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Deciphering microbial interactions in synthetic
human gut microbiome communities
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Abstract

The ecological forces that govern the assembly and stability of the
human gut microbiota remain unresolved. We developed a gener-
alizable model-guided framework to predict higher-dimensional
consortia from time-resolved measurements of lower-order assem-
blages. This method was employed to decipher microbial interac-
tions in a diverse human gut microbiome synthetic community.
We show that pairwise interactions are major drivers of multi-
species community dynamics, as opposed to higher-order interac-
tions. The inferred ecological network exhibits a high proportion of
negative and frequent positive interactions. Ecological drivers and
responsive recipient species were discovered in the network. Our
model demonstrated that a prevalent positive and negative inter-
action topology enables robust coexistence by implementing a
negative feedback loop that balances disparities in monospecies
fitness levels. We show that negative interactions could generate
history-dependent responses of initial species proportions that
frequently do not originate from bistability. Measurements of
extracellular metabolites illuminated the metabolic capabilities of
monospecies and potential molecular basis of microbial interac-
tions. In sum, these methods defined the ecological roles of major
human-associated intestinal species and illuminated design princi-
ples of microbial communities.
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Introduction

Microbes have evolved in diverse microbial communities that

occupy nearly every environment on Earth, spanning extreme envi-

ronments such as acid mine drains and hot springs to multicellular

organisms. The gut microbiome is a dense collection of microorgan-

isms that inhabits the human gastrointestinal tract (Lozupone et al,

2012; Earle et al, 2015; Tropini et al, 2017) and performs numerous

functions to impact human physiology, nutrition, behavior, and

development (Ley et al, 2005; Fischbach & Sonnenburg, 2011;

Foster & McVey Neufeld, 2013; Louis et al, 2014; Sharon et al,

2014; Rooks & Garrett, 2016). Functions of the gut microbiota are

partitioned among genetically distinct populations that interact to

perform complex chemical transformations and exhibit emergent

properties such as colonization resistance at the community level.

Such collective functions are realized by the combined interactions

of diverse microbial species operating on multiple time and spatial

scales and could not be achieved by a single monospecies popula-

tion. The degree of spatial structuring in the gut microbiota varies

across length scales: At a macroscale of hundreds of micrometers,

bacteria cluster into distinct habitats, whereas at a scale of micro-

meters, intermixing of community members has been observed

(Donaldson et al, 2015; Earle et al, 2015; Mark Welch et al, 2017).

The gut microbiota is composed of hundreds of bacterial species,

the majority of which span the Firmicutes, Bacteroidetes, and Acti-

nobacteria phyla (Ley et al, 2006). Constituent strains of the gut

microbiota have been shown to persist in an individual over long

periods of time, demonstrating that the gut microbiota exhibits

stability over time (Faith et al, 2013). Perturbations to the system

such as dietary shifts or antibiotic administration can shift the oper-

ating point of the gut microbiota to an alternative state (Relman,

2012). While the identities of the organisms and microbial co-occur-

rence relationships across individuals have been elucidated (Faust

et al, 2012), we lack a quantitative understanding of how microbial

interactions shape community assembly, stability, and response to

perturbations. For example, the ecological and molecular forces that

enable stable coexistence of the dominant phyla Firmicutes,
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Bacteroidetes and Actinobacteria are not well understood (Fischbach

& Sonnenburg, 2011).

The resilience of microbiomes, defined as the capacity to recover

from perturbations, is strongly linked to microbial diversity. Indeed,

a reduction in microbial diversity of the human gut microbiome

is associated with multiple diseases, suggesting that a high-

dimensional and functionally heterogeneous ecosystem promotes

human health (Sommer et al, 2017). Understanding the molecular

and ecological factors influencing the stability and resilience of the

gut microbiota has implications for the development of targeted

interventions to modulate microbiome states. Central to this prob-

lem is inferring unknown microbial interactions and developing

tools to predict temporal changes in community behaviors in

response to environmental stimuli.

Cooperation and competition generate positive and negative

feedbacks in microbial communities and influence functional activi-

ties and stability. Negative interactions have been shown to domi-

nate microbial inter-relationships in synthetic aquatic microcosms

(Foster & Bell, 2012). However, the prevalence of competition and

cooperation in microbial communities occupying other diverse envi-

ronments such as the human gut microbiota remains elusive. Direct

negative interactions in microbial consortia can originate from

competition for resources or space, biomolecular warfare, or

production of toxic waste products (Hibbing et al, 2010). Positive

interactions can stem from secreted metabolites that are utilized by

a community member or detoxification of the environment. Pair-

wise microbial interactions can be modified by a third organism,

leading to higher-order effects that influence community behaviors

(Bairey et al, 2016). Ecological driver species, which exhibit a large

impact on community structure and function, represent key nodes

in the network that could be manipulated to control community

states (Gibson et al, 2016).

Predicting community dynamics is a key step toward understand-

ing the organizational principles of microbial communities. Compu-

tational models at different resolutions can be used to analyze and

predict the behaviors of microbial communities (Faust & Raes,

2012). Dynamic computational models can be used to investigate

temporal changes in community structure, and tools from dynami-

cal systems theory can be used to analyze system properties includ-

ing stability and parameter sensitivity (Astrom & Murray, 2010).

Generalized Lotka–Volterra (gLV) is an ordinary differential equa-

tion model that represents microbial communities with a limited

number of parameters that can be deduced from time-series data.

Here, we develop a systematic modeling and experimental pipe-

line to construct a predictive computational model of microbial

community dynamics and interrogate microbial interactions mediat-

ing community assembly. Time-resolved measurements of mono-

species and pairwise assemblages were used to train a dynamic

computational model of a diverse synthetic human gut microbiome

community. Our model revealed a high proportion of negative and

frequent positive interactions. Specific ecological driver species and

responsive organisms to community context were identified in the

network. Bacteroidetes exhibited an overall negative impact on the

community, whereas specific members of Actinobacteria and Firmi-

cutes displayed numerous positive outgoing interactions. A preva-

lent pairwise sub-network composed of positive and negative

interactions exhibited robust species coexistence to variations in

model parameters. Our model showed that the majority of

history-dependent responses in pairwise consortia were due to slow

convergence to a steady state composition and these networks were

enriched for negative interactions. The metabolic capabilities of

monospecies were elucidated using exo-metabolomics profiling, and

these data pinpointed a set of metabolites predicted to mediate posi-

tive and negative interactions. However, the metabolite profiles

failed to forecast specific influential organisms modulating commu-

nity assembly. Together, these results show that combinations of

pairwise interactions can represent the assembly of multi-species

communities and such pairwise couplings can realize a diverse

repertoire of dynamic behaviors.

Results

Probing the temporal behaviors of monospecies and
pairwise assemblages

We aimed to dissect the microbial interactions influencing commu-

nity assembly in a reduced complexity model gut community span-

ning the major phyla Bacteroidetes, Firmicutes, Actinobacteria, and

Proteobacteria. To this end, a synthetic ecology encompassing

prevalent human-associated intestinal species Bacteroides thetaio-

taomicron (BT), Bacteroides ovatus (BO), Bacteroides uniformis

(BU), Bacteroides vulgatus (BV), Blautia hydrogenotrophica (BH),

Collinsella aerofaciens (CA), Clostridium hiranonis (CH), Desulfovib-

rio piger (DP), Eggerthella lenta (EL), Eubacterium rectale (ER),

Faecalibacterium prausnitzii (FP), and Prevotella copri (PC) was

designed to mirror the functional and phylogenetic diversity of the

natural system (Fig 1A; Qin et al, 2010). These species have been

shown to contribute significantly to human health and are impli-

cated in multiple human diseases (Watterlot et al, 2008; Larsen

et al, 2010; Thota et al, 2011; Fujimoto et al, 2013; Haiser et al,

2013; Scher et al, 2013; Table 1).

Synthetic assemblages were arrayed in microtiter plates in an

anaerobic chamber using an automated liquid-handling procedure

(see Materials and Methods). A rich media (see Materials and Meth-

ods) was selected to support the growth of all monospecies. The

communities were serially transferred at 24-h intervals to prevent

strains with long lag phases from being eliminated and allow

communities to approach a steady state composition by monitoring

assembly over many cell generations. Further, serial transfers can

also reflect recurrent temporal perturbations to the gut microbiota

such as diet and colonic transit time (Fig 1B). Multiplexed 16S rRNA

gene sequencing was performed in approximately 12-h intervals to

elucidate the temporal variations in community structure at different

community growth stages. The relative abundance for each species

was computed as the sum of the read counts for each organism

divided by the total number of reads per condition (see Materials and

Methods). Since model construction is aided by absolute abundance

information (Bucci et al, 2016; Widder et al, 2016), the total biomass

of the communities was monitored approximately every 30 min

using absorbance at 600 nm (OD600). Cellular traits such as cell

adhesion, size, and shape can influence OD600 measurements

(Stevenson et al, 2016). In addition, counting of colony-forming

units (CFU) is biased by cell adhesion, dormant sub-populations,

growth selection on solid vs. liquid media, and growth stage

(Jansson & Prosser, 1997; Volkmer & Heinemann, 2011; Ou et al,
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2017). Our model was trained on absolute abundance estimated from

OD600 measurements and used to predict absolute abundance based

on OD600 and thus automatically accounts for any potential biases.

