
molecules

Article

Mechanism Exploration of Arylpiperazine
Derivatives Targeting the 5-HT2A Receptor by In
Silico Methods

Feng Lin 1,2, Feng Li 3, Chao Wang 2, Jinghui Wang 2, Yinfeng Yang 2, Ling Yang 4 and Yan Li 1,2,*
1 Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Pharmacy School, Shihezi University,

Shihezi 832002, Xinjiang, China; fenglin_dut@yeah.net
2 Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical,

Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024,
Liaoning, China; chaowang_dlou@163.com (C.W.); jhwang_dlut@163.com (J.W.);
yinfengyang@yeah.net (Y.Y.)

3 Department of Civil Engineering, Henan Institute of Engineering, Zhengzhou 451191, Henan, China;
fengli@haue.edu.cn

4 Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese
Medicine, Shanghai 201203, China; yling@dicp.ac.cn

* Correspondence: yanli@dlut.edu.cn; Tel.: +86-0411-8498-6062

Received: 21 April 2017; Accepted: 23 June 2017; Published: 26 June 2017

Abstract: As a G-protein coupled receptor, the 5-hydroxytryptamine 2A (5-HT2A) receptor is
known for its critical role in the cognitive, behavioural and physiological functions, and thus is
a primary molecular target to treat psychiatric diseases, including especially depression. With
purpose to explore the structural traits affecting the inhibitory activity, currently a dataset of
109 arylpiperazine derivatives as promising 5-HT2A antagonists was built, based on which the
ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) study by
using both comparative molecular field analysis (CoMFA) and comparative molecular similarity
indices analysis (CoMSIA) approaches was carried out. The resultant optimal CoMSIA model
displays proper validity and predictability with cross-validated correlation coefficient Q2 = 0.587,
non-cross-validated correlation coefficient R2

ncv = 0.900 and predicted correlation coefficient for the
test set of compounds R2

pre = 0.897, respectively. Besides, molecular docking was also conducted
to investigate the binding mode between these ligands and the active site of the 5-HT2A receptor.
Meanwhile, as a docking supplementary tool to study the antagonists’ conformation in the binding
cavity, molecular dynamics (MD) simulation was also performed, providing further elucidation about
the changes in the ligand-receptor complex. Lastly, some new molecules were also newly-designed
based on the above results that are potential arylpiperazine antagonists of 5-HT2A receptor. We hope
that the present models and derived information may be of help for facilitating the optimization
and design of novel potent antagonists as antidepressant drugs as well as exploring the interaction
mechanism of 5-HT2A antagonists.

Keywords: depression; 5-HT2A receptor; arylpiperazine derivative; 3D-QSAR; molecular docking;
molecular dynamics

1. Introduction

Cognitive inflexibility, the inability spontaneously to sustain, withhold, or modify adaptive
behavior in response to varying situational demands, is correlated with diverse psychiatric disorders,
including especially depression, schizophrenia and obsessive-compulsive disorders [1]. As a matter of
fact, cognitive dysfunction seems to be an independent and core domain of depression which may
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lead to low functioning level and reduced life quality of depression patients [2]. The disease it leads to,
i.e., depression (notably major depression), threats the health of approximately 121 million people and
thus is among the top five primary causes of disease and disability burden all over the world [3,4].
In fact, across the lifespan, the onset and process of depression are usually influenced by stressful life
events that include loss, threat, defeat, or humiliation [4]. Some 2–5% of the US population suffer from
severe forms of depression, and milder forms of the disease affect up to 20% of the population [5].
Besides, cognitive dysfunction is also recurrent, life threatening (because of the risk for suicide), and a
leading cause of morbidity throughout the world [5]. Therefore, pharmacologic drugs are becoming
widely desirable for treating psychiatric disorders.

Over the past few decades, the synaptic actions of monoamine neurotransmitters including
serotonin (SER, 5-HT) and norepinephrine (NE) were recognized as crucial evidences to psychiatric
disease [3]. 5-HT, binding to a G-protein coupled receptor (GPCR), takes part in various aspects of
physiology, behavior and cognition [6]. More importantly, it is also involved in the pathogenesis of
diverse diseases ranging from psychiatric disorders like depression to neurological disorders such as
Alzheimer’s disease (AD) [6]. Actually, 5-HT receptors are widely considered as primary targets for
cognitive enhancement in psychiatric disease [7]. Indeed, the outstanding efficacy of present atypical
antipsychotics on aspects of attention including vigilance and to a degree executive functioning in
psychiatric disease patients may be partly due to their indirect or direct effects on 5-HT2A receptors [7].
Factually, in the treatment of negative symptoms, the blockade of 5-HT2A receptors or the preferential
blockade of particular subtypes of dopamine receptors was always assumed to be a relative mechanism
for the efficiency of atypical antipsychotics [8]. And, it is also suggested that the antagonism of 5-HT2A

receptor is important for the clinical result and profile of the prototype of atypical antipsychotic
agent [9]. Besides, evidence also supports the hypothesis that 5-HT2A signaling is a significant factor in
cognitive function [10]. Consequently, the 5-HT2A receptor has already become the focus of extensive
studies as a target to treat psychotic disorders [11].

Recently, the development of the serotonin antagonist/reuptake inhibitors (SARIs) has become
a direction in treating depressive disorders due to the effective modulation of SARIs on the 5-HT
level. Clinically, several SARI drugs for the 5-HT2A have been applied, such as ritanserin, YM992,
M100907, LY367265 and nefazodone. Among them, ritanserin, as the first 5-HT2A receptor antagonist,
has been found to have high antipsychotic activity [8,12]. Actually, it not only improves the negative
symptoms when added to neuroleptics in hospitalized patients with primarily negative symptoms,
but also reduces the extrapyramidal side effects when added to routine antipsychotics [8]. Moreover,
some studies also found that ritanserin also disrupts potential inhibition via preexposure [8]. As to
YM992, it is a novel selective 5-HT reuptake antagonist that possesses 5-HT2A-inhibitory properties
and enhances 5-HT neurotransmission after long-term administration, which may contribute to
outstanding antipanic and antidepressant activities by directly blocking the 5-HT reuptake and 5-HT2A

receptors [13]. With regard to M100907, it is a highly selective 5-HT2A receptor antagonist with superior
affinity for 5-HT2A receptor, eliciting a positive response in a lot of preclinical paradigms designed to
test antipsychotic activity [11]. As to LY367265, it shows higher affinity for 5-HT2A receptor and 5-HT
transporter than the clinically potent antidepressant, nefazodone [14]. Furthermore, the advantages of
nefazodone include not only reducing the possibility of sexual dysfunction or sleep disturbance, but
also treating those patients who didn’t respond to other antidepressants [15].

Despite of the usefulness on antipsychotics, these agents however still have certain side effects,
including the constipation, anxiety, nausea, hopelessness and even liver failure [3,14]. And some
problems about long onset time and poisoning symptom are also waiting for solution. Therefore, the
exploration of more potent and safer drugs is still a necessity. Presently, a series of SARIs synthesized
through molecular structure modification based on above drugs exhibited a selective and effective
activity against 5-HT2A, with an IC50 value as low as 5.17 nM for the most potent compound [3].
In light of these compounds, it appears of interest to apply the ligand-based drug design techniques to
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explore the structural factors of these 5-HT2A antagonists, which may be of help for discovery of novel
efficacious anti-5-HT2A drugs.

