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Abstract

Motivation: RNA sequencing and other high-throughput technologies are essential in understanding complex dis-
eases, such as cancers, but are susceptible to technical factors manifesting as patterns in the measurements. These
batch patterns hinder the discovery of biologically relevant patterns. Unbiased batch effect correction in heteroge-
neous populations currently requires special experimental designs or phenotypic labels, which are not readily avail-
able for patient samples in existing datasets.

Results: We present POIBM, an RNA-seq batch correction method, which learns virtual reference samples directly
from the data. We use a breast cancer cell line dataset to show that POIBM exceeds or matches the performance of
previous methods, while being blind to the phenotypes. Further, we analyze The Cancer Genome Atlas RNA-seq
data to show that batch effects plague many cancer types; POIBM effectively discovers the true replicates in stomach
adenocarcinoma; and integrating the corrected data in endometrial carcinoma improves cancer subtyping.
Availability and implementation: https://bitbucket.org/anthakki/poibm/ (archived at https://doi.org/10.5281/zenodo.

6122436).
Contact: antti.e.hakkinen@helsinki.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput molecular technologies are central to understand-
ing complex diseases, such as cancers. However, datasets are often
aggregated from several hospitals, treated with different protocols,
and analyzed with different measurement technologies, which leads
to unwanted factors creeping into the data, manifesting in experi-
ment specific (‘batch’) patterns (Johnson et al., 2007; Leek et al.,
2010). As the patterns in molecular profiles are directly used, e.g.
discovering cancer subtypes and signatures (Levine et al., 2013; The
Cancer Genome Atlas Research Network, 2014, 2015, 2017), the
batch effects can have vast implications on the interpretation and re-
producibility of such studies. Overcoming the batch effect is particu-
larly important in large data collections, such as The Cancer
Genome Atlas (TCGA) (Weinstein et al., 2013) and Genome Tissue
Expression (Lonsdale ez al., 2013) projects, where the data origi-
nates from several hospitals and have varying data layers.

The impact of batch effects on the measurement data has been
acknowledged (Johnson et al., 2007; Leek et al., 2010) and to some
extent quantified (Buckley et al., 2017; Lauss et al., 2013; Rasnic
etal.,2019; Wang et al., 2018). Still, standard practices resort to fil-
tering (Levine ez al., 2013; The Cancer Genome Atlas Research
Network, 2014, 2015, 2017) or statistical post-hoc analysis (The
Cancer Genome Atlas Research Network, 2011). These, however,
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limit the statistical power and might bias the results. Batch effects
can be mitigated using experimental design techniques (Katayama
et al., 2019). Unfortunately, this is only practical for specific, new
experiments, and not for the large existing data collections or inte-
gration of different experiments. A complementary technique is to
account for the batch effects computationally. For example, most
differential expression callers, such as edgeR (Robinson et al., 2010)
and DESeq2 (Love et al., 2014), can adjust the analysis for the pres-
ence of such factors. However, these models might be arduous to in-
tegrate into more complex analysis algorithms, such as network
inference, and as a result, modular batch correction algorithms have
been developed to preprocess the data for other analyses (Johnson
etal., 2007; Leek, 2014; Risso et al., 2014; Zhang et al., 2020).

A current limitation with all computational batch correction
algorithms is that for the correction to be unbiased, both the batch
labels and the experimental design factors must be known (Johnson
et al., 2007; Leek, 2014; Risso et al., 2014; Zhang et al., 2020).
While this is possible for controlled experiments, it is impractical for
patient derived samples, where the phenotypes are not known and
still subject to the study. Moreover, many of the current methods
are based on Gaussian models designed for microarray data, which
are inherently biased for low-count sequencing data, characteristic
e.g. to single-cell RNA-seq (Svensson et al., 2018), and even at best
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impose a noise floor on the more sensitive molecular techniques neg-
ating their advantages. This is in contrast to e.g. differential expres-
sion methods, which exploit count models for improved sensitivity
(Love et al., 2014; Robinson et al., 2010).

Here, we present a batch correction method POIsson Batch cor-
rection through sample Matching (POIBM), which is based on an
idea of inferring virtual reference samples from the data.
Consequently, special experimental designs or design factors are not
required since POIBM automatically learns these from the data.
This enables unbiased correction on complex patient data where the
phenotypes are not known and exact replicates are not available.
POIBM is designed to be optimal for RNA-seq count data, similar
to ComBat-seq (Zhang et al., 2020), which has been shown to out-
perform the Gaussian alternatives on RNA-seq data.