To infer microbial interactions, time-resolved measurements of

all monospecies and pairwise communities (66 combinations) were

performed using an approximately 1:1 initial abundance ratio based

on OD600 values (PW1 dataset, Appendix Fig S1, Dataset EV1).

Monospecies growth and community composition were measured

using OD600 measurements of total biomass and multiplexed

16S rRNA gene sequencing, respectively (see Materials and

Methods). The monospecies displayed a broad range of growth rates,

carrying capacities and lag phases (M dataset, Appendix Fig S2).

Pairwise consortia exhibited diverse growth responses and dynamic

behaviors including coexistence and single-species dominance

(Appendix Fig S1). The distribution of absolute abundance of each

species across communities in PW1 provided insight into variability

in growth in the presence of a second organism (Appendix Fig S3A).

Absolute species abundance was normalized to the monospecies

maximum OD600 value to evaluate relative changes in the baseline

fitness of each organism in the presence of second species. Bacter-

oides and CH displayed the lowest coefficient of variation (CV),

indicating that the fitness levels of these organisms were not signifi-

cantly modified by a second species (Appendix Fig S3B). The

remaining species displayed a bimodal (FP, DP, PC, BH, and CA),

long-tail distribution (ER and EL), and/or high CV (ER, BH, CA, and

PC), demonstrating that growth was significantly altered in the

presence of specific organisms.

To further probe the dynamic responses of pairwise consortia, a

set of 15 consortia (Fig 2B, Dataset EV2) inoculated at different

initial species proportions based on OD600 values (95% species A,

5% species B, and the second wherein these percentages were

reversed) were characterized using our experimental workflow

(PW2 dataset, Appendix Fig S4). The community behaviors were

classified into the following categories based on a quantitative

threshold in species proportions at 72 h: (i) single-species domi-

nance; (ii) stable coexistence wherein both species persisted above

an abundance threshold; (iii) history dependence whereby commu-

nities inoculated using distinct initial species proportions mapped to

different community structures; or (iv) other for communities that

did not quantitatively satisfy the relative abundance thresholds for

cases 1–3. A subset of the communities classified in the other cate-

gory displayed weak history-dependent responses potentially attrib-

uted to variations in biological replicates. The qualitative behaviors

of the remaining 51 pairwise communities were classified based on

community structure at an initial (t = 0) and final (t = 72 h) time

point using the PW2 experimental design wherein the organisms

were inoculated using different initial species proportions (95%

species A, 5% species B, and the reciprocal percentages,

Appendix Fig S5A). Together, these results demonstrated that

approximately 50, 24, and 12% of pairwise communities displayed

dominance, stable coexistence, and history dependence, respec-

tively (Appendix Fig S5B).

Construction of a dynamic computational model of
the community

A generalizable modeling framework was developed to infer param-

eters from time-series measurements of relative abundance and total

A B

Figure 1. Experimental design for high-throughput characterization of synthetic human gut microbiome consortia.

A Phylogenetic tree of the 12-member synthetic ecology spanning the major phyla in the gut microbiome including Actinobacteria, Bacteroidetes, Firmicutes, and
Proteobacteria. Phylogenetic analysis was performed using a concatenated alignment of single-copy marker genes obtained via PhyloSift (preprint: Darling et al,
2014). Maximum likelihood trees were generated using default options. The scale bar represents the number of substitutions per site in the alignment.

B Schematic of the experimental design for this study. Species were combined using an approximately 1:1 or 19:1 initial proportion based on absorbance measurements
at 600 nm (OD600) into microtiter plates using liquid-handling robotic manipulation. Approximately every 12 h, samples were collected for multiplexed 16S rRNA
gene sequencing (black circles). Relative abundance was measured using multiplexed 16S rRNA gene sequencing of the V3–V4 region using dual-indexed primers
compatible with an Illumina platform (stacked bar plot, bottom right). Serial transfers were performed in approximately 24 intervals (purple bars, top) by transferring
an aliquot of the communities into fresh media using a 1:20 dilution. In parallel, time-resolved OD600 measurements of monospecies and consortia were performed.
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biomass (OD600). The generalized Lotka–Volterra (gLV) model

represents microbial growth, intra-species interactions, and pairwise

inter-species interactions and can be used to predict the dynamic

behaviors of the community and analyze system properties such

as stability and parameter sensitivity. The model equations are

given by:

dxi
dt

¼ xi li þ
Xn
j¼1

aijxj

 !
;

where n, l, aii, and aij represent the number of species, growth

rates, intra-species, and inter-species interaction coefficients,

respectively. To minimize overfitting of the data, a regularized

parameter estimation method was implemented that penalized the

magnitude of the parameter values (see Materials and Methods).

Three training sets were evaluated based on predictive capability:

(T1) M; (T2) M, PW1; and (T3) M, PW1, PW2. A range of regular-

ization coefficient values (k) was scanned to balance the goodness

of fit to the training sets and degree of sparsity of the model

(Appendix Fig S6). The parameterized gLV model trained on T3

captured the majority of pairwise community temporal responses

(Fig 2A and B). However, the model did not accurately represent

the dynamic behaviors of a set of communities including BH, EL;

PC, CA; BO, CH; ER, BH; and PC, BH based on a threshold in the

mean squared error between the model and data.

Thresholding the magnitude of the inter-species interaction coef-

ficients using a value of 1e-5 yielded a densely connected network

whereby 77% of species pairs exhibited an interaction. The network

connectivity varied between 75 and 79% for interaction coefficient

thresholds ranging from 1e-6 to 1e-3. Interaction coefficients with a

magnitude less than 1e-3 are not expected to change the steady

state species abundance based on the inferred growth rate and

interaction coefficient values. Of these interactions, 56 and 21%

were negative and positive, respectively (Fig 2C). Negative interac-

tions can arise from resource competition, biomolecular warfare, or

production of toxic waste by-products. Positive interactions can

originate from metabolite secretion or detoxification of the environ-

ment. Bacteroides (BO, BV, BU, and BT) displayed a net negative

impact on the network, whereas EL, BH, and CH positively stimu-

lated a large number of species (Appendix Fig S7A). Pairwise

networks were enriched for unidirectional negative (�/0, 36%),

bidirectional negative (�/�, 32%), and positive and negative (+/�,

26%) species couplings (Appendix Fig S7B). The contribution of

each species to full community assembly in the model is dictated by

a set of coupled ordinary differential equations that are a function

of the monospecies growth rates, intra-species interactions, and

outgoing and incoming inter-species interactions (see Materials and

Methods). Therefore, a prediction about the role of each organism

in community assembly requires simulation and analysis of the gLV

model.

FP was the recipient of five positive interactions, suggesting that

the fitness of FP is coupled to the composition of the community

(Appendix Fig S7A). To determine the contribution of each incom-

ing positive interaction on FP abundance, we examined a 6-member

gLV model composed of FP, BH, BU, BV, CH, and DP. The

combined set of five positive inter-species interactions was required

to alter FP abundance by more than twofold, and single and dual

inter-species interactions moderately increased FP abundance at

72 h (Appendix Fig S7C). Therefore, FP represents an ecologically

responsive organism that is significantly enhanced by the presence

of multiple organisms in the community in these conditions.

Corroborating this notion, FP exhibited significant variability in

absolute abundance across PW1 communities and frequent coexis-

tence with other organisms (Appendix Figs S3 and S5B).

Strong positive or negative interactions can be deciphered by an

enhancement or reduction in community productivity compared to

a null model representing the sum of monospecies productivities

(Foster & Bell, 2012). We computed the integral of biomass

(OD600) over time to evaluate monospecies and pairwise commu-

nity productivities (Appendix Fig S8). Our results showed that the

productivities of 38% of pairwise consortia were less than twofold

compared to the predictions based on the null models, consistent

with the prevalence of negative interactions. Bacteroides pairwise

communities BV, BU; BV, BO; BT, BU; BU, BO; BT, BV; and BT, BO

exhibited significantly lower pairwise productivities compared to

the null model, which was consistent with the inferred mutual

inhibitory network topologies (Fig 2C). The productivities of EL,

BH; EL, BU; EL, BT; EL, BO; EL, BV; and CH, ER were signifi-

cantly enhanced in comparison with the predictions based on

the null model. In the inferred network, five of these consortia

(EL, BU; EL, BT; EL, BO; EL, BV; and CH, ER) displayed

coupled negative and positive interaction topologies and EL,

BH exhibited mutualism, demonstrating that both unidirectional

and bidirectional positive interactions can augment community

productivity.

Hierarchical clustering of the gLV interaction coefficients showed

that members of Bacteroides or Actinobacteria exhibited similar

Table 1. Table of species used in study and associations with human
diseases based on previous literature. Arrows pointing up or down
denote positive or negative associations, respectively.