With the rapid development of computer technology, chemical biology, and molecular biology,
computer simulation technology plays an prominent role in the growth of new agents [16,17].
As known to all, computer-aided drug design (CADD) can greatly raise the efficiency of developing
and designing novel drugs, and thus has been used more and more diffusely in present pharmaceutical
industry [18,19]. In fact, CADD approaches, like especially the 3D-QSAR, molecular docking, molecular
dynamics (MD), homology modeling and pharmacophore mapping techniques, have been vastly
conducted in the optimization and development of inhibitors [20,21], in which 3D-QSAR modeling
has proven its efficiency in exploring the pharmacological properties of the studied molecules in
modern drug discovery [22,23]. Especially, 3D-QSAR methods including comparative molecular field
analyses (CoMFA) [24] and comparative molecular similarity indices analyses (CoMSIA) [25] have
been successfully utilized to obtain insights into the structural requirements that affect their biological
activity for many series of molecules, such as heteroarylnitrile, 1,7-diazacarbazole and peptidomimetic
derivatives as falcipain-2, checkpoint kinase 1 and 3C-like protease inhibitors, respectively [16,17,26].
In this study, we employed a sets of CADD approaches, including CoMFA and CoMSIA analyses,
molecular docking and MD simulation with purpose to (1) probe the crucial structural factors of
arylpiperazine scaffold-based potent 5-HT2A antagonists [3]; (2) understand the probable binding
modes at the amino acid residue level; (3) further elucidate the changes in the ligand-receptor complex
embedded into the lipid bilayer; (4) design several new potential arylpiperazine antagonists of 5-HT2A

receptor based on the above results. The obtained findings can not only guide rational structural
modification and design of novel and more potent 5-HT2A antagonists, but also offer some reference
for experiment study.

2. Materials and Methods

2.1. Data Set and Biological Activities

After eliminating those compounds with unspecified antagonistic activity, a total of 109
arylpiperazine derivatives targeting 5-HT2A receptor were used as a dataset with their biological
activities (IC50 values) taken from the same source [3]. For improving the normal distribution of
the experimental data points, the activities of all the molecules were converted into consistent pIC50

(−logIC50) values (ranging from 5.995 to 8.287), which were used as the dependent variables in the
QSAR regression analysis. In an approximate ratio of 3:1, the compounds were separated into a training
(82 compounds) set to construct 3D-QSAR models and a test (27 compounds) set to validate the models.
To ensure that the predictive power of the models be effectively evaluated, the selection of the test
set molecules follows the rule that their pIC50 values are randomly but uniformly distributed in the
range of the values of the entire set. All information of the 109 molecules used in this work is provided
in supporting information Table S1, where sixteen representative molecules with structures and IC50

values are shown in Table 1.
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Table 1. Representative molecular structures and IC50 values of arylpiperazine derivatives.

No. Structure IC50 (nM) No. Structure IC50 (nM)
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2.2. Molecular Modeling and Alignment 

All 3D-QSAR and molecular studies were conducted by Sybyl 6.9 package (Tripos Associates, 
St. Louis, MO, USA). Partial atomic charges were calculated by using the Gasteiger-Hückel method 
[27], and then the conformer of each compound was energy-minimized using the Tripos molecular 
mechanics force field [28] and the Powell conjugate gradient minimization algorithm with the 
convergence criterion set to 0.05 kcal·mol−1·Å−1 to ensure the stability of the conformation. 

Since in 3D-QSAR studies, the most critical step is the molecular alignment [29], presently all 3D-
QSAR statistical models were constructed based on the alignment of all the molecules, and compound 
13 was chosen as the template due to its most potent activity in the data set. All the molecules were 
fitted into the template using the “Align Database” command in Sybyl. The common skeleton in the 
molecular superimposition is displayed in bold in Figure 1A,B depicts the resultant model. 
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2.2. Molecular Modeling and Alignment 

All 3D-QSAR and molecular studies were conducted by Sybyl 6.9 package (Tripos Associates, 
St. Louis, MO, USA). Partial atomic charges were calculated by using the Gasteiger-Hückel method 
[27], and then the conformer of each compound was energy-minimized using the Tripos molecular 
mechanics force field [28] and the Powell conjugate gradient minimization algorithm with the 
convergence criterion set to 0.05 kcal·mol−1·Å−1 to ensure the stability of the conformation. 

Since in 3D-QSAR studies, the most critical step is the molecular alignment [29], presently all 3D-
QSAR statistical models were constructed based on the alignment of all the molecules, and compound 
13 was chosen as the template due to its most potent activity in the data set. All the molecules were 
fitted into the template using the “Align Database” command in Sybyl. The common skeleton in the 
molecular superimposition is displayed in bold in Figure 1A,B depicts the resultant model. 
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2.2. Molecular Modeling and Alignment 

All 3D-QSAR and molecular studies were conducted by Sybyl 6.9 package (Tripos Associates, 
St. Louis, MO, USA). Partial atomic charges were calculated by using the Gasteiger-Hückel method 
[27], and then the conformer of each compound was energy-minimized using the Tripos molecular 
mechanics force field [28] and the Powell conjugate gradient minimization algorithm with the 
convergence criterion set to 0.05 kcal·mol−1·Å−1 to ensure the stability of the conformation. 

Since in 3D-QSAR studies, the most critical step is the molecular alignment [29], presently all 3D-
QSAR statistical models were constructed based on the alignment of all the molecules, and compound 
13 was chosen as the template due to its most potent activity in the data set. All the molecules were 
fitted into the template using the “Align Database” command in Sybyl. The common skeleton in the 
molecular superimposition is displayed in bold in Figure 1A,B depicts the resultant model. 
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2.2. Molecular Modeling and Alignment 

All 3D-QSAR and molecular studies were conducted by Sybyl 6.9 package (Tripos Associates, 
St. Louis, MO, USA). Partial atomic charges were calculated by using the Gasteiger-Hückel method 
[27], and then the conformer of each compound was energy-minimized using the Tripos molecular 
mechanics force field [28] and the Powell conjugate gradient minimization algorithm with the 
convergence criterion set to 0.05 kcal·mol−1·Å−1 to ensure the stability of the conformation. 

Since in 3D-QSAR studies, the most critical step is the molecular alignment [29], presently all 3D-
QSAR statistical models were constructed based on the alignment of all the molecules, and compound 
13 was chosen as the template due to its most potent activity in the data set. All the molecules were 
fitted into the template using the “Align Database” command in Sybyl. The common skeleton in the 
molecular superimposition is displayed in bold in Figure 1A,B depicts the resultant model. 
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2.2. Molecular Modeling and Alignment 

All 3D-QSAR and molecular studies were conducted by Sybyl 6.9 package (Tripos Associates, 
St. Louis, MO, USA). Partial atomic charges were calculated by using the Gasteiger-Hückel method 
[27], and then the conformer of each compound was energy-minimized using the Tripos molecular 
mechanics force field [28] and the Powell conjugate gradient minimization algorithm with the 
convergence criterion set to 0.05 kcal·mol−1·Å−1 to ensure the stability of the conformation. 

