2.7 ± 5.4
Caudate 1.91 ± 0.48 1.81 ± 0.50 −5.4 ± 11.9 1.91 ± 0.60 1.83 ± 0.61 −3.8 ± 16.4 1.93 ± 0.70 1.79 ± 0.73 −7.6 ± 3.8

Thalamus 2.97 ± 0.63 2.77 ± 0.61 −6.7 ± 7.0 3.12 ± 0.71 2.89 ± 0.75 −7.6 ± 9.4 2.75 ± 1.17 2.59 ± 1.06 −5.3 ± 1.8
Hippocampus 2.61 ± 0.58 2.42 ± 0.44 −6.3 ± 9.3 2.79 ± 0.62 2.57 ± 0.45 −6.6 ± 12.6 2.34 ± 0.96 2.19 ± 0.84 −6.0 ± 3.0

Frontal 2.70 ± 0.49 2.55 ± 0.48 −5.1 ± 7.5 2.79 ± 0.46 2.65 ± 0.54 −5.2 ± 9.5 2.56 ± 0.88 2.41 ± 0.77 −5.0 ± 3.2
Temporal 3.45 ± 0.86 3.34 ± 1.08 −4.5 ± 11.5 3.73 ± 0.92 3.65 ± 1.33 −4.2 ± 15.7 3.03 ± 1.29 2.86 ± 1.12 −4.8 ± 2.8
Occipital 2.96 ± 0.55 2.78 ± 0.55 −6.1 ± 7.3 3.15 ± 0.45 2.95 ± 0.57 −6.5 ± 9.9 2.69 ± 1.05 2.52 ± 0.92 −5.5 ± 4.8
Parietal 3.13 ± 0.52 2.97 ± 0.47 −5.0 ± 7.0 3.26 ± 0.45 3.08 ± 0.51 −5.7 ± 8.7 2.93 ± 0.97 2.79 ± 0.80 −3.9 ± 4.1

Cerebellum 3.16 ± 0.60 2.95 ± 0.58 −6.4 ± 7.1 3.35 ± 0.55 3.11 ± 0.67 −7.4 ± 9.7 2.87 ± 1.14 2.70 ± 0.97 −5.0 ± 1.5

3.2. IDIF Method Distinguishes High-Affinity Binders from Mixed-Affinity Binders

To validate our IDIF quantification methodology, we next tested whether IDIF could
distinguish control subjects who were MAB from those who were HAB as determined
by TSPO SNP genotyping. In the SUV measurements, all nine brain regions showed
significantly higher uptake of 18F-DPA-714 in the HAB group than in the MAB group
(p < 0.05). The HAB uptake averaged 31 ± 3% higher than the MAB in SUV (Figure 3).
The distribution volume as determined by IDIF also showed significantly higher uptake
in HAB vs. MAB overall (p < 0.05). Region-wise, mean VT,IDIF was statistically higher
in the HAB group in all nine brain regions (Figure 4). VT,IDIF was 37 ± 3% higher in the
HAB group overall. On the other hand, the distribution volume determined by using the
cerebellum as a reference region showed only a mildly increased VT,REF of 3 ± 3% in the
HAB group compared to the MAB group (Figure 5). Only one out of the nine brain regions
revealed a statistically significant increase in VT,REF in HAB vs. MAB subjects with the
reference region approach. The mixed effect model showed a significant difference in the
SUV (p = 0.010) and VT,IDIF (p = 0.010) but not in the VT,REF (p = 0.069) after adjusting for
the effects of regions.
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Figure 3. The box plot of the SUV measured for target brain regions for high- and mixed-affinity
binders in the nonblood-sampling cohort. * denotes significant differences under two-sample t-test
(p < 0.05), while ** denotes p < 0.01. All nine target regions showed significant differences between
the HAB and MAB subjects. SUV is 31 ± 3% higher in HAB than in MAB.



Diagnostics 2022, 12, 1161 10 of 15

Diagnostics 2022, 12, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 3. The box plot of the SUV measured for target brain regions for high- and mixed-affinity 
binders in the nonblood-sampling cohort. * denotes significant differences under two-sample t-test 
(p < 0.05), while ** denotes p < 0.01. All nine target regions showed significant differences between 
the HAB and MAB subjects. SUV is 31 ± 3% higher in HAB than in MAB. 

 
Figure 4. The box plot of the VT,IDIF. VT,IDIF is 37 ± 3% higher in HAB than in MAB. All nine regions 
were found with significant difference (*: p < 0.05, **: p < 0.01) between the HAB and MAB subjects. 
The overall increase pattern in the HAB is similar as the SUV pattern of increase. 