Species Association(s)

Prevotella copri (PC) Inflammatory and autoimmune disease (↑)
(Scher et al, 2013), autism (↓) (Kang et al,
2013)

Bacteroides vulgatus (BV) Ulcerative colitis (↑) (Bamba et al, 1995)

Bacteroides uniformis (BU) Metabolic/immunological dysfunction (↓)
(Gauffin Cano et al, 2012)

Bacteroides ovatus (BO) Type I diabetes (↑) (Giongo et al, 2011)

Bacteroides
thetaiotaomicron (BT)

Ulcerative colitis (↑)(Bloom et al, 2011)

Faecalibacterium
prausnitzii (FP)

Crohn’s disease (↓) (Watterlot et al, 2008),
inflammatory bowel disease (↓) (Segain et al,
2000), Celiac disease (↓) (De Palma et al, 2010)

Blautia
hydrogenotrophica (BH)

Healthy human colon (↑) (Nava et al, 2012)

Eubacterium rectale (ER) Type II diabetes (↑) (Larsen et al, 2010)

Collinsella aerofaciens (CA) Colon cancer (↓) (Moore & Moore, 1995),
rheumatoid arthritis (↑) (Chen et al, 2016)

Eggerthella lenta (EL) Cardiac drug transformations (↑) (Haiser et al,
2013), Crohn’s disease (↑) (Thota et al, 2011),
rheumatoid arthritis (↑) (Chen et al, 2016)

Desulfovibrio piger (DP) Regressive autism (↑) (Finegold et al, 2012)

Clostridium hiranonis (CH) None reported
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patterns in outgoing and incoming microbial interactions

(Appendix Fig S9A and B). However, the Firmicutes clustering

pattern did not reflect the phylogenetic relationships. Together,

these data show that distantly related species can display similar

microbial interactions (e.g., BH and DP or PC and CA) and closely

related species can exhibit distinct interaction patterns (e.g., BH and

ER; Fig 1A). Therefore, evolutionary similarity was not a global

predictor of the patterns in the inferred microbial interactions

(Gómez et al, 2010; de Vos et al, 2017).

Model validation using informative multi-species assemblages

To validate the gLV model based on training set T3, time-resolved

measurements of relative abundance of the full (12-member) and all

single-species dropout communities (11-member consortia, Fig 3A,

Dataset EV3) and total community biomass (Appendix Fig S10A)

were performed. BU contamination was detected in the BU- consor-

tium at 47.5 h (0.4% of the community) and BU persisted in the

community until 72 h (2% of the community). Therefore, although

A

C

B

Figure 2. Model training of generalized Lotka–Volterra (gLV) to time-resolved measurements of monospecies and pairwise assemblages.

A Species relative abundance as a function of time for all pairwise communities. Experimental measurements and model fits based on T3 are represented as
data points and lines, respectively. In each subplot, time and species relative abundance are displayed on the x- and y-axis, respectively. Stars denote
datasets with a sum of mean squared errors greater than 0.15. Error bars represent 1 s.d. from the mean of at least three biological replicates.

B Temporal changes in species relative abundance of a selected set of pairwise assemblages inoculated at 5% species A, 95% species B or 95% species A, 5%
species B based on OD600 values. Time and relative abundance are represented on the x- and y-axis, respectively. Data points and lines represent
experimental measurements and model fits to T3, respectively. Error bars represent 1 s.d. from the mean of at least three biological replicates. Stars denote
datasets with a sum of mean squared errors greater than 0.15.

C Inferred inter-species interaction coefficients for the gLV model trained on T3. Gray and green edges denote negative (aij < 0) and positive (aij > 0)
interaction coefficients. The edge width and node size represent the magnitude of the inter-species interaction coefficient and steady state monospecies
abundance (xe = �liaii

�1), respectively. To highlight significant interactions, inter-species interaction coefficients with a magnitude less than 1e-5 were not
displayed.
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the BU- consortium contained significantly lower amount of BU

compared to the full community, BU was present for the final three

time points. The community productivity computed by the integral

of the growth response was significantly lower in the absence of EL

(Appendix Fig S10B). To determine whether the synthetic

community could recapitulate the abundance pattern observed

across human gut microbiome samples, we compared the abun-

dance profiles in the synthetic community at 72 h and median rela-

tive abundance across human samples in a previous metagenomics

sequencing study (Balzola et al, 2010). The median relative

A

B

D

C

E

Figure 3.
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abundance of seven species in the synthetic community that were

present in the metagenomics dataset and mean relative abundance

in the synthetic community were correlated (q = 0.79, P < 0.05),

suggesting that microbial growth parameters and inter-species inter-

actions are major variables influencing community structure in the

human gut microbiota (Appendix Fig S11).

Characterization of the temporal variation in community struc-

ture in the presence and absence of each organism is a top-down

approach to elucidate the contributions of single species to commu-

nity assembly. The influence of each organism in community

assembly can be evaluated by computing the difference in commu-

nity dynamics between the single-species dropout and a renormal-

ized full community that includes only the shared set of species.

The absence of EL, BO, or BU significantly altered community

assembly compared to the full community, whereas elimination of

the remaining organisms demonstrated a moderate change in

community dynamics (Fig 3B). The Pearson correlation between

the time-resolved relative abundance of the single-species dropout

consortium and the renormalized full community also highlighted

EL, BO, and BU as influential organisms in community assembly

(Appendix Fig S12A). The consortium lacking EL (EL-) exhibited a

lower species diversity at later time points scored by Shannon

equitability index EH (see Materials and Methods) compared to

the predicted diversity computed based on a renormalized full

community, indicating that EL promotes community diversity

(Appendix Fig S12B). The consortium lacking BO displayed a

higher diversity compared to the predicted values, indicating that

BO reduces community diversity. The consortia lacking BU or CH

exhibited a transient decrease in diversity that recovered to the null

model set point by 72 h. The carrying capacity of the EL commu-

nity was 28, 45, and 46% lower than the full community in the

first, second, and third growth stage, illustrating that EL contri-

butes significantly to community productivity (Appendix Fig S10B).

Further, the growth rate of the EL consortium was reduced by 33

and 19% in the first and third growth stage compared to the full

community. The impact of EL on community dynamics and

productivity was disproportionately related to its stable low abun-

dance in the full community, in contrast to the influential and

highly abundant organisms BO and BU (Fig 3A and B). The species

impact score, defined as the species relative abundance in the full

community at 72 h plus the sum of the outgoing gLV inter-species

interaction coefficients, was correlated to the difference in commu-

nity dynamics for single-species dropouts (q = 0.67, P < 0.05,

Appendix Fig S13), and EL was the major driver of this correlation.

These data suggest that the inferred ecological network and relative

abundance pattern could explain the contribution of EL to multi-

species community assembly.

The predictive capabilities of the parameterized gLV models were

evaluated using the time-series measurements of multi-species

communities. Validation metrics included the Pearson correlation

coefficient between the model prediction and relative abundance

measurements and the sum of mean squared errors of relative abun-

dance across all species and time points in each community (see

Materials and Methods). The model trained on T1 (M) exhibited the

lowest median Pearson correlation coefficient q (median q = 0.53)

and largest error compared to the models trained on T2 (M, PW1)

and T3 (M, PW1, PW2; Fig 3C and D), demonstrating that monospe-

cies growth was not predictive of multi-species community assem-

bly. The addition of PW1 to model training significantly increased

the predictive capability of the model (median q = 0.79), highlight-

ing that pairwise interactions are major variables driving commu-

nity dynamics. The inclusion of PW2 (T3 training set) increased the

predictive capability of the model (median q = 0.85) and reduced

the error compared to the model trained on T2, indicating that the

temporal responses of communities inoculated using distinct initial

species proportions were informative for inferring model parame-

ters.

The predicted monospecies OD600 based on the model trained

on T3 and the fraction of each species in the full community at 72 h

were not correlated (q = 0.46, P = 0.13), corroborating that mono-

species growth failed to forecast the structure of the full community

(Appendix Fig S14A). FP exhibited low monospecies fitness

(Appendix Fig S2) and the second highest abundance level in the

full community at 72 h, which was consistent with a large number

of positive incoming interactions in the gLV model trained on T3

(Fig 2C, Appendix Fig S7A and C). By contrast, BV persisted at low

abundance in the full community (Fig 3A) and exhibited

high steady state monospecies abundance, consistent with a

large number of inhibitory incoming inter-species interactions

(Appendix Figs S7A and S14A). Therefore, the ecological network

provided insight into variations in species fitness in the absence and

presence of the community.

◀ Figure 3. Validation of the parameterized Lotka–Volterra model to time-series data of informative multi-species communities.

A Stacked bar plots of all 11 and 12-member (full) multi-species communities. The text above each subplot denotes the absent organism in the community. Time and
relative abundance are represented on the x- and y-axis of each subplot, respectively. Colors represent different organisms in the community.

B Difference in community assembly for single-species dropout communities. Difference in community assembly was computed as
P11

i¼1;
1
7

P7
j¼1 v̂ji;FULL � vji;X
� �2

where i
and j represent species and time points, respectively. X represents a single-species dropout community lacking the organism X. v̂ denotes the renormalized relative
abundance of the shared set of species in the full (12-member) and single-species dropout community. Here, v̂i ¼ viP

i2C vi
where C denotes the set of 11 shared

organisms in the full and single-species dropout community. Data points represent biological replicates (n = 6, circles) and the mean of biological replicates (blue
squares), respectively.