We use an engineered breast cancer cell line experiment
(Rahman et al., 2017) to show that POIBM exceeds the performance
of previous methods, matching that of ComBat-seq (Zhang et al.,
2020), while being blind to the phenotypic labels unlike the other
methods. Further, we use POIBM to correct the processing batch
effects in the TCGA RNA-seq datasets across all cancers. We show
that batch effects plague many cancer types; demonstrate that
POIBM effectively discovers the existing replicates in stomach
adenocarcinoma; and that integrating the POIBM-corrected data
improves clinical subtyping in endometrial carcinoma.

2 Materials and methods
2.1 Modeling of RNA-seq data

Count data produced by a random process, such as stochastic gene
expression (Raj and van Oudenaarden, 2008) or RNA-seq sampling,
is expected to statistically follow Poisson distribution. In practice,
the measurements exhibit Poisson-like distributions with more
(Marioni et al., 2008; McCarthy et al., 2012, e.g. Poisson mixtures)
or less (e.g. negative autoregulation, systematic artifacts) variance.
These can be modeled either using a scaled Poisson (Hakkinen et al.,
2021) or a negative binomial distribution, the latter of which is suit-
able for the high variance case (e.g. mixtures of Poisson distribu-
tions). Neither is physically obvious, but for the increased flexibility
for low variance data and the analytical simplicity we use the former
(Hakkinen et al., 2021).

In general, if X;; € Zx( represent the read counts of an expres-
sion matrix, where the index i € Zj; ,, runs over the 7 genes, and
the index j € Zj;,,,) over the n samples, we consider a statistical
model of a batch of RNA-seq data as follows:

X,']' ~ P(/L = C; Uj 1//') (1)

where P(1) represents a Poisson distribution with the rate of 1 €
Rso, ¢; € Ryg are experiment-specific multiplicative batch coeffi-
cients (i.e. increased or reduced affinity for specific genes), #;; € R>o
are the underlying batch-free expression profiles, and v; € R3¢ are
total RNA factors (e.g. amount of sequenced material, amplification
factors).

By definition, both the batch coefficients ¢; and the total RNA
factors v; are independent of the sample and gene, respectively, and
can be identified from a sufficiently sized dataset. Meanwhile, for
the model to be identifiable, constrains on the payload model #;
must be imposed. Typically, either constant profiles (i.e. a rank-1
matrix factorization) or a low-rank known linear combination is
used (Johnson et al., 2007; Risso et al., 2014; Zhang et al., 2020),
but a low-rank blind matrix factorization, as in RNA-seq decompo-
sitions (Hakkinen et al., 2021), is possible.

2.2 Sample matching across batches

A challenge for batch correction is the inherent heterogeneity and
lack of matching replicates between batches. We establish a map-
ping between each source sample and a virtual target sample, which
is a probabilistic combination of the target samples. This way, the
samples that map well will have a higher impact and for the ones
that do not, the impact to the correction coefficient will average out,

and a suitable ‘replicate’ can be interpolated instead of requiring an
exact one to exist.

Let X, be the read counts for the target and Yj; for the source
experiment, as specified above. Following Equation (1), the batch
model with virtual sample matching reads as follows:

Xir. ~ P(ciuijvy,)  with probability — wy;

Y,'/' ~ /P(M,/'Uy/)

1 Ny 1 ny
g 2 @ = 1o 2w =1

such that

where ¢; represent the multiplicative batch coefficients from the
source space to the target space (i.e. the batch correcting transform-
ation); u;; are the expression profiles of the matching pairs; and vy,
and v,, are the total RNA factors for the two datasets X and Y, re-
spectively; as in above. Further, wy; € [0,1] for k € Zyy ), j € Zpy )
are the sample matching weights. The marginal convexity imposed
on the matching weights keeps the sample matching from deteriorat-
ing into independent sets. Of note, the data could be also mapped
into any common space, such as that of the geometric averages by
substituting u;; — \/c_,-_lui,-.

When the data feature samples for which a matching sample can-
not be interpolated, such as when the datasets are known to contain
major unique phenotypes each, a trimming procedure is necessary: the
model is imposed only on a fraction of samples p, and p, on the data-
sets X and Y, respectively. If p, and p, are chosen to be a lower bound
of the fractions of shared phenotypes, the scheme remains unbiased.