Since in 3D-QSAR studies, the most critical step is the molecular alignment [29], presently all 3D-
QSAR statistical models were constructed based on the alignment of all the molecules, and compound 
13 was chosen as the template due to its most potent activity in the data set. All the molecules were 
fitted into the template using the “Align Database” command in Sybyl. The common skeleton in the 
molecular superimposition is displayed in bold in Figure 1A,B depicts the resultant model. 
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2.2. Molecular Modeling and Alignment 

All 3D-QSAR and molecular studies were conducted by Sybyl 6.9 package (Tripos Associates, 
St. Louis, MO, USA). Partial atomic charges were calculated by using the Gasteiger-Hückel method 
[27], and then the conformer of each compound was energy-minimized using the Tripos molecular 
mechanics force field [28] and the Powell conjugate gradient minimization algorithm with the 
convergence criterion set to 0.05 kcal·mol−1·Å−1 to ensure the stability of the conformation. 

Since in 3D-QSAR studies, the most critical step is the molecular alignment [29], presently all 3D-
QSAR statistical models were constructed based on the alignment of all the molecules, and compound 
13 was chosen as the template due to its most potent activity in the data set. All the molecules were 
fitted into the template using the “Align Database” command in Sybyl. The common skeleton in the 
molecular superimposition is displayed in bold in Figure 1A,B depicts the resultant model. 
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2.2. Molecular Modeling and Alignment 

All 3D-QSAR and molecular studies were conducted by Sybyl 6.9 package (Tripos Associates, 
St. Louis, MO, USA). Partial atomic charges were calculated by using the Gasteiger-Hückel method 
[27], and then the conformer of each compound was energy-minimized using the Tripos molecular 
mechanics force field [28] and the Powell conjugate gradient minimization algorithm with the 
convergence criterion set to 0.05 kcal·mol−1·Å−1 to ensure the stability of the conformation. 

Since in 3D-QSAR studies, the most critical step is the molecular alignment [29], presently all 3D-
QSAR statistical models were constructed based on the alignment of all the molecules, and compound 
13 was chosen as the template due to its most potent activity in the data set. All the molecules were 
fitted into the template using the “Align Database” command in Sybyl. The common skeleton in the 
molecular superimposition is displayed in bold in Figure 1A,B depicts the resultant model. 
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2.2. Molecular Modeling and Alignment 

All 3D-QSAR and molecular studies were conducted by Sybyl 6.9 package (Tripos Associates, 
St. Louis, MO, USA). Partial atomic charges were calculated by using the Gasteiger-Hückel method 
[27], and then the conformer of each compound was energy-minimized using the Tripos molecular 
mechanics force field [28] and the Powell conjugate gradient minimization algorithm with the 
convergence criterion set to 0.05 kcal·mol−1·Å−1 to ensure the stability of the conformation. 

Since in 3D-QSAR studies, the most critical step is the molecular alignment [29], presently all 3D-
QSAR statistical models were constructed based on the alignment of all the molecules, and compound 
13 was chosen as the template due to its most potent activity in the data set. All the molecules were 
fitted into the template using the “Align Database” command in Sybyl. The common skeleton in the 
molecular superimposition is displayed in bold in Figure 1A,B depicts the resultant model. 
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2.2. Molecular Modeling and Alignment 

All 3D-QSAR and molecular studies were conducted by Sybyl 6.9 package (Tripos Associates, 
St. Louis, MO, USA). Partial atomic charges were calculated by using the Gasteiger-Hückel method 
[27], and then the conformer of each compound was energy-minimized using the Tripos molecular 
mechanics force field [28] and the Powell conjugate gradient minimization algorithm with the 
convergence criterion set to 0.05 kcal·mol−1·Å−1 to ensure the stability of the conformation. 

Since in 3D-QSAR studies, the most critical step is the molecular alignment [29], presently all 3D-
QSAR statistical models were constructed based on the alignment of all the molecules, and compound 
13 was chosen as the template due to its most potent activity in the data set. All the molecules were 
fitted into the template using the “Align Database” command in Sybyl. The common skeleton in the 
molecular superimposition is displayed in bold in Figure 1A,B depicts the resultant model. 
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2.2. Molecular Modeling and Alignment 

All 3D-QSAR and molecular studies were conducted by Sybyl 6.9 package (Tripos Associates, 
St. Louis, MO, USA). Partial atomic charges were calculated by using the Gasteiger-Hückel method 
[27], and then the conformer of each compound was energy-minimized using the Tripos molecular 
mechanics force field [28] and the Powell conjugate gradient minimization algorithm with the 
convergence criterion set to 0.05 kcal·mol−1·Å−1 to ensure the stability of the conformation. 

Since in 3D-QSAR studies, the most critical step is the molecular alignment [29], presently all 3D-
QSAR statistical models were constructed based on the alignment of all the molecules, and compound 
13 was chosen as the template due to its most potent activity in the data set. All the molecules were 
fitted into the template using the “Align Database” command in Sybyl. The common skeleton in the 
molecular superimposition is displayed in bold in Figure 1A,B depicts the resultant model. 
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2.2. Molecular Modeling and Alignment

All 3D-QSAR and molecular studies were conducted by Sybyl 6.9 package (Tripos Associates,
St. Louis, MO, USA). Partial atomic charges were calculated by using the Gasteiger-Hückel method [27],
and then the conformer of each compound was energy-minimized using the Tripos molecular
mechanics force field [28] and the Powell conjugate gradient minimization algorithm with the
convergence criterion set to 0.05 kcal·mol−1·Å−1 to ensure the stability of the conformation.

Since in 3D-QSAR studies, the most critical step is the molecular alignment [29], presently
all 3D-QSAR statistical models were constructed based on the alignment of all the molecules,
and compound 13 was chosen as the template due to its most potent activity in the data set.
All the molecules were fitted into the template using the “Align Database” command in Sybyl.
The common skeleton in the molecular superimposition is displayed in bold in Figure 1A,B depicts the
resultant model.
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Figure 1. Molecular alignments of all compounds in the data set. (A) The common structure of 
molecules based on template compound 13 is displayed in bold; (B) The resultant alignment model. 

2.3. CoMFA and CoMSIA Studies 

To analyze the quantitative relationship between 3D structural features and the biological 
activity for a set of molecules, CoMFA and CoMSIA analyses were utilized for these antagonists after 
conformational alignment. All superimposed molecules were placed in a 3D lattice with spacing of 
2.0 Å. CoMFA fields including the steric and electrostatic fields were generated by using sp3 C-atom 
probe with a formal charge of +1.0 at each lattice point and a van der Waals (vdW) radius of 1.52 Å 
[30]. And both the steric and electrostatic fields were calculated by CoMFA standard method with 
energy cut-off values of 30.0 kcal·mol−1 [31]. CoMSIA is, though, an extension of CoMFA, it also 
includes extra hydrophobic, hydrogen bond (H-bond) donor and H-bond acceptor descriptors 
besides the steric and electrostatic descriptors. CoMSIA similarity index descriptors were derived by 
the same lattice boxes as those used in CoMFA calculations. And five different similarity descriptors 
were calculated by using a probe atom of charge +1.0, radius 1.0 Å. A Gaussian function was used to 
evaluate the mutual distance between each molecule atom and the probe atom, with no cut-off limits 
in CoMSIA study. 

In order to obtain statistically significant 3D-QSAR models and to analyze the relationship 
between their biological activities and the variations in CoMFA-CoMSIA interaction energies, partial 
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number of descriptors to some principal components which are linear combinations of the initial 
descriptors [34]. In the present study, the CoMFA-CoMSIA descriptors were used as independent 

Figure 1. Molecular alignments of all compounds in the data set. (A) The common structure of
molecules based on template compound 13 is displayed in bold; (B) The resultant alignment model.