C Box plot of the Pearson correlation coefficient for three model training sets (left) including T1: monospecies (M); T2: M and pairwise 1 (PW1); and T3: M, PW1 and
pairwise 2 (PW2). On each box, the red line represents the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme
data points, and the outliers are plotted as red crosses.

D Box plot of the sum of mean squared errors for the model predictions of the time-resolved measurements of multi-species communities trained on T1, T2, or T3
training sets. On each box, the red line represents the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data
points, and the outliers are plotted as red crosses.

E Comparison between model predictions that trained on T1–T4 and experimental data for each organism in the full community as a function of time. On each
subplot, the x- and y-axis represent time and relative abundance of each species, respectively. Data points (red) and lines denote experimental data and model
predictions based on T1–T4. Species names are displayed in the upper left corner of each subplot. Error bars represent 1 s.d. from the mean of six biological replicates.
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To evaluate the predictive capability of the model, the quantita-

tive relationship between the model and data was examined for

each species as a function of time using the parameter estimate

deduced using T3 (Appendix Fig S14B). Across the majority of time

points and multi-species consortia, the Pearson correlation coeffi-

cient between the model prediction and experimental data explained

a high fraction of the variance and was statistically significant.

While the model captured the temporal responses of the majority of

species, the model did not reproduce the behavior of BT in the

multi-species consortia and deviated at specific time points for BO

and CH (Fig 3E, Appendix Fig S14B).

Incorporating additional datasets into the model training proce-

dure could reduce the contributions of noise to parameter estimates

and provide additional parameter constraints. To this end, the model

was trained on M, PW1, PW2 and the time-resolved measurements

of the full community (training set T4) and was validated on the 12

single-species dropout communities (Appendix Fig S15). The model

predictive capability trained on T4 explained 81% of the variance

(q = 0.9) on average of the multi-species community temporal

responses. Model parameter sets based on T3 and T4 were highly

correlated with the exception of a small number of interaction coef-

ficients (Appendix Fig S15B). Over half (55%) of the interaction

coefficients that were present or absent in the inferred network

based on T4 compared to T3 involved the ecologically influential

species EL and BO (Appendix Fig S15C). In sum, the pairwise gLV

model could accurately predict the temporal changes in the major-

ity of species in the multi-species communities, which suggests

that higher-order interactions played a minor role in driving

community assembly.

History dependence and robust coexistence in
pairwise assemblages

We analyzed the model to elucidate the origins of history-dependent

behaviors in pairwise communities in our experimental data

(Appendix Fig S5). The model trained on T3 indicated that six of the

eight pairwise communities that exhibited history-dependent behav-

iors in our experiments were linked via bidirectional negative

couplings and the remaining two networks displayed unidirectional

negative interactions (Appendix Fig S5B). History dependence can

arise from bistability or slow relaxation to a monostable equilibrium

in the model. Bistability is a property of a dynamical system

whereby the system has two stable steady states and can exhibit

long-term dependence of the state of a system on its history, referred

to as hysteresis. Bistability is a possible outcome of a gLV model of

pairwise mutual inhibition (Murray, 2002).

To understand the origins of history dependence and contribu-

tions of model parameters to system behavior, we analyzed the

inferred pairwise models of specific communities that exhibited

history dependence in our experimental data (Fig 4A). In five of the

six mutual inhibition networks, the consortia were not operating

within a bistable parameter regime, indicating that the observed

history-dependent responses stemmed from a slow relaxation to

steady state (Fig 4A). The inferred parameter set for the bistable

BU, BT consortium was located on the boundary between mono-

stable and bistable parameter regimes, demonstrating that bistability

was not robust to parameter variations (Fig 4A). History-dependent

responses were evaluated by computing the difference in species

concentrations at 72 h between models simulated from two different

initial conditions: 95% species A, 5% species B, and the reciprocal

condition. The models displayed history dependence across a range

of inter-species interaction coefficient values beyond the bistable

parameter regime for at least 72 h.

To investigate the physiological significance of such history-

dependent behaviors, we computed the Euclidean distance of

species concentrations from the equilibrium point across a broad

range of simulated serial dilution rates (Appendix Fig S16). The rate

of serial dilution represents colonic transit time, a major variable

shown to modulate human gut microbiome composition, diversity,

and functions (Roager et al, 2016; Vandeputte et al, 2016). Pairwise

communities BO, BT; DP, PC; CA, PC; BO, BV; and BO, BU exhibited

history-dependent responses up to 168 h due to inter-species inter-

actions. In sum, our modeling results demonstrate that the time

required to converge to steady state increases as a function of the

dilution rate in monostable pairwise communities coupled by bidi-

rectional or unidirectional negative interactions. Therefore, the time

▸Figure 4. History dependence and robust species coexistence in pairwise consortia motifs.

A History dependence due to slow relaxation to equilibrium can be augmented by negative inter-species interactions. Model analyses of six pairwise communities that
experimentally displayed history-dependent behaviors (Appendix Fig S5B) and are coupled by mutual inhibitory interactions in the gLV model trained on T3. Network
topology (left) and heat-map of history-dependent responses (right) across a range of inter-species interaction coefficient values. The line width and node size of the
network diagrams represent the magnitude of the inter-species interaction coefficients and steady state monospecies abundance, respectively. The heat-map shows
the absolute value of the difference in species absolute abundance at 72 h for communities simulated using two initial conditions: x1 = 0.0158, x2 = 0.0008 or
x1 = 0.0008, x2 = 0.0158 using the serial transfer experimental design shown in Fig 1B. The black box denotes the parameter regime for bistability in the model. The
circle (red) indicates the inferred parameters based on training set T3.

B Coupled positive and negative interactions can display robust species coexistence to variations in model parameters. Network diagram (inset) represents the
magnitude, sign, and direction of the inferred inter-species interactions between CH (x1) and ER (x2). Dashed (gray) and solid (orange) lines indicate a positive and
negative interaction, respectively. The line width and node size denote the magnitude of the inter-species interaction coefficients and steady state abundance of the
monospecies, respectively. Heat-map of the ratio of x1 (CH) to x2 (ER) at 72 h as a function of the inter-species interaction coefficients a12 and a21. Initial conditions
for simulations were x1o = 0.0008, x2o = 0.0158. The circle (black) indicates the inferred parameter values for the CH, ER consortium for the gLV model trained on T3.

C Heat-map (right) of the ratio of x1 to x2 at 72 h across a broad range of growth rate parameter values (l1 and l2). Initial conditions for simulations were
x1o = 0.0008, x2o = 0.0158. The line (white) outlines the parameter regimes for coexistence and single-species dominance at steady state. The circle (black) represents
the inferred parameter values for the CH, ER consortium.

D Box plot of the fraction of parameter space that exhibits species coexistence across a range of simulated growth rate parameters for all inferred positive/negative
(+/�) or bidirectional negative (�/�) networks for the gLV model trained on T3. Two thousand five hundred combinations of growth rate parameters ranging from
0.05 to 1 h�1 were evaluated. On each box, the red line represents the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most
extreme data points that the algorithm considers not to be outliers, and the outliers are plotted as red crosses.
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required for communities to assemble to a steady state composition

can vary over a broad range.

A subset of pairwise consortia exhibited stable coexistence

wherein species inoculated at different initial proportions persisted

in the community for duration of the experiment (Fig 2B,

Appendix Fig S5). For example, the CH, ER pairwise community

converged to an approximately equal abundance ratio as a function

of time from distinct initial species proportions (Fig 2B). Stable

coexistence is defined as nonzero steady state abundance of all

species and is a possible outcome of the generalized Lotka–Volterra

model (Murray, 2002). We examined the network topologies and

parameter dependence of stable coexistence in the model. The

inferred pairwise network for the CH, ER community exhibited

coupled positive and negative interactions (Fig 4B). The positive

and negative interaction topology exhibits a broader parameter

regime of coexistence compared to mutual inhibition (Fig 4B and C,

Appendix Fig S17). The combination of positive and negative inter-

actions establishes a negative feedback loop to modulate an

A

B C D

Figure 4.
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organism with higher monospecies fitness (e.g., CH), thus leading

to stable coexistence with an organism that has lower monospecies

fitness (e.g., ER) as a function of time.

Pairs of species that exhibited coexistence were linked by posi-

tive/negative and mutual inhibition in 50 and 25% of cases, illustrat-

ing that the positive/negative interaction motif was frequently

associated with coexistence behavior (Appendix Fig S5B). The

remaining species pairs that displayed coexistence encompassed

unidirectional positive (12.5%), unidirectional negative (6.25%), and

mutualism (6.25%). Across all inferred networks, the positive/nega-

tive interaction topology was significantly more robust to variations

in growth rates compared to the bidirectional inhibition topologies

(Fig 4D, Appendix Fig S18). We analyzed the network interactions at

a higher taxonomic level to illuminate interaction patterns based on

evolutionary relatedness. The inferred gLV interaction coefficients

based on T3 were averaged across species associated with a given

order since this level encompassed at least two species with the

exception of DP in Desulfovibrionales. Several orders were connected

by positive and negative interactions in the order-level interaction

network, illustrating that the positive and negative interaction motif

was consistent at higher taxonomic rankings (Appendix Fig S19).