2.3 Implementation and parameters

The model of Equation (2) can be optimized through multistage ex-
pectation maximization (EM). The details for scaled Poisson models
are discussed in Hakkinen ez al. (2021) and the derivation is given in
the Supplementary Material. Specifically, the EM updates for the
parameters are:
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which make the role of the virtual target as a weighted combination
of the target samples obvious. The weights wy; are updated such
that:

wi; o< exp Y1 (X log(ciuijvx, ) — ci wij vy, +
Yijlog(uijvy,) — uijvy,
— (Xt log(Xix) — Xir+
Yy log(Yy) — Yy))

(4)

and that the convexity constraints in Equation (2) are satisfied. If trim-
ming is used, only the specified fraction of top values are set according
to Equation (4), and the remaining wy; are set to zero. The updates of
Equations (3) and (4) are iterated to convergence, which guarantees a
local maximum of the likelihood of Equation (2).

The algorithm inputs the target read count matrix X, the source
read count matrix Y, and some parameters: maximum number of


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac124#supplementary-data

2476

S.Holmstrém et al.

EM iterations, number of restarts, and fraction of target p, and
source samples p,, to be used. The restarts are used to combat local
solutions, which occur particularly when trimming is used. The
restarts use uniform random initial assignment of the trimmed sam-
ples. The other values are initialized as ¢; = 1, vy, x > Xj and

m i=1
vy, o¢ 3 Y. We use 100 iterations, 20 restarts and p, = p, = 50%
i=1

unless otherwise mentioned.

The model directly provides the batch coefficients c;, and the total
RNA factors vy, and vy, for each dataset. Moreover, the weights 10y,
hold information on to which target sample each source sample is
being mapped. The batch correction from the source to the target
space is finally applied by multiplying in the batch coefficients:

Yj=cYj (%)

providing both datasets X and Y in the target space, but as the esti-
mated batch coefficients ¢; are explicitly estimated, out-of-sample
mapping of future data is also possible.

2.4 Breast cancer cell line data

A specially constructed RNA-seq experiment, as proposed in
Zhang et al. (2020), was used for quantitative method comparison.
The data consists of three batches of primary breast tissue that has
been used to study breast cancer progression (McQuerry et al.,
2019; Rahman et al., 2017). Each batch features case samples with
an overexpression of a specific growth factor receptor network
oncogene, induced by transfection. Each batch also contains con-
trol samples that have been transfected with a vector that expresses
a green fluorescent protein. Batch 1 (GEO: GSE83083) has 5 sam-
ples overexpressing HER2 with 12 controls; batch 2 (GEO:
GSES59765) has 6 samples overexpressing EGFR with 6 controls;
and batch 3 (GEO: GSE83083) has 9 samples overexpressing
KRAS (G12V mutant) with 9 controls. Genes with zero expression
in all samples of any batch were removed. The final matrix con-
tained 47 samples and 18 013 genes. The samples can be divided
into either three technical batches or four phenotypes, i.e. HER2,
EGEFR, KRAS or control.

After applying each method, the batch corrected data were
scaled into counts per million (CPM) and log-transformed for com-
parison using principal component (PCA) and variance analysis
(ANOVA) as in Zhang et al. (2020).

2.5 The Cancer Genome Atlas data

The Cancer Genome Atlas (TCGA) level 3 RNA-seq data for each
cancer type was downloaded from the Broad GDAC Firehose portal
(https://gdac.broadinstitute.org/) on March 3, 2021. Genes not present
in all datasets were removed. In total, the data consisted of 59 data-
sets, 37 cancer types, 17 959 samples (some of which occurred in mul-
tiple datasets) and 21 184 genes. The data was split into 6 batches by
the processing institute, pipeline and sequencing platform.

2.6 Comparison with previous methods

The alternative methods used for evaluation were original ComBat
(Johnson et al., 2007), ComBat-seq (Zhang et al., 2020) (both of sva
v3.38.0), RUVSeq v1.24.0 (Risso et al., 2014) and PRISM v0.9.0-7
in rank-1 or linear factorization mode (Hakkinen et al., 2021).