2.3. CoMFA and CoMSIA Studies

To analyze the quantitative relationship between 3D structural features and the biological activity
for a set of molecules, CoMFA and CoMSIA analyses were utilized for these antagonists after
conformational alignment. All superimposed molecules were placed in a 3D lattice with spacing
of 2.0 Å. CoMFA fields including the steric and electrostatic fields were generated by using sp3 C-atom
probe with a formal charge of +1.0 at each lattice point and a van der Waals (vdW) radius of 1.52 Å [30].
And both the steric and electrostatic fields were calculated by CoMFA standard method with energy
cut-off values of 30.0 kcal·mol−1 [31]. CoMSIA is, though, an extension of CoMFA, it also includes
extra hydrophobic, hydrogen bond (H-bond) donor and H-bond acceptor descriptors besides the steric
and electrostatic descriptors. CoMSIA similarity index descriptors were derived by the same lattice
boxes as those used in CoMFA calculations. And five different similarity descriptors were calculated by
using a probe atom of charge +1.0, radius 1.0 Å. A Gaussian function was used to evaluate the mutual
distance between each molecule atom and the probe atom, with no cut-off limits in CoMSIA study.

In order to obtain statistically significant 3D-QSAR models and to analyze the relationship
between their biological activities and the variations in CoMFA-CoMSIA interaction energies, partial
least-squares (PLS) regression analyses were conducted [32,33]. PLS can reduce an originally large
number of descriptors to some principal components which are linear combinations of the initial
descriptors [34]. In the present study, the CoMFA-CoMSIA descriptors were used as independent
variables, while dependent variables were the pIC50 values. In PLS analysis, the leave one out (LOO)
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method that one molecule is removed from the data set and its activity is predicted by a model derived
from the remainder of the data set, was used to evaluate the reliability of model by calculating the
conventional correlation coefficient (Q2), the standard predicted errors (SEP) and the optimum number
of components (ONC). The ONC was applied in the final non-cross-validation analysis, and the
Pearson coefficient (R2

ncv), standard error of estimate (SEE) and F value were calculated [34]. Q2 and
R2

ncv as statistical index of the model’s predictive power provide useful internal metrics based on the
training set. To evaluate the COMSIA models’ predictive power, an independent test set was used.
In the above study process, CoMSIA similarity indices, Q2 and the predicted R2 (R2

pre) values were
calculated according to formulas presented in our previous works [21,35,36]. Finally, all 3D-QSAR
results were graphically shown by field contour maps with the field type “Stdev*Coeff”.

2.4. Molecular Docking

Molecular docking is the method used to explore the interaction between the receptor and its
ligands. It may efficiently predict the potential ligand binding sites of the protein [37]. Presently,
molecular docking analysis was performed with Gold (Genetic Optimization for Ligand Docking)
5.1 [38]. Due to that an accurate 3D structure of the receptor is essential for docking analysis, and
until now an X-ray structure of 5-HT2A receptor is, yet, still unavailable, the homology modeling
becomes a necessity in the present work. In addition, since, to our best knowledge, almost all (which
is actually, 7 out of 9 as shown in Table 2) current crystal structures of 5-HT2A receptor built by
homology modeling for further docking analysis were based on the structure of β2-adrenergic receptor
as a template [39–46], for purpose of a well comparison with previously-reported docking studies
of known 5-HT2A antagonists, the structure of 5-HT2A receptor we used presently still adopted the
structure of β2-adrenergic receptor as the homology modeling’s template. Actually, this structure
was built by Ísberg et al., where the 5-HT2A receptor model was constructed using the β2-adrenergic
receptor (PDB entry 2RH1) as the main template, and then further modified to incorporate template
features from the active G-protein-bound opsin crystal structure (PDB entry 3DQB) [47]. Using the
protein structure as the template, hydrogen was added and the exogenous ligand was removed from
the system. The probable binding conformation was then determined using the Gold suit. In fact, after
a predocking process, the validated binding cavity was created by an automatic mode with specified
atom coordinates. Thereafter, all compounds were docked into the binding cavity and 10 possible
active docking conformations for each compound were obtained with different scores.

Table 2. The summary of various ligand-5-HT2A receptor docking studies.

No. Researchers Template Representative
Structure Site Type Binding Interactions Crucial Residues

1 Westkaemper et al. [39] GF-62 cells Cyproheptadine Site 2 H-bond Asp155

2 Runyon et al. [40] Bovine rhodopsin
(PDB entry 1U19:A) AMDA Site 2 H-bond, hydrophobic

interaction
Asp155, Cys227,

Val366

3 Kanagarajadurai et al. [41] β2-adrenergic receptor
(PDB entry 2RH1) Haloperidol Site 2 H-bond, hydrophobic

interaction
Asp155, Phe339,
Phe340, Tyr370

4 Yap et al. [42] β2-adrenergic receptor
(PDB entry 2RH1) Ketanserin Site 2 H-bond

Thr134, Asp155,
Phe234, Val235,

Ser239

5 Sencanski et al. [43] β2-adrenergic receptor
(PDB entry 3D4S) Antagonist 12 Site 2 H-bond, π-π stacking,

salt bridge

Asp155, Ser159,
Trp336, Phe339,
Asn343, Tyr370

6 Ponnala et al. [44] β2-adrenergic receptor
(PDB entry 2RH1) Antagonist 7b Site 2 H-bond, hydrophobic

interaction
Asp155, Phe339,

Phe340

7 Deng et al. [45] β2-adrenergic receptor Antagonist 5g Site 2 H-bond, cation-π Trp151, Asp155,
Ser159, Tyr370

8 Gandhimathi et al. [46] β2-adrenergic receptor
(PDB entry 2RH1) Spiperone Site 2 H-bond, salt bridge Asp155, Asn363

9 Gandhimathi et al. [46] β2-adrenergic receptor
(PDB entry 3SN6) Spiperone Site 2 H-bond, π-π stacking Trp151, Asp155,

Asn343
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2.5. Molecular Dynamics

In order to obtain accurate model and to verify the docking result, MD simulation was carried
out applying the GROMACS software package [48]. Since 5-HT2A receptor is a member of GPCR
possessing seven transmembrane helices, the ligand-receptor complex was embedded into an explicit
dioleoylphosphatidylcholine (DOPC) lipid bilayer to relax the system [49,50]. The lipid bilayer system
was generated by the Membrane Builder tool in CHARMM-GUI [23,51]. Similar to experimental
conditions, the system was solvated applying TIP3P water model and NaCl ions were added to
reach zero charge [52]. The simulated system was firstly subjected to energy minimization without
constraints using the steepest-descent algorithm and then the system was equilibrated at 300 K via
500 ps MD simulations. Finally, a 50,000 ps simulation was carried out to maintain the stability of the
whole system with a time step of 2 fs. In this process, electrostatic interactions were calculated by the
particle mesh Ewald (PME) method [53], and covalent bonds involving H-atoms were constrained
by the linear constraint solver (LINCS) algorithm [54]. The cut-off distances for calculating vdW and
Coulomb interactions were 1.4 and 1.0 nm, respectively. Both energy minimization and MD simulation
were performed under periodic boundary conditions with temperature ensemble at 300 K and normal
pressure. The temperature was kept constant using the Berendsen thermostat, and the isothermal
compressibility value was set to 4.5 × 10−5 bar−1 while the pressure was maintained at 1.0 bar by the
Parrinello-Rahman scheme [55].