Analysis of model parameter constraint

Methods from Bayesian statistics can illuminate the uncertainty in

the parameter values using the Posterior distribution, which repre-

sents the probability of the parameters given the data. Several

microbiome modeling studies did not analyze the uncertainties in

parameter estimates for gLV models, which provides information

about whether the parameters are sufficiently constrained by the

data or identifiable (Mounier et al, 2008; Stein et al, 2013; Buffie

et al, 2015). To this end, the Metropolis–Hastings Markov chain

Monte Carlo (MCMC) method was implemented to randomly

sample from the Posterior distribution. The Markov chain was

initialized from the inferred parameter set based on T3, and a burn-

in period of 100,000 iterations was implemented to exclude the

initial set of samples that do not represent the steady state distribu-

tion of the Markov chain (see Materials and Methods). The coeffi-

cient of variation (CV) of 90% of parameters was less than 0.5 for

570,000 iterations (CV values greater than 1 indicate high variabil-

ity), indicating that the parameters were constrained by the data

(Appendix Fig S20A). Parameters that were present or absent in the

model trained on T4 compared to T3 exhibited a higher median CV

equal to 0.37 compared to the unchanged set that had a median CV

equal to 0.21 (Appendix Figs S15B and C, and S20B). These data

suggest that model training on T4 provided additional constraints

for specific parameters that displayed larger uncertainty in parame-

ter estimates in the parameter set based on T3.

Parameter identifiability was evaluated by computing the Pear-

son correlation between all 12,090 parameter pairs for the single

Markov chain simulated for 570,000 iterations initialized from the

inferred parameter set based on T3 (Appendix Fig S20C). Parame-

ters that do not influence observable variables are non-identifiable

due to practical or structural reasons and can be correlated with

other parameters (Gábor et al, 2017; Appendix Fig S20D and E).

Correlations between parameters could lead to trade-offs in parame-

ter space due to parameter couplings and poor convergence rates to

the stationary distribution. Approximately 7.1% of parameter pairs

displayed a Pearson correlation coefficient greater than 0.6 or less

than �0.6, indicating that the majority of parameters could be

distinguished. The absolute value of the parameters was negatively

correlated with the median absolute value of the Pearson correlation

coefficient (Appendix Fig S20F, q = �0.47, P = 9.3e-10), demon-

strating that parameters with smaller magnitudes were more

frequently correlated with other parameters. In the parameter esti-

mation procedure, regularization will lead to the reduction in the

magnitude of parameters that do not link to the observable outputs.

Interrogating microbial environmental impact using
conditioned media

The net environmental impact of a single species at a defined time

point can be represented by conditioned media, which has been

depleted for specific resources and contains secreted metabolites. In

conditioned media, positive interactions may be indicative of trans-

formations of media components into substrates that can be utilized

by the recipient species or detoxification of the environment. Nega-

tive interactions may derive from depletion of key nutrients or

production of toxic compounds. In some cases, multiple mechanisms

can combine to yield a net positive or negative effect on growth.

Environmental pH is a major variable that can influence microbial

growth responses. In co-culture, the environmental pH may not

reflect the pH of the monocultures due to differences in metabolite

secretion and degradation in a community. For example, cross-

feeding of metabolic by-products such as acetate in the gut micro-

biota is a prevalent mechanism that could alter environmental pH

(Duncan et al, 2002; Wrzosek et al, 2013; Rios-Covian et al, 2015).

We investigated whether changes in the recipient organism growth

responses in the presence and absence of conditioned media from a

source organism could be used to map microbial inter-relationships

(Appendix Fig S21). The conditioned media impact score RCM was

defined as defined as the ratio of the cumulative sum of the recipient

organism growth response over 30 h in 75% conditioned media to

unconditioned media. An RCM > 1 or RCM < 1 indicated a positive or

negative influence of the source organism on the recipient organism.

To evaluate the contribution of pH to the conditioned media growth

responses, pH-adjusted conditioned media was prepared by modify-

ing the pH to match the value of the unconditioned media.

Several factors could lead to disagreements between RCM and the

gLV inter-species interaction coefficients, including, for example, a

difference in metabolite utilization and secretion patterns of an

organism in the presence of a second species or enhanced resource

competition due to depletion of key resources (Filkins et al, 2015).

Nevertheless, 75% of conditions were in qualitative agreement with

the sign of the inferred gLV interaction coefficients based on T3

(Appendix Fig S21). Of the interactions that showed qualitative

disagreement, 53% had a magnitude less than 1e-5. Together, these

data demonstrated that in a majority of cases the effects of condi-

tioned media on the growth of a recipient organism could predict

the signs of incoming microbial interactions.

Elucidating metabolic capabilities of monospecies
via exo-metabolomics

Exo-metabolomics profiling of 97 major metabolites was performed

on monospecies to determine metabolite utilization and secretion
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capabilities (Dataset EV4). The metabolite profiles were analyzed at

an initial and final time point that occurred prior to 24 h to mirror

the community experimental design with the exception of DP due to

insufficient accumulation of biomass for metabolomics measure-

ments within the 24-h period (Fig 1B, Appendix Fig S22). A limita-

tion of this study is that while significant cell lysis is not expected

A

C D E

B

Figure 5. Exo-metabolomics profiling of major metabolites elucidated the metabolic capabilities of monospecies.

A Bipartite network of species (left) and metabolites (right) for metabolites that decreased by at least twofold compared to the abundance of each metabolite at the
beginning of the experiment. Colors represent modules containing many overlapping interactions in the network. Network partitioning into modules was performed
using BiMat (Flores et al, 2015). Metabolites in bold were depleted and secreted by distinct organisms.

B Bipartite network of species (left) and metabolites (right) for metabolites that increased in abundance by at least twofold compared to the beginning of the
experiment. Metabolites highlighted in bold were depleted or secreted by different species. Colors represent modules containing many overlapping interactions in the
network. Network partitioning into modules was performed using BiMat (Flores et al, 2015).

C Scatter plot of the number of consumed metabolites that decreased by at least twofold compared to the beginning of the experiment vs. the OD600 value of the
monospecies culture at the corresponding time point. Error bars represent 1 s.d. from the mean of three biological replicates.

D Predicted resource utilization interaction network. Each edge represents at least two co-consumed metabolites that decreased by at least twofold, and the edge
width is proportional to the number of co-consumed metabolites. Node size is proportional to the total number of consumed metabolites for each species.

E Predicted metabolite interchange network representing metabolites that were secreted or utilized by distinct organisms based on a twofold threshold. Arrows point
from the source species to the consumer organism. Node size and line width are proportional to the total number of secreted metabolites and number of predicted
metabolite interactions, respectively. Species at the top and bottom of the network are primarily producers or consumers, respectively.
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for exponential or early stationary phase cultures, metabolites

released from lysed cells would diminish apparent utilization and

augment apparent secretion. Therefore, metabolite secretion is

defined to operationally include potential cell lysis. Relative changes

in metabolite abundances were computed using the log2 fold change

of the final and initial time points, and a significance threshold of at

least twofold was applied to the data (Fig 5A and B). We performed

clustering analysis of the metabolite utilization and secretion

networks to identify similarities in metabolite profiles. The cluster-

ing pattern did not recapitulate the phylogenetic relationships

(Fig 1A) in many cases, demonstrating that distantly related species

can occupy similar resource utilization niches (e.g., BH and EL or

FP and ER) and closely related species can utilize distinct resources

(e.g., BH and ER).

Our results showed a lack of correlation between the number of

consumed metabolites and the total biomass produced by each

monospecies at the corresponding time point. CH consumed the

largest total number of metabolites in comparison with other organ-

isms, thus representing a hub in the metabolite utilization network

(Fig 5C). The total biomass produced by CH was not proportional to

the total number of consumed metabolites or sum of log2 fold

changes in utilized metabolites, suggesting that CH could be funnel-

ing energy toward cellular processes beyond biomass (Fig 5C and

Appendix Fig S23A). Corroborating these results, CH exhibited a

large number of positive and negative outgoing edges in the inferred

inter-species interaction network (Appendix Fig S7A).

The sum of log2 fold change in metabolite secretion was corre-

lated with total monospecies biomass (Rs = 0.83, P < 0.002), rela-

tive abundance in the full community at 72 h (Rs = 0.66, P = 0.02),

number of outgoing negative interactions for each organism

(Rs = 0.65, P = 0.02), and growth rate (Rs = 0.74, P = 0.0008),

where Rs represents the Spearman rank correlation coefficient

(Appendix Fig S23B–E). These data suggest that metabolite secretion

was a better predictor of species fitness and negative ecological

interactions compared to metabolite utilization. The resource co-

utilization network pinpointed significant resource competition

between members of Bacteroides for a set of metabolites (Fig 5D). A

network of predicted metabolite interchange illuminated producers

(Bacteroidetes), consumers (EL and CA), and species that played

dual roles (FP, ER, and CH). Metabolites predicted to mediate the

largest number of pairwise negative interactions via resource

competition included methyl-50-thioadenosine (55 pairs), N-

methylanthranilic acid (six pairs), and dihexose (three pairs)

(Appendix Fig S24A). Metabolites implicated in three or more

metabolite secretion interactions encompassed cytidine, adenine,

and 2-ketobutyric acid (Appendix Fig S24B). FP was predicted to

utilize several metabolites produced by BU, BO, PC, BT, and CH,

illustrating a potential molecular basis of positive modulation by BU

and CH in the inferred inter-species interaction network based on

T3 (Fig 2C, Appendix Fig S7A and C). However, the metabolite pro-

files failed to predict the influential role of EL in mediating commu-

nity assembly, fitness, and diversity (Fig 5D and E).