Figure 4. The box plot of the VT,IDIF. VT,IDIF is 37 ± 3% higher in HAB than in MAB. All nine regions
were found with significant difference (*: p < 0.05, **: p < 0.01) between the HAB and MAB subjects.
The overall increase pattern in the HAB is similar as the SUV pattern of increase.
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4. Discussion

Evidence is growing for the central role of neuroinflammation in many neurodegener-
ative diseases, and accordingly neuroinflammation is both a potential marker for diagnosis
and a therapeutic target. As a tool of noninvasive measurement of neuroinflammation,
TSPO PET has gained much interest in recent year but poses unique challenges in quantifica-
tion. Interested readers are referred to a comprehensive review of TSPO PET quantification
by Wimberley et al. [42]. One challenge that has been recognized for 18F-DPA-714 imaging
is how to achieve an accurate quantification of the tracer binding through kinetic modeling
analysis. Since microglial cells are widely distributed in all brain tissues and neuroin-
flammation can potentially occur throughout the brain, the underlying assumption for
reference region-based analysis may be violated when a certain disease affects the reference
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region and increases the microglial activation similarly to the target region of interest.
Although the cerebellum has been used as the reference region by several reports, it is also
well known that the cerebellum demonstrates non-negligible 18F-DPA-714-specific binding
even in the healthy subjects [12,13]. Therefore, it is not surprising that prior reports have
shown that the cerebellar TSPO binding can be elevated in certain diseases that make the
cerebellum further deviate from the modeling assumptions for the reference regions [15–17].
Studies have suggested that several neurological disorders can cause globally elevated
neuroinflammation including the cerebellum [18,43,44]. For example, Terada et al. have
shown that there may be a global pattern of microglial activation in the whole brain for PD
patients [45]. Under such a scenario, the reference region-based method may fail to properly
measure the 18F-DPA-714 binding differences between the study groups. Accordingly, an
accurate and non-invasive method for DPA-714 quantification is significant for TSPO PET
in measuring neuroinflammation.

Here, we have shown that our developed IDIF method is a potential alternative for
arterial blood sampling methods. This method incorporates image segmentation, signal
separation, and a novel approach to scale the extracted TACs to the accurate magnitude.
Based on a relatively small validation cohort, our current results show a satisfactory
extraction of IDIF that was very similar to the AIF calculated from arterial blood sampling.
We found that the VT measured with AIF and IDIF is highly correlated (p < 0.001), and
the difference between these two measurements is small with less than 10% overall bias.
The data from this cohort show that the IDIF-measured VT decently resembles the AIF-
measured VT and may be a useful alternative to replace the VT measured through invasive
arterial blood sampling. The proposed method is fully automatic and may eliminate the
potential interoperator variabilities. The fact that it does not require any blood sampling or
sample processing makes this approach easy to apply to retrospective data analysis and
to use in clinical trials. Further studies with larger validation cohorts would be crucial for
a more comprehensive validation and performance evaluation for this method.

We further validated the IDIF method by testing whether IDIF can distinguish HAB
vs. MAB healthy control subjects. TSPO genotypes, specifically a single nucleotide poly-
morphism at rs6971, critically affect the 18F-DPA-714 signal. Prior reports have shown
that the TSPO ligand binding in HAB subjects is 20–50% higher than that of MAB subjects,
depending on the quantification approaches and study settings [12,25]. In our dataset,
a simple measurement of SUV shows significantly higher 18F-DPA-714 uptake in the HAB
group that matched the expected magnitude of increase as described in the literature. When
IDIF-based kinetic modeling analysis was applied, similar results were obtained as the
degree of VT,IDIF increase was similar to the SUV increase. All of the nine tested regions
showed significant differences through VT,IDIF as expected. On the other hand, the VT
measured using reference region-based analysis with the cerebellum as the reference region
showed only a minimal increase in the HAB group of less than five percent. Only one out
of nine brain regions showed significant differences between the HAB and MAB subjects
using reference region-based analysis. This lack of difference is likely an artifact of the
reference region method, arising from the fact that TSPO binding is increased in both the
target and reference regions for the HAB group compared to the MAB group. Similar results
have been presented in a study conducted by Hameline et al. in which the cerebellum
was chosen as the reference region. In this study, the 18F-DPA-714 SUVr obtained from
the HAB and MAB subjects was very similar using the reference region-based analysis,
supporting our observation that the cerebellum may not serve as an ideal reference region
for TSPO imaging as it may cancel out or diminish the effects of TSPO overexpression
caused by certain physiological or pathological conditions [46]. Our data suggest that
the developed IDIF method may be more suitable for quantifying the TSPO binding than
reference region methods.