3. Results

3.1. 3D-QSAR Statistical Analysis

Molecular alignment is considered to be a prominent factor impacting the quality of the 3D-QSAR
model [17], and the three-dimensional shape of the ligand influences greatly on its interaction
with the acceptor, so the ligand-based alignment was applied here to superimpose all of the
109 compounds. The entire dataset was randomly separated into a training (82 compounds) set
and a test (27 compounds) set. Figure 2 displays the distribution of the number of compounds versus
their activities (pIC50) of the dataset, in which the training and the test sets are respectively colored
as black and red. Then, the overlapped compounds in the same training set were employed for both
CoMFA and CoMSIA analyses. For purpose of measuring the predictive ability of a model, PLS
analysis and LOO cross-validation method were used. During the modeling process, all statistical
parameters were analyzed to evaluate the reliability of the models, including the LOO cross-validated
Q2, non-cross-validated R2

ncv, R2
pre for the test set of compounds, F-statistics, SEE, SEP and ONC.

The obtained results of both CoMFA and CoMSIA models were listed in Table 3.
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Table 3. Summary of 3D-QSAR results.

PLS Statistics CoMFA CoMSIA

Q2 0.496 0.587
R2

ncv 0.914 0.900
R2

pre 0.831 0.897
F 132.803 94.879

SEE 0.148 0.161
SEP 0.402 0.339

ONC 6 7

Field Contribution/%

Steric 55.6 24.5
Electrostatic 44.4 45.4

H-bond donor - 14.9
H-bond acceptor - 15.2

Q2: cross-validated correlation coefficient; R2
ncv: non-cross-validated correlation coefficient; R2

pre: predicted
correlation coefficient; F: ratio of R2

ncv explained to unexplained, F = R2
ncv/(1 − R2

ncv); SEE: standard error of
estimate; SEP: standard error of prediction; ONC: optimal number of components.

Generally, a Q2 value above 0.5 is regarded as a sign of admissible internal predictive ability.
Besides, the high R2

ncv and F but low SEE values are also expected for a reliable QSAR model [19].
In the present work, by means of PLS statistical analysis, the resultant CoMFA model obtained by
using both the steric and electrostatic field descriptors is unsatisfied with Q2 value of 0.496, revealing
a relatively poor internal predictability. On the other hand, five field descriptors of CoMSIA (steric,
electrostatic, hydrophobic, H-bond donor and H-bond acceptor) and their every possible composition
were applied to build models, respectively. Among the derived 31 models, the CoMSIA model built
by the combination descriptors of the steric, electrostatic, H-bond donor and H-bond acceptor field
descriptors is considered as the optimal one, which has a Q2 value of 0.587, a high R2

ncv value of
0.900, a high F value of 94.879 and a low SEE value of 0.161 with 7 optimum components, implying
a good internal predictability. And the relative contributions of the steric, electrostatic, H-bond donor
and H-bond acceptor fields are 24.5%, 45.4%, 14.9% and 15.2% in turn. The higher contribution of
the electrostatic field indicates that electrostatic feature plays more roles in the antergic activity for
the series.

Some models are found to have admissible internal predictability but unfavorable external
predictability [21]. Thus, the R2

pre should also be considered for a reliable model. In this study, a test
set of 27 compounds, representing 32.9% of the training set, was employed to validate the robustness
of the models. In general, the R2

pre above 0.6 is an acceptable standard [56]. The developed CoMSIA
model gives a high R2

pre value of 0.897, much higher than this criterion. Therefore, the CoMSIA model
is selected as the optimal one, and its correlation for the whole dataset is described in both scatter plot
(Figure 3) and radar plots (Figure 4). As we can see, all the data points distribute uniformly around the
regression line in Figure 3, and the data lines overlap within the low deviation in both Figure 4A,B,
which illustrate the good correlation of the predicted bioactivity data versus the experimental data, as
well as the wonderful predictability and reliability of the obtained CoMSIA model.
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and the test (B) compounds from the final optimal CoMSIA model.

3.2. CoMSIA Graphical Interpretation

The optimal CoMSIA model developed by steric, electrostatic, H-bond donor and H-bond acceptor
field descriptors is further discussed here. And in order to facilitate the analysis, the most active
compound 13 of the whole data set is depicted superimposed with the four fields respectively.

Figure 5A is the steric contour plot, in which the green and yellow isopleths representing 80%
and 20% contribution levels each, implying the increased and decreased activity of molecules with
the bulky groups, respectively. On one hand, the long green contour around R1 substituent position
on imidazole ring (ring A) suggests that bulk group is preferred in this position for increasing the
antagonistic activity. For example, compounds 21 (pIC50 = 8.064), 1 (7.509) and 9 (7.260) have similar
structures except that their R1 groups are substituted separately by 2,3-dihydrobenzo[b][1,4]dioxine,
benzene and cyclopentane, displaying the antagonistic activity reducing with the dimensional decrease
in R1 group. In addition, there is another large green contour around the benzene ring (ring C) showing
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a steric favored region. Thus, the result occurs for compounds 25 and 24, in which 25 with methyl
substituent at R5 position is more potent (pIC50 = 7.125) than compound 24 (6.812) with Cl-atom at
the same location in activity. On the other hand, a medium sized yellow contour map appears at R2

position, revealing the disfavor of bulky group for the antagonistic activity. For instance, compound 48
(pIC50 = 7.420) is relatively more active than 50 (7.268) because the substituents of them are methyl and
propyl groups, respectively. So is the pair of compounds 40 (pIC50 = 7.203) and 42 (7.150). Furthermore,
another medium sized yellow contour shows below the piperazine ring (ring B), signifying that the
introduction of bulky group to this position would lead to a decrease of the activity.
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Figure 5. CoMSIA “StDev*Coeff” contour maps. (A) Steric (green/yellow) map. Green contours
imply regions where bulky groups are beneficial for the activity, and yellow contours imply regions
where bulky groups are detrimental for the activity; (B) Electrostatic (blue/red) map. Blue contours
represent where positive charges promote the affinity, and red contours represent where negative
charges promote the affinity; (C) H-bond donor (cyan/purple) map. Cyan contours reveal where
H-bond donors increase the activity, and purple contours reveal where H-bond donors decrease the
activity; (D) H-bond accepter (purple/red) map. Purple contours represent regions where H-bond
acceptors are beneficial for the activity, while red contours represent regions where H-bond acceptors
are detrimental for the activity.

The electrostatic contour map is displayed in Figure 5B, where blue contours (80% contribution)
account for electropositive favorable regions, but red contours (20% contribution) represent
electronegative favorable ones. Two blue contours with medium size are observed near R3 position and
ring B, which display the key role of these sites in electron-donating groups. Take compounds 51 and
52 for example, in which 51 with methyl group at R3 has higher activity (pIC50 = 7.509) than compound
52 (6.851) with H-atom at the same region. Moreover, there are four medium sized red electronegative
regions stumbled on the R1, R2 positions and ring C, suggesting the favor for electron-withdrawing
groups at this location. For example, compound 53 (pIC50 = 7.914) with R1 substituent of p-F-phenyl is
more active than compound 32 (7.857) with substituent of phenyl, while compound 43 (7.678) with
substituent of p-methoxyl-phenyl shows lower activity than 32 and 53. This could be explained that the
F-atom has electron-withdrawing feature, while the methoxyl group has electron-donating character.