Discussion

Developing the capabilities to predict microbial community dynam-

ics is a first step toward elucidating the organizational principles of

microbial communities and devising strategies for precisely manipu-

lating ecological properties. The discovery of significant microbial

inter-relationships and ecological driver species in the network can

be exploited as novel control parameters for microbiomes. To this

end, we developed a data-driven parameter estimation pipeline to

build predictive dynamic models of microbial communities comple-

mentary to previously published methods (Bucci et al, 2016). In

contrast to statistical network models, dynamic frameworks can be

used to extract mathematical principles and probe system properties

such as ecological stability, history dependence, and response to

perturbations. Further, the inferred network can be used to define

ecological roles for each species and model could be harnessed as a

predictive tool for designing consortia with desired properties. We

capitalized on methods from Bayesian statistics to go beyond a

single parameter estimate to evaluate the uncertainty in parameters

given the data and correlations between parameters. Future work

will harness this information for experimental design by iteratively

guiding the selection of informative experiments to reduce parame-

ter uncertainties and thus enhance the predictive accuracy of the

model.

Our results substantiate the notion that monospecies growth

parameters and pairwise interactions dominate multi-species

community dynamics (Friedman et al, 2017). It is possible that

higher-order interactions significantly influence community dynam-

ics in lower dimensional multi-species assemblages, such as

three-member consortia. Previous work showed that pairwise

phenomenological models of low-dimensional assemblages (2–3

species) trained on an interval of time of Monod-based community

models failed in some cases to predict future dynamic behaviors

(Momeni et al, 2017). The mechanistic models considered in this

study involved a limited number of metabolites, whereas numerous

metabolites likely mediate microbial interactions. Future work will

explore the capability of pairwise models to recapitulate the dynam-

ics of mechanistic models that capture such complexities. Here, we

show that pairwise interactions can realize diverse behaviors

encompassing history dependence, coexistence, and single-species

dominance. Combinations of such interactions in multi-species

assemblages can yield a diverse repertoire of dynamic behaviors

and realize system-level properties including stability, resistance to

invasion, and resilience to disturbances (Law & Morton, 1996;

Mougi & Kondoh, 2012; Coyte et al, 2015).

We found that the time required for communities to assemble to

a steady state composition can exhibit a broad distribution. Indeed,

our results show that negative couplings in pairwise consortia can

augment the time required to converge to a steady state community

composition. Therefore, a steady state assumption for the human

gut microbiome may not be valid if frequent environmental pertur-

bations steer the system away from steady state on a faster time-

scale than the time required to relax to an equilibrium community

composition (Bashan et al, 2016).

We interrogated an anaerobic synthetic ecology composed of

prevalent human-associated intestinal species that play major roles

in human health and disease (Table 1) and demonstrated frequent

positive interactions and a large fraction of negative interactions.

The network revealed hubs for negative (Bacteroidetes) and positive

outgoing interactions (EL, CH, and BH). A top-down approach to

investigate the contribution of species to community assembly

pinpointed highly influential species EL, BO, and BU. These results
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show that species with a large number of positive (EL) or negative

(BO and BU) outgoing interactions can play an important role in

community assembly. Bacteroidetes and Firmicutes have unique and

complementary metabolic specializations in the gut microbiota

(Fischbach & Sonnenburg, 2011), consistent with the numerous

positive interactions deciphered between members of these phyla.

Bacteroides and Prevotella have been shown to be anticorrelated

across individuals (Arumugam et al, 2011; Ley, 2016). A recent

study demonstrated that gnotobiotic mice colonized with BT and PC

exhibited lower absolute abundance of both species compared to

mono-colonized gnotobiotic mice, suggesting an inhibitory interac-

tion (Kovatcheva-Datchary et al, 2015). In line with these results,

BT excluded PC in pairwise experiments (Fig 2A, Appendix Fig

S5A) and the inferred network showed that PC was inhibited by BT

(Fig 2C). A previous study showed that BT negatively influences BV

in metagenomics time-series data from one individual, consistent

with inhibition of BV by BT in the inferred gLV network (Fig 2C;

Fisher & Mehta, 2014).

Exo-metabolomics profiling identified CH as a hub for metabolite

consumption and BU and CH as major producers of metabolites.

Indeed, CH had the potential for significant environmental impact

via utilization and secretion of a broad repertoire of metabolites and

thus was predicted to have a significant impact on community

assembly. However, CH did not persist at high abundance in the full

community (Fig 3A and E) and had a moderate impact on commu-

nity diversity and productivity (Appendix Figs S10 and S12B). The

inferred network showed that CH was the recipient of a large

number of negative interactions, which may limit the potential for

influencing community functions (Appendix Fig S7A).

BU was a hub for metabolite secretion (Appendix Fig S23), which

was consistent with its major role in shaping community assembly

(Fig 3B). However, the patterns in metabolite utilization and secre-

tion failed to explain the influential role of EL in community assem-

bly. Our results highlight challenges in using environmental impact

measured by exo-metabolomics to forecast microbial interactions

and organism contributions to community functions. Co-consump-

tion or secretion of a metabolite will generate a negative or positive

interaction only if the substrate is limiting for growth. In addition,

secondary metabolites or signaling molecules could contribute to

the observed ecological relationships. Metabolite secretion as

opposed to utilization was correlated to the number of negative

inter-species interactions, suggesting that negative interactions may

derive from mechanisms beyond resource competition such as

biomolecular warfare or production of toxic metabolic by-products.

Negative interactions due to resource competition or secretion of

toxic compounds could lead to funneling of intracellular resources

toward non-metabolic cellular processes such as stress, thus

contributing to the lack of correlation between ecological interac-

tions and resource utilization.

In the majority of cases, the effects of conditioned media on the

growth response of a recipient species exhibited qualitative agree-

ment with the sign of the inferred gLV interaction coefficient based

on T3. As an organism grows, resources are depleted and toxic

waste products accumulate, altering the energy availability of the

environment. Therefore, spent media is a specific condition that

may induce couplings between species that do not exist in commu-

nities growing in nutrient-dense environments. Corroborating this

notion, approximately half of the conditions that showed qualitative

disagreement involved negligible interactions (Appendix Fig S21).

As such, growth responses in conditioned media should be vali-

dated to enable accurate prediction of microbial interactions.

Microbial interactions have been probed in several synthetic

ecologies of varying complexity and diversity including 18 Strepto-

myces strains (Wright & Vestigian, 2016), four-member freshwater

isolates (Guo & Boedicker, 2016), and eight soil bacterial isolates

composed of six strains from the Pseudomonas genus (Friedman

et al, 2017). A significant fraction of the Streptomyces pairwise

communities displayed frequent history-dependent and rare coexis-

tence behaviors, which could be attributed to numerous mutual

inhibitory pairwise interactions (Wright & Vestigian, 2016). By

contrast, history-dependent responses were not detected in the

synthetic consortium of eight soil isolates and coexistence was the

prevalent community behavior (Friedman et al, 2017). On time-

scales of minutes, members of the freshwater isolate community did

not display negative interactions that diminished cellular redox

activity (Guo & Boedicker, 2016). Here, we interrogated the pairwise

community dynamic behaviors in a 12-member anaerobic commu-

nity spanning four distinct phyla and observed frequent positive

interactions and stable species coexistence. Anaerobic metabolism

has lower energy yields and requires the concerted activities of

distinct community members to perform chemical transformations.

Therefore, anaerobic microbial communities may exhibit a higher

density of ecological inter-relationships and frequency of positive

interactions compared to aerobic microbial communities. Such vari-

ations in the molecular mechanisms driving microbial interactions

across distinct environments ranging from soil to the human

gastrointestinal tract can manifest as differences in community-level

properties including diversity, stability, and dynamic responses to

perturbations.

Positive interactions were observed frequently in the synthetic

human gut microbiome community in contrast to other synthetic

communities (Foster & Bell, 2012). For example, EL had six positive

outgoing interactions and displayed the largest impact on commu-

nity assembly and productivity. These results show that positive

interactions played a major role in shaping the dynamics and meta-

bolic efficiency of the synthetic human gut community. Negative

interactions have been shown to stabilize cooperative networks by

introducing negative feedbacks (Coyte et al, 2015). Indeed,

networks coupled by negative and positive interactions (+/�)

contained 81% of the inferred positive interactions as opposed to

mutualism (+/+, 9.5%) or unidirectional positive (+/0, 9.5%)

topologies. The prevalent negative interactions in the inferred inter-

action network may promote ecological stability, whereas the

frequent positive interactions modulate community assembly and

metabolic efficiencies. Future work will elucidate the plasticity of

the ecological network in response to changeable environments and

the generalizability of these principles in higher-dimensional micro-

biomes that mirror the complexity of the natural system.