Other efforts have been developed to noninvasively extract the input function or
reference region activities for kinetic modeling analysis. An approach similar to IDIF is the
population-based input function (PBIF) method [37]. This method assumes an identical



Diagnostics 2022, 12, 1161 12 of 15

curve shape for arterial input functions across the population. A PBIF can be obtained
by averaging the AIF for a cohort with the individual scale determined through one or
few blood samples. Compared with the PBIF method, the IDIF method developed in this
work estimates the individual curve shape for AIF and scales the estimated AIF with the
imaging data. No blood sampling or population AIF data are required in our approach,
and therefore it may be easier to apply the IDIF over dynamic PET scans. The supervised
clustering algorithm (SVCA), on the other hand, extracts the voxels that most closely follow
the tracer kinetics of a low-binding, time-activity curve that is predefined from previously
collected cohort datasets [47]. SVCA methods are fully automatic and have been applied in
the image quantification of several disease models [48]. However, the challenge for SVCA
is that a predefined set of kinetic curves must be present and known for both the healthy
controls and subjects with the specific brain disorder that is being studied. In addition, such
predefined kinetic curves must be scanner- and protocol-specific, and such requirements
may limit its applicability for analyzing the data acquired through clinical trials where the
patient sample sizes are often limited [42]. Moreover, some reports have also suggested that
the SVCA-extracted reference region time-activity curves may still contain a non-negligible
amount of specific binding that may lead to bias in quantifying the TSPO binding [49,50].
It requires further studies to objectively compare the performances of the proposed IDIF
method with SVCA and PBIF methods to determine which may provide the most reliable
quantification of TSPO binding, and it may likely be dependent on the disease model
being investigated.

This study has its limitations, and the proposed method can be further improved. First,
our blood-sampling cohort contained only five subjects due to the difficulties of performing
arterial blood sampling procedures, particularly under the influences of the global SARS-
CoV-2 pandemic during the subject recruitment. A larger cohort with blood sampling may
help further verify the accuracy and reliability of the developed IDIF method. Second, since
our method is based on matrix factorization to extract the IDIF, the accuracy of the extracted
IDIF will depend on the segmented voxels that ideally shall be those possessing high
fractions of the arterial blood. Our current segmentation method is a simple method that
searches for voxels that are likely to be within the carotid artery. Although it has the benefit
that it does not require data from modalities other than PET, the carotid segmentation
can certainly be improved with more advanced methods or with the assistance of MR- or
CT-based angiography. For example, some of the IDIF methods make use of time-of-flight
MR angiography (TOF-MRA) through a simultaneous PET/MR to delineate the carotid
arteries [51]. The enhanced segmentation of arterial structures may provide the MBMF
with a better source data for matrix factorization and therefore improve the accuracy of
IDIF extraction. Third, our experimental design included a 60 min PET dynamic acquisition
to reduce the discomfort for the recruited patients, whereas a 90 min acquisition has
been more common in the current literature. Although prior reports have shown that
a 60 min scan may properly suffice for an accurate measurement of VT [12,41], a longer scan
would be beneficial to increase the parameter sensitivity toward the estimation of binding
potential and microrate constants through compartment modeling analysis. Although our
proposed IDIF method is not strictly dependent on the scan protocol, how our method
would perform under a longer scan requires future studies to evaluate. Fourth, since
the IDIF can only extract whole-blood AIF, individual metabolite and plasma activity
correction will not be feasible without additional blood sampling procedures. Accordingly,
a population-based approach for metabolite correction was taken in this work. Whether
the error of VT measurement is introduced by such a population-based method requires
further investigation. Lastly, signal separation of the IDIF and tissue tracer uptake could
possibly be improved in our method with other signal separation methods, such as those
based on machine learning techniques [52].
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5. Conclusions

A novel image-derived input function method for quantifying the TSPO binding
with 18F-DPA-714 was developed in this work. We used two separate cohorts as an initial
validation for this method and showed that it may serve as a promising alternative for
an automatic and noninvasive way to extract the IDIF.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12051161/s1, Figure S1: The comparison between
AIF and IDIF for the other four subjects in the blood-sampling cohort.
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