The H-bond donor contours overlapped on compound 13 are depicted in Figure 5C, where
the cyan isopleths (80% contribution) indicate H-bond donors-preferred region, whereas the purple
contours (20% contribution) imply H-bond donors-disfavored one. A large cyan contour near the linker
chain reveals that H-bond donor substituents will promote the potency. It is observed that the linker
position has the NH of amide group, indicating the important roles of the NH playing in donating H
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to form H-bond interaction with receptors. Actually, this big cyan contour is located around 5-position
(N-atom) of ring A and 10-position (O-atom), which signifies the biological activity benefit from
decreasing the polarizability of these N-atom and O-atom. Besides, purple contour is hardly found in
Figure 5C, implies that the unfavorable H-bond donor interaction may be omitted. This is corresponds
well with the experimental results that compounds 68 (pIC50 = 7.140) and 90 (7.106) with OH group on
the linker chain are more active than unsubstituted molecules 23 (7.041) and 49 (6.928), respectively.

As shown in Figure 5D, the H-bond acceptor contour maps of the CoMSIA model represented by
purple (80% contribution) and red (20% contribution) contours depict the H-bond acceptor substituents
favored and disfavored regions, respectively. On one hand, three different sized purple contours
are observed at ring A, which are consistent with the N-atoms at the 3,5-positions acting as H-bond
acceptor. In addition, two other purple contours are observed above the 10-position (O-atom) and
ring B, revealing that the introduction of H-bond acceptor groups to the positive influence would lead
to a promotion of the inhibitory activity. On the other hand, a red contour appears at the 7-position
of linker chain, implying that H-bond donors or no H-bond are preferred at this region. This can be
illustrated by the N-atom at the 7-position of linker chain acting as H-bond donor, which is associated
with Figure 5C.

3.3. Docking Results

Docking simulation is often used in drug design to predict the optimal orientation of a ligand as
well as to elucidate the interactive patterns between the ligand and its target protein [26]. In current
work, a computational docking study was conducted and the most optimal conformation was
determined by the GoldScore value. As seen from Figure 6, the binding pattern of the most efficacious
compound 13 into the active site of the protein is shown.
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As displayed in Figure 6A, the 5-HT2A receptor sequence is roughly composed of seven
transmembrane helices (TM1–TM7), in which the binding site of the ligand-receptor complex is
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observed to be located among five transmembrane helices (TM2–TM3, TM5–TM7) and embedded
within the upper half of the helical domain. As shown in Figure 6B,C, the ring A of compound 13 is
located at the lateral entrance of this binding cavity, and the linker chain, rings B and C are tightly
confined in the narrow top of the pocket taken shape by the receptor interface. Indeed, the scaffold
of compound 13 is bent at the linker position, and strong interaction is formed between surrounding
residues and the distorted ring B, implying the resistance encountered by ring B. Furthermore,
ring C takes up sufficient room with near residues. Actually, in our previous contour distribution
map (Figure 5A), the presence of a middle-sized yellow contour below ring B and a large green
contour around ring C is in accordance with this docking result. Moreover, at the inlet location the
p-methoxyl-phenyl is flexible to extend deeper into the pocket while the n-propyl taking up most of the
narrow space around seems relatively steady, revealing that introduction of a bulky substituent around
R1 and near R2 favors and disfavors the biological activity, respectively, which is also in agreement
with the green and yellow contours along ring A as shown in Figure 5A.

A detailed inspection of the docked complex of 5-HT2A receptor reveals the ligand’s binding
conformation and corresponding interaction mechanism as demonstrated in Figure 7, which depicts
the constitution of the binding pocket, including all those significant residues as Trp151, Asp155,
Ser159 and Phe340. Clearly, four factors, namely hydrophobic, H-bond, electronic and π-π stacking
interactions, are observed contributing to the intimate interaction of the antagonist with the target
receptor. As a matter of fact, among the 20 amino acid residues (within 4.5 Å distance from the ligand)
of the interface, hydrophobic residues account for about two-thirds proportion, which help induce the
active conformation of antagonists. For example, ring C occupies a hydrophobic pocket consisting of
Val127, Trp151, Cys227, Leu228, Leu362 and Val366, so the hydrophobic interaction plays an important
role there. Meanwhile, the three hydrophobic phenylalanine residues (Phe234, Phe243 and Phe340)
near R1 group of ring A imply bulky groups favorable of this region, which is in accordance with
the results of Figure 5A. Furthermore, at the corner of the pocket, both hydrophobic and hydrophilic
resides (Leu123, Asp155, Val156, Ser159 and Phe339) locate around the linker chain. In this area, the
O-atom of the amide forms one H-bond with the side chain of Ser159 (–O···HO–, 3.58 Å), and the NH
forms another H-bond with the side chain of Asp155 (–NH···O–, 2.43 Å). This is well consistent with
the presence of the large cyan and the small purple contours above the linker chain in Figure 5C,D.
At the same time, the electropositive N-atom of ring B interacts with the electronegative O-atom of
Asp155 (–N···O–, 2.60 Å), which corresponds well with the medium-sized blue contour near the ring B
as shown in Figure 5B. Besides, the residues Trp151 and Phe340 respectively form edge-to-face π-π
stacking and face-to-face π-π stacking interactions with ring C and ring A, which are also helpful in
anchoring antagonists in the cleft.

To look at Figure 7 as a whole, compound 13 inserts into the protein chain like an expansive
“V”, which is composed of two (right and left) branches and one vertex corner. The right branch of
the “V” firstly extends to a hydrophobic cage and is further anchored by a π-π stacking with Trp151.
Then, the corner of “V” made of linker chain is fixed by H-bonds with Asp155 and Ser159, and is
bent to fit for the electronic interaction with residue Asp155. Finally, ring A, together with its three
substitutional groups constitutes the left branch, which stretches to the cavity and is grabbed by the
π-π stacking with residue Phe340. All in all, the π-π stacking, H-bond, electronic and hydrophobic
interactions mentioned above altogether form the active conformation of compound 13. Furthermore,
the results generated by both docking and 3D contour maps are complementary and validated each
other, revealing that the QSAR model is rational and could provide a lot of useful information for
designing novel long chain arylpiperazine derivatives as 5-HT2A antagonists.
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3.4. Molecular Dynamics Studies

Unlike molecular docking, which regards proteins as relatively rigid structures and neglects
their conformational flexibility, MD simulations computationally probe the dynamics and structure
of biological macromolecules and seem more reliable with a view to the protein flexibility, providing
the atomic-level changes of the docked complex structure [57,58]. In this work, the docked complex
of 5-HT2A receptor as starting molecular structure was further used to undertake a 50,000 ps MD
simulation in a DOPC lipid bilayer to explore the dynamical image of the conformational diversity of
the ligand binding to the receptor. The snapshot of the system after 50,000 ps MD simulations is shown
(Figure 8B). For ensuring the rationality of the sampling method and exploring the dynamic stability of
the ligand-protein system, root-mean-square deviation (RMSD) was calculated as a geometric measure
of the conformational alterations from the initial structure, ranging from 1.1 to 8.0 Å in Figure 8A.
It is clearly observed that the RMSD of the system retains around 7.2 Å after the initial 17,000 ps of
free equilibration and reaches this converged stage throughout the following simulation, indicating
the equilibrated conformation of the docked complex structure. Generally, compared with the use of
a single crystal structure, the adoption of the MD average structure is considered more helpful and
reliable [59]. Thus, presently Figure 8C is drawn to display the average structure (yellow) of the last
10,000 ps in the MD simulation superposed by the initial docked structure (green), and the initial and
the final average structures of compound 13 are depicted in green and yellow sticks, respectively.
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Figure 8. (A) The time evolutions of RMSD of the backbone atoms from the initial docked structure
during the 50,000 ps MD simulations; (B) The ligand-receptor complex embedded into the lipid bilayer
after 50,000 ps of MD simulation. Ligand, receptor and lipid molecules are shown as yellow spheres,
green cartoon and blue lines, respectively; (C) The projection of the superimposed backbone atoms
of the average structure of the last 10,000 ps of the MD simulation (yellow) and the initial structure
(green). Compound 13 is respectively represented as carbon-chain in green for the initial complex and
yellow for the average structure.