Materials and Methods

Starter culture inoculations

Cells were cultured in an anaerobic chamber (Coy Lab Products)

using mixed gas tanks containing 85% N2, 5% H2, and 10% CO2.
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Starter cultures for community measurements were inoculated from

200 ll single-use 25% glycerol stocks into 15 ml of Anaerobic Basal

Broth (ABB) media (Oxoid) in an anaerobic chamber and incubated

at 37°C without shaking. To compare strains in similar growth

phases that displayed variable lag phases, the strains were parti-

tioned into slow and fast growth categories inoculated at 41 or 16 h

prior to the beginning of the experiment, respectively. Strains in the

slow growth category included B. hydrogenotrophica (BH, DSM

10507), F. prausnitzii (FP, DSM 17677), C. aerofaciens (CA, DSM

3979), P. copri (PC, DSM 18205), E. rectale (ER, ATCC 33656), and

D. piger (DP, ATCC 29098). Fast-growing strains encompassed

B. uniformis (BU, DSM 6597), B. vulgatus (BV, ATCC 8482),

B. thetaiotaomicron (BT, ATCC 29148), B. ovatus (BO, ATCC 8483),

C. hiranonis (CH, DSM 13275), and E. lenta (EL, DSM 2243).

Microbial community culturing

Each constituent strain in microbial communities was inoculated at

0.01 OD600 unless otherwise noted. In multi-species assemblages,

the total initial OD600 was 0.01 OD600 × n, where n represents

the number of strains in the community. For PW1, each compo-

nent was normalized to OD600 of 0.01 and then mixed in equal

proportion. For PW2, the major and minor strains were inoculated

at 0.0158 and 0.0008 OD600, respectively. The microbial communi-

ties were arrayed using a liquid-handling robot (Biomek) into 96-

well deep-well plates covered with a gas-permeable seal (Breathe

Easy) and incubated at 37°C without shaking. In parallel, aliquots

of the communities were transferred into a 384-well absorbance

plate and grown in a Tecan Infinite F200 Pro plate reader with

shaking for OD600 measurements at 30-min intervals. Samples

from the deep-well plate were collected approximately every 12 h

for a total of 72 h. At each time point, samples were mixed and

400 ll was transferred to a 96-well collection plate. The collection

plate was centrifuged at 4,000 g for 10 min, and 380 ll of

the supernatant was removed with a multichannel pipette. Serial

transfers were performed at 24-h intervals into fresh media using a

1:20 dilution. Species diversity was scored by the Shannon

equitability index EH where EH ¼ H ln S�1 and H ¼ �PS
j¼1 pi lnpi.

Here, S, H, and pi denote the number of species in the community,

Shannon diversity index, and relative abundance of the ith species,

respectively.

Genome extractions

Genomic DNA (gDNA) extractions were performed using the

QIAamp 96 DNA QIAcube HT Kit (Qiagen) with minor modifications

including an enzymatic lysis pre-treatment step and the use of a

vacuum manifold to perform column purification steps. Enzymatic

lysis was performed as follows: Cell pellets were resuspended in

180 ll of enzymatic lysis solution containing 20 mg/ml lysozyme

(Sigma-Aldrich), 20 mM Tris–HCl pH 8 (Invitrogen), 2 mM EDTA,

and 1.2% Triton X-100. Samples were incubated at 37°C for 30 min

with shaking. Following this step, 4 ll of 100 ng/ll RNAse A (Qia-

gen) was added and samples were incubated at room temperature

for ~1 min prior to administering 125 ll of proteinase K to buffer

VXL (Qiagen). Samples were incubated for an additional 30 min at

56°C with shaking, 325 ll of ACB buffer was added, and the

samples were transferred to a 96-well column plate for purification.

Samples were washed with 600 ll of AW1, AW2, and ethanol

(Sigma-Aldrich). Following the ethanol wash, samples were allowed

to dry for approximately 5 min. Finally, the gDNA samples were

eluted using AE buffer pre-warmed to 56°C into a 96-tube rack plate

and stored at �20°C.

Illumina primer design, library preparation, and sequencing

Dual-indexed primers were designed for multiplexed next-genera-

tion amplicon sequencing on Illumina platforms. Each 90–99 base

pair (bp) forward and reverse primers consisted of an indexed 50

Illumina adaptor, heterogeneity spacer (Fadrosh et al, 2014), and 30

annealing region to amplify 466 bp of the V3–V4 variable region of

the 16S rRNA gene. The set of 64 unique forward (6 bp) and reverse

(8 bp) indices allowed multiplexing of 1,536 samples per sequenc-

ing run. Oligonucleotides (Integrated DNA Technologies) were

arrayed into 96-well plates using a stock concentration of 1 lM.

Following gDNA extraction, gDNA concentrations were quanti-

fied using the Quant-iT dsDNA High-Sensitivity kit (Thermo

Fisher) and normalized to approximately 3 ng/ll. PCR amplifi-

cation of the V3–V4 region of the 16S rRNA gene was performed

with Phusion High-Fidelity DNA Polymerase (NEB) for 18–25

cycles using 0.05 lM of each primer. PCR amplicons were pooled

by plate (96 conditions), purified (Zymo Research), and quantified

using the Quant-iT dsDNA High-Sensitivity kit. The samples were

normalized to the lowest sample concentration and then combined

in equal proportions to generate the library. The library was quan-

tified prior to loading using quantitative real-time PCR (KAPA

Biosystems) on a CFX96 real-time PCR detection system (Bio-Rad).

Following amplification, the library was diluted to 4.5 nM and

loaded on the Illumina MiSeq platform for 300 bp paired-end

sequencing.

Data analysis pipeline for 16S rRNA gene sequencing

A reference database containing the V3–V4 16S rRNA gene

sequences was constructed by assembling consensus sequences

based on next-generation sequencing of monospecies cultures. To

process the sequencing data, the MiSeq Reporter software demulti-

plexed the indices and generated the FASTQ files using the bcl2fastq

algorithm. Custom Python 2.6.6. scripts were used for subsequent

data processing steps and are available for download at Github (see

Data Availability). First, paired-end reads are merged using PEAR

(Paired-End reAd mergeR) v0.9.0 (Zhang et al, 2014). The global

alignment tool in USEARCH v8.0 mapped each sequence to the

reference database. A 97.5% alignment threshold was implemented

to distinguish the closely related species B. thetaiotaomicron and

B. ovatus. Relative abundance was computed by summing the read

counts mapping to each organism divided by the total number of

reads per condition. The data were exported for analysis in

MATLAB (MathWorks).

Conditioned media experiments

Strains were inoculated in 15 ml ABB according to the standard

overnight culture inoculation protocol. To prepare the conditioned

media, 10 ml of the source organism cultures was transferred to

50-ml Falcon tubes and filtered in the anaerobic chamber using
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Steriflip (EMD Millipore). Ten milliliter ABB media was filtered as a

control. Following pH measurements of the conditioned and uncon-

ditioned media, 5 ml was filtered a second time. The remaining

5 ml of each conditioned media was adjusted to the pH of the fil-

tered ABB media using 1 M NaOH or 1 M HCl and sterile-filtered to

represent the pH-adjusted condition. The response organisms were

normalized to an OD600 of 0.04 in ABB media. A Biomek 3000

liquid-handling robot was used to transfer 60 ll of conditioned

media into a 384-well plate (Corning), and 20 ll of the response

organisms was added to a final OD600 of 0.01 in 75% conditioned

media by volume. Plates were sealed (Diversified Biotech) and

monitored every 30 min for 72 h in a Tecan Infinite F200 Pro plate

reader at 37°C.

Bacterial culturing for metabolomics

A single batch of ABB media was used for all steps in the metabolo-

mics experiments. ER and FP were grown in ABB media supple-

mented with 33 mM acetate (Sigma). Overnight cultures were

grown for 72 h at 37°C in 30 ml of ABB to saturation, diluted to

0.01 OD600, and aliquoted into three 30 ml replicates in a four-well

plate (E&K Scientific). A well containing media was used to evaluate

metabolite degradation as a function of time. Samples were

collected immediately following cell inoculation.

At each time point, the wells were mixed via serological pipet

prior to sample collection and 800 ll was removed for liquid chro-

matography–tandem mass spectrometry (LC-MS/MS). The samples

were centrifuged at 6,000 g for 5 min, and 600 ll of supernatant

was removed and filtered with a 0.22-lm filter unit (EMD Milli-

pore). The supernatant was dispensed and simultaneously filtered

into a microcentrifuge tube prior to freezing at �80°C. To elucidate

metabolite profiles, samples were collected at different time points

for each organism prior to 24 h except DP due to insufficient

biomass accumulation for metabolomics measurements within the

24-h time interval.

Exo-metabolomics measurements

Media samples (0.5 ml) were lyophilized until dry in a Labconco

6.5 L lyophilizer (Labconco, Kansas City, MO) and stored at

�80°C until extraction. In preparation for LC-MS analysis, the

dried samples were resuspended in 200 ll MeOH containing

internal standards (25 lM 3,6�dihydroxy�4�methylpyridazine,

4�(3,3�dimethyl�ureido)benzoic acid, d5�Benzoic acid,

9�anthracene carboxylic acid, 13C�glucose, 13C�15N�phenylala-

nine), bath sonicated for 20 min, then centrifuge-filtered through a

0.22 lm PVDF membrane (Pall) and placed into glass HPLC vials.

Liquid chromatography mass spectrometry (LC-MS and LC-MS/

MS) was performed on extracts using a 1290 Ultra High Perfor-

mance Liquid Chromatography stack (Agilent Technologies), with

MS and MS/MS data collected using a 6550 Q-TOF Mass Spectrome-

ter equipped with a dual AJS ESI source (Agilent Technologies).

Hydrophilic Interaction Liquid Chromatography (HILIC) was

performed using a SeQuant ZIC-pHILIC column with 5 lm particles

at 200 Å porosity in 150 mm long and 2.1 mm internal diameter

column housing (EMD Millipore). A ZIC-pHILIC guard column using

the same stationary phase but in a 20 mm length housing was

attached in-line at the column inlet.

The column was maintained at 40°C and solvent flow rate was

kept at a constant of 0.25 ml min�1 with a 2 ll injection volume for

each sample. For each injection, the HILIC column was equilibrated

with 100% mobile phase B (90:10 ACN:H2O w/5 mM ammonium

acetate) for 1.5 min, with a linear gradient to 50% mobile phase A

(H2O w/5 mM ammonium acetate) over 23.5 min, followed by a

linear gradient to 65% A for 1 min with an isocratic hold at 65% A

for 6 min; finally, the column was re-equilibrated with a linear

gradient back to 100% B over 1 min, followed by an isocratic hold

for 7 min. Samples were maintained at 4°C. All spectra were

collected at a rate of two per second with the source gas at 290°C,

drying gas at 11 l min�1, nebulizer at 30 psig, and sheath gas at

200°C and 9 l min�1; the fragmenter voltage was at 175 V. Full MS

spectra were collected on individual samples using mass ranges of

30–1,200 m/z in positive mode and 60–1,200 m/z in negative

mode. MS/MS fragmentation data was acquired using the autoMS1

function in separate runs on pooled samples with a mass range of

20–1,200 m/z in both polarities for both precursor and MS/MS

scans with a 1.3 m/z isolation window, using 10, 20, and 40 V colli-

sion energies, 4 precursors per cycle with a 7,500 absolute abun-

dance threshold and a target of 50,000 counts per spectrum.

Exclusion of fragmented ions was set after collection of two spectra

for 0.5 min. Metabolites were identified based on exact mass and

retention time coupled with comparison of MS/MS fragmentation

spectra to purchased standards.

LC-MS data was analyzed using the Agilent MassHunter Qualita-

tive Analysis (Agilent Technologies) followed by the Metabolite

Atlas workflow (Yao et al, 2015). A set of criteria was used to evalu-

ate each of the detected peaks and assign a level of confidence in

the compound identification. Compounds given a positive identifi-

cation had matching retention time and m/z to a pure standard run

using the same methods described above. A compound with the

highest level of positive identification additionally had a matching

MS/MS fragmentation spectrum to either an outside database

(METLIN) or collected in house. Putative identifications were

assigned to compounds with matching m/z and MS/MS spectrum.

Model

The generalized Lotka–Volterra (gLV) model was used to represent

microbial community dynamics. The gLV model is a set of coupled

ordinary differential equations that represent the temporal varia-

tion in species abundance (xi). The model equations are given by:

dxi
dt

¼ xi li þ
Xn
j¼1

aijxj

 !
;

where n, l, aii, and aij represent the number of species, growth

rates, intra-species interaction coefficients, and inter-species inter-

action coefficients, respectively. This model requires that the intra-

species interaction coefficients are negative (aii < 0). Inter-species

interaction coefficients aij can be positive or negative, representing

a stimulatory or antagonistic microbial interaction.

Parameter estimation and validation

Custom scripts in MATLAB (MathWorks) were used for model

analysis and parameter estimation. A generalizable parameter
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estimation framework was developed to infer 156 (n2 + n) param-

eters of the gLV model from time-series measurements of absolute

species abundance. The experimental data included time-series

measurements of OD600 for monospecies and communities and

relative abundance of each species in the communities based on

16S rRNA gene sequencing. The initial conditions for model simu-

lations were computed by multiplying the total initial biomass of

each community by the species proportions at the first time point.

It is challenging to infer model parameters from compositional

data generated by next-generation sequencing since this is an

underdetermined problem and there are many solutions that would

yield the same relative abundance output (Fisher & Mehta, 2014).

The absolute abundance of each species was estimated by the

product of the relative abundance and the OD600 value (total

biomass) at each time point. The nonlinear programming solver

requires an initial point to the optimization problem. The initial

point was computed by transforming the gLV system of equations

into a linear system of equations by dividing the left and right side

of the equation by xi and substituting d logðxiÞ
dt

for 1
x
dx
dt

(Mounier

et al, 2008).

d logðxiÞ
dt

¼ li þ
Xn
j¼1

aijxj

A linear least-squares algorithm (MATLAB) with bounds was used

to solve for the unknown parameters using time-series monospe-

cies and pairwise community measurements.

To minimize overfitting of the data, L1 regularization was

used to penalize nonzero parameter values. Experiments were

weighted equally in the objective function. A nonlinear program-

ming solver (MATLAB) was used to minimize the following

objective function:

Fy ¼
Xl
i¼1

Xm
j¼1

1

p

Xp
k¼1

ŷk � ykð Þ2þkjHj

Here, l, m, and p denote community datasets, species in each

community, and time points, respectively. k and Θ represent the

regularization coefficient and the parameter vector. ŷk and yk desig-

nate the model prediction and experimental measurement of abso-

lute abundance of a species at a specific time point k.

In the optimization problem, an optimal k value was identified

to minimize overfitting of the data by balancing the goodness of

fit and sparsity of the model. To do so, values of k were scanned

from 10�5 to 10. An optimization method was implemented to

infer the best estimate of the model parameters using k = 0.0077.

The goodness of fit of the model was computed using the follow-

ing equation:

Gf ¼
Xm
j¼1

1

p

Xp
k¼1

r̂k � rkð Þ2;

where m, p, r̂, and r represent species, time points, predicted rela-

tive abundance, and measured relative abundance, respectively.

Validation of the model was performed using Gf and the Pearson

correlation coefficient between the model prediction and experi-

mental data of all species in each community at each time point.

Inferred parameter sets based on training sets T1-4 are shown in

Appendix Figs S25–S28.

Parameter uncertainty analysis

Bayes rule introduces the notion of prior and posterior information:

PðhjyÞ ¼ PðyjhÞPðhÞ
PðyÞ

The parameters and data are represented by h and y. We assume that

the error is normally distributed with a mean of 0 using the following

equation y ¼ fðhÞ þ �, where ��Nð0; r2Þ. The Posterior distribution

PðhjyÞ represents the uncertainty in the parameters. Since direct

sampling from the Posterior distribution is challenging, the

Metropolis–Hastings algorithm was used to estimate this distribu-

tion. The Metropolis–Hastings algorithm was simulated for 670,000

iterations from the inferred parameter set based on training set T3. A

burn-in period of the first 100,000 was excluded from the analyses to

allow the chain to converge to the stationary distribution.

To evaluate convergence, four independent chains were simu-

lated for 670,000 iterations using a burn-in period of 100,000 itera-

tions from randomly sampled parameter values using a normal

distribution with the mean equal to the parameter estimate based

on training set T3 and standard deviation of 0.3 times the value of

each parameter. The Gelman–Rubin potential scale reduction factor

(PSRF) was used to evaluate convergence of the Posterior distribu-

tion estimate. If the chains have converged to the target Posterior

distribution, the PSRF should be close to 1. Our results showed that

60% of parameters have a PSRF less than 1.5. The PSRF is nega-

tively correlated to the parameter magnitudes based on training set

T3 (Rs = �0.73, P = 0 where Rs and P represent the Spearman corre-

lation and P-value, respectively), suggesting that poor convergence

is isolated to a specific set of parameters that exhibit small magni-

tudes due to regularization and do not significantly impact model

dynamics. For all five Markov chains, the mean of each parameter

across 570,000 iterations was highly correlated to the parameter set

based on T3 (q ≥ 0.99), suggesting that MCMC was exploring a

single mode of the Posterior distribution.

Data and software availability

The code for analyzing community composition based on next-

generation sequencing data is available at Github: https://github.

com/ryanusahk/NextGenSequencingScripts_RH (doi: 10.5281/zenodo.

1248186). Metabolomics data are available through the JGI Genome

Portal (Project Id 1198552). Next-generation sequencing data are

available through the European Nucleotide Archive (accession

number PRJEB26607). Computational models (Code EV1) contain

the Systems Biology Markup Language (SBML) code for simulating

the generalized Lotka–Volterra models trained on T1–T4. Curated

model files have also been made available at JWS online at https://

jjj.bio.vu.nl/database/venturelli.

Expanded View for this article is available online.
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