As noticed in Figure 8C, the average structure derived from MD simulation is in well agreement with
the docked model of the complex, which validates the rationality of the docking model. Whereas, a slight
conformational deviation that the ring A of MD average structure extends a little more expansively
than that of the docking ligand, is also observed. In view of the possible interaction variation between
compound 13 and 5-HT2A receptor derived from the variety and mobility of the complex system when
compared with the docking results, the binding mode extracted from the MD simulation was also
investigated in terms of π-π stacking, H-bond and hydrophobic interactions as shown in Figure 9.
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Obviously, the majority of crucial amino acid residues from the average complex structure
obtained in MD simulation are greatly similar to those of the docking analysis. In accordance with
the above docking results, the right branch of compound 13 is also anchored in a hydrophobic cleft
constituted by a multitude of hydrophobic residues, such as Val127, Trp151, Leu362, Val366 and Tyr370.
Moreover, the essential edge-to-face π-π stacking between Trp151 and ring C is predictably retained
in MD results. In addition, one H-bond between the NH of the amide of compound 13 and Asp155
(–NH···O–, 2.94 Å) and another H-bond between the O-atom and Ser159 (–O···HO–, 3.37 Å) on vertex
corner of the “V” are also formed in the system which tend to play necessary roles in the stabilization
of the antagonists within the active site of the target protein. Although the above reproductions
of binding interactions as revealed in the MD analysis further support the docking discovery, it is
worth mentioning that slight discrepancy arises in the putative cavity. Due to the approximately
more expansive conformation of compound 13 during MD simulation, the difference in electronic and
face-to-face π-π stacking formations is observed. The electronic interaction between the electropositive
N-atom of ring B and the electronegative O-atom of Asp155 in previous docking results is broken,
so is the face-to-face π-π stacking between Phe340 and ring A. Meanwhile, two new interactions,
including the H-bond between the N-atom at 5-position of ring A and Ser159 (–N···HO–, 2.94 Å),
and the edge-to-face π-π stacking between Phe340 and the phenyl of R1, anchor the left branch of the
“V” in the cleft. As a matter of fact, the variation of these two stretching formations leads to a much
wider-open conformation of compound 13 in MD results. In a word, despite the subtle changes, the
ligand is relatively stable at the active site of the receptor, and the MD analysis agrees well with the
docking model, implying the rationality of the docking analysis in terms of reliability and helpfulness
for optimization and design of potent 5-HT2A antagonists.

3.5. Docking Comparison

By a combinatorial study using both the docking and MD analyses, as well as a detailed
comparison between these results, it is demonstrated that the present docking model is reliable
in reflecting the particular binding mechanism in the 5-HT2A receptor active site. To further explore
the interaction features of general 5-HT2A antagonists and the binding model of arylpiperazine
derivatives with the target protein, a comparison of previously-reported docking studies of known
5-HT2A antagonists with the ones assessed in our current work was conducted [39–46]. Above Table 2
summarizes the important information obtained from these studies, for purpose to compare their
similarities and differences, with their representative structures of the ligands summarized in Figure 10.
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Up to now, two 5-HT2A receptor binding pockets (listed as Site 1 and Site 2, respectively) have
been proposed [40,60,61]. As noted in these literatures, Site 1 (TM3 flanked by TM4, TM5, and TM6)
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has been identified as an agonist binding site, and Site 2 (TM3 flanked by TM2, TM6, and TM7) has
been identified as an antagonist binding site [40,60,61]. As illustrated in Figure 11, there is some
overlap between Site 1 and Site 2, and the common region between these sites involves residues that
are both parts of helices TM3 (Asp155 and Ser159) and TM6 (Trp336 and Phe339). [40]. In terms of
difference of these sites, it mainly lies in those residues which participate in the interactions of the
ligand-receptor, such as H-bond, π-π stacking and hydrophobic interaction, etc. Analysis of Table 2
leads us to consider a conventional antagonist binding cavity (Site 2), where these binding modes
share same characteristics with those H-bond interactions and simultaneously most of the ligands
occupy approximately similar areas constituted by hydrophobic residues.

Molecules 2017, 22, 1064 16 of 21 

 

overlap between Site 1 and Site 2, and the common region between these sites involves residues that 
are both parts of helices TM3 (Asp155 and Ser159) and TM6 (Trp336 and Phe339). [40]. In terms of 
difference of these sites, it mainly lies in those residues which participate in the interactions of the 
ligand-receptor, such as H-bond, π-π stacking and hydrophobic interaction, etc. Analysis of Table 2 
leads us to consider a conventional antagonist binding cavity (Site 2), where these binding modes 
share same characteristics with those H-bond interactions and simultaneously most of the ligands 
occupy approximately similar areas constituted by hydrophobic residues. 

 

Figure 11. The sterically accessible binding pockets within the 5-HT2A receptor regarded as Site 1 
(agonist site) and Site 2 (antagonist site) [40,60]. 

Observably, in the case of the amino acid profile settled around compound 13, the pocket that 
the small ligand is docked into conforms well to Site 2. Besides, with regard to all docking structures 
of these antagonists that bind to Site 2, their docking modes can be divided into two types, namely 
plane or long-chained configurations. 

In light of those compounds adopting the fist docking mode, i.e., the plane configuration, they 
mainly include dibenzocycloheptatriene, dihydroanthracene and aporphine derivatives, represented 
by cyproheptadine, AMDA and antagonist 7b, respectively. For instance, AMDA is an organic 
compound as a selective antagonist for 5-HT2A receptor, and the binding mode of AMDA has been 
disclosed by Runyon et al. (No. 2) in Figure 12A, where the homology model was built based on the 
crystal structure of bovine rhodopsin (PDB entry 1U19:A) used as a template [40]. As shown in Figure 
12A, the proposed binding mode of AMDA encompasses H-bonding and hydrophobic interactions. 
The ammonium substituent of AMDA interacts with not only Asp155 but also the backbone carbonyl 
O-atom of Cys227. Furthermore, the docked ligand solution also forms close hydrophobic contacts 
with Val366 [40]. In terms of other plane-type 5-HT2A antagonists, cyproheptadine from the work of 
Westkaemper et al. (No. 1) and antagonist 7b from the work of Ponnala et al. (No. 6) are both located 
at Site 2 which contains hydrophobic residues Phe339 and Phe340, and a strong H-bond is also 
formed between the prominent residue Asp155 and ligand. 

As to those molecules adopting the second binding mode, the long-chained configuration, they 
mostly contain piperidine and piperazine derivatives, such as haloperidol, ketanserin, antagonist 12, 
antagonist 5g and spiperone. For example, Sencanski et al. (No. 5) utilized a docking process with a 
homology model of 5-HT2A receptor constructed with the crystal structure of β2-adrenergic receptor 
(PDB entry 3D4S) [43]. Antagonist 12, a long-chained arylpiperazine-like ligand, was investigated on 
its binding mode in their work, as depicted in Figure 12B. Their docking results show that antagonist 
12 forms various interactions with 5-HT2A receptor: H-bond with Asn343, salt bridge between ligand 
and Asp155, and another H-bond with Ser159 and multiple π-π interactions with the binding pocket 
formed by Trp336, Phe339 and Tyr370 (Figure 12B), which has some similarities with our docking 
result. Moreover, hydrophobic residues surrounding the other parts of antagonist 12’s structure 
include Leu123, Ala230, Val233 and Phe234. Therefore, due to the fact that antagonist 12 and 
compound 13 belong to the same class of arylpiperazines, their binding constitutions in 5-HT2A 
receptor are similar. In addition, by docking summary of other long-chained ligands, a few similar 

Figure 11. The sterically accessible binding pockets within the 5-HT2A receptor regarded as Site 1
(agonist site) and Site 2 (antagonist site) [40,60].

Observably, in the case of the amino acid profile settled around compound 13, the pocket that the
small ligand is docked into conforms well to Site 2. Besides, with regard to all docking structures of
these antagonists that bind to Site 2, their docking modes can be divided into two types, namely plane
or long-chained configurations.

In light of those compounds adopting the fist docking mode, i.e., the plane configuration, they
mainly include dibenzocycloheptatriene, dihydroanthracene and aporphine derivatives, represented by
cyproheptadine, AMDA and antagonist 7b, respectively. For instance, AMDA is an organic compound
as a selective antagonist for 5-HT2A receptor, and the binding mode of AMDA has been disclosed by
Runyon et al. (No. 2) in Figure 12A, where the homology model was built based on the crystal structure
of bovine rhodopsin (PDB entry 1U19:A) used as a template [40]. As shown in Figure 12A, the proposed
binding mode of AMDA encompasses H-bonding and hydrophobic interactions. The ammonium
substituent of AMDA interacts with not only Asp155 but also the backbone carbonyl O-atom of Cys227.
Furthermore, the docked ligand solution also forms close hydrophobic contacts with Val366 [40].
In terms of other plane-type 5-HT2A antagonists, cyproheptadine from the work of Westkaemper et al.
(No. 1) and antagonist 7b from the work of Ponnala et al. (No. 6) are both located at Site 2 which
contains hydrophobic residues Phe339 and Phe340, and a strong H-bond is also formed between the
prominent residue Asp155 and ligand.

As to those molecules adopting the second binding mode, the long-chained configuration, they
mostly contain piperidine and piperazine derivatives, such as haloperidol, ketanserin, antagonist 12,
antagonist 5g and spiperone. For example, Sencanski et al. (No. 5) utilized a docking process with
a homology model of 5-HT2A receptor constructed with the crystal structure of β2-adrenergic receptor
(PDB entry 3D4S) [43]. Antagonist 12, a long-chained arylpiperazine-like ligand, was investigated on
its binding mode in their work, as depicted in Figure 12B. Their docking results show that antagonist
12 forms various interactions with 5-HT2A receptor: H-bond with Asn343, salt bridge between ligand
and Asp155, and another H-bond with Ser159 and multiple π-π interactions with the binding pocket
formed by Trp336, Phe339 and Tyr370 (Figure 12B), which has some similarities with our docking
result. Moreover, hydrophobic residues surrounding the other parts of antagonist 12’s structure include
Leu123, Ala230, Val233 and Phe234. Therefore, due to the fact that antagonist 12 and compound 13
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belong to the same class of arylpiperazines, their binding constitutions in 5-HT2A receptor are similar.
In addition, by docking summary of other long-chained ligands, a few similar effects like H-bond,
π-π stacking, salt bridge, cation-π and hydrophobic interaction are also observed in No. 3, 4, 7, 8, 9 as
listed in Table 2. All these interactions tend to be necessary for the high-affinity binding of piperidin
and piperazine derivatives.
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3.6. Design of New 5-HT2A Antagonists

According to 3D-QSAR, docking and MD results, the arylpiperazine derivatives’ crucial structural
actors influencing the antagonism potency are intuitively summarized in Figure 13. Based on this
information, we further designed a set of new molecules and estimated their potential activities using
our optimal CoMSIA model. At present, these modifications are concentrated on regions 1–5 in the
most potent compound 13 as the template. As revealed in Figure 14, eight molecules (ND01-08)
possess potent antergic activities against 5-HT2A receptor and larger pIC50 than that of the template
compound 13.
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In the current work, to investigate the specific binding modes of 109 arylpiperazine scaffold-
based 5-HT2A antagonists with the target protein, a comprehensive in silico study was carried out by 
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docking and MD simulation. Our findings are summarized as follows: 
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(3) The scaffold of antagonists fits into the conventional Site 2 of 5-HT2A receptor with an 
approximately “V” conformation and follows the second binding mode, which is fixed by three 
H-bonds with Asp155 and Ser159, two π-π stacking interactions with Try151 and Phe340, and 
hydrophobic interaction. 

(4) Several new potential arylpiperazine antagonists of 5-HT2A receptor were also newly-designed 
based on these results. 
All in all, the above CoMSIA model, docking and MD obtained results associate well with each 

other, and all these in silico models may facilitate the modification and design of novel 5-HT2A 
antagonists as promising antidepressant drugs. 
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Since our present work mainly focuses on the in silico study of the SAR of arylpiperazine
derivatives as 5-HT2A antagonists and the exploration of their binding mechanism by modeling
results, the experimental evaluation for verifying these novel-designed molecules’ activities is our
further work.

4. Conclusions

In the current work, to investigate the specific binding modes of 109 arylpiperazine scaffold-based
5-HT2A antagonists with the target protein, a comprehensive in silico study was carried out by
an integrated use of a series of computational techniques including 3D-QSAR analysis, molecular
docking and MD simulation. Our findings are summarized as follows:

(1) The optimal CoMSIA model exhibits a statistically predictable ability with Q2 = 0.587,
R2

ncv = 0.900 and R2
pre = 0.897, proving its wonderful reliability and predictability.

(2) Bulky groups at R1 position and ring C, electropositive substituents at R3 and ring B,
electronegative groups at R1, R2 positions and ring C, H-bond donor substituents at linker
chain, H-bond acceptor groups at 10-position, ring A and ring B are favorable to increase the
inhibitory activity.

(3) The scaffold of antagonists fits into the conventional Site 2 of 5-HT2A receptor with an
approximately “V” conformation and follows the second binding mode, which is fixed by three
H-bonds with Asp155 and Ser159, two π-π stacking interactions with Try151 and Phe340, and
hydrophobic interaction.

(4) Several new potential arylpiperazine antagonists of 5-HT2A receptor were also newly-designed
based on these results.

All in all, the above CoMSIA model, docking and MD obtained results associate well with each
other, and all these in silico models may facilitate the modification and design of novel 5-HT2A

antagonists as promising antidepressant drugs.

Supplementary Materials: The following are available online. Table S1: molecular structures and pIC50 values of
arylpiperazine derivatives.
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