Like POIBM, each method assumes a multiplicative gene spe-
cific batch coefficients in the raw (count) RNA space. The meth-
ods differ in either the unmodeled variation (error model) or in
the retained modeled variation (payload model). ComBat and
RUVSeq use Gaussian error models in log-RNA space, while
ComBat-seq uses a negative binomial error model and PRISM
and POIBM use scaled Poisson models in raw RNA space.
Specifically, the last three methods model explicitly discrete and
heteroscedastic RNA-seq data. ComBat, ComBat-seq and
RUVSeq allow a known linear payload (e.g. linear group fac-
tors), while more general methods like PRISM can further learn
these factors (i.e. bilinear model), and POIBM uses probabilistic
sample matching.

As for the input, ComBat requires the batch labels, the groups
and a log-transformed count matrix. The output is a corrected ma-
trix in the log-space. ComBat-seq uses the batch labels, groups and
the count data matrix, while the parameter ‘shrink’ was set to false
(default). The output is a corrected matrix in the raw count space.
RUVSeq uses the groups and the count matrix, and the number of
factors of unwanted variation k was set to 1. PRISM rank-1 factor-
ization inputs one batch at a time and outputs the marginal gene
and sample coefficients as in Equation (1), and the gene coefficient
ratios were used for transformation as in Equation (5). PRISM in
linear mode uses a design matrix encoding the batch and group
labels. For POIBM and PRISM, the largest batch was used as the
target space.

3 Results and discussion

3.1 POIBM: batch correction of heterogeneous RNA-seq

samples through latent sample matching

POIBM is a novel method for correcting batch effects in RNA-seq
data between heterogeneous populations. The novelty of the method
is that two types of heterogeneity are tolerated: (i) distinct pheno-
types in the samples composing the dataset—it is only necessary that
a sufficient number of virtual target samples can be interpolated
from a dataset; and (ii) stochasticity (noise) due to natural gene ex-
pression variability and RNA-seq sampling. Moreover, the underly-
ing phenotypes need not to be known a priori, but are learned in the
process, which means that special experimental design or replicate
samples are not necessary.

POIBM utilizes only two expression matrices of read counts, a
target matrix and a source matrix. Each sample in the source matrix
is compared with all samples in the target matrix, from which a vir-
tual target sample is constructed (see Fig. 1 and Section 2). The

Global correction methods
PC2

Result

PC2

x target batch
o source batch

PC2

PC1

Fig. 1. An overview of traditional batch correcting methods and POIBM. The data
consists of two batches (0’s and x’s). There are two subpopulations within each
batch (colors). The green subpopulations represent the same phenotype (e.g. con-
trols), while the blue and red populations are batch specific (e.g. cases). The upper
panels show that using the global population statistics (e.g. mean, solid circles in the
figure) to find the correction coefficients overcorrects the shared control subpopula-
tion and renders the unique subpopulations indistinguishable. The lower panels
show how POIBM overcomes this by mapping each sample to a weighted virtual
target sample, allowing the batch correction coefficient to be inferred only from the
well matching subpopulations, which correctly harmonizes the shared subpopula-
tions but leaves the unshared phenotypic differences intact
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batch effect is then inferred from the discrepancy between the source
samples and their virtual targets—rather than the dataset averages—
and the two steps are iterated to convergence. The procedure produces
the batch correction coefficients for each gene, allowing mapping the
source data to the target space; a weight matrix representing the sam-
ple matching; the total RNA factors for each sample; and the inferred
underlying shared expression profiles, each of which can be output.
Our implementation is freely available at https:/bitbucket.org/
anthakki/poibm/ under the simplified BSD license.

3.2 Quantitative comparison with previous methods

We performed a quantitative comparison with existing methods on a
specially designed breast cancer cell line RNA-seq experiment that
was published in Rahman e al. (2017) and used by Zhang et al.
(2020) to evaluate different batch correction methods. These data con-
sist of three batches with a shared control subpopulation mixed with a
unique case subpopulation each (engineered to overexpress HER2,
EGFR or KRAS), as detailed in Section 2. The methods used in the
comparison were ComBat (Johnson ez al., 2007), ComBat-seq (Zhang
et al., 2020), RUVSeq (Risso et al., 2014) and PRISM in rank-1 and
linear modes (Hakkinen et al., 2021), as detailed in Section 2.

We discovered that with a trimming factor of 50%, POIBM can
perfectly identify the shared control samples (zero weight on the un-
shared samples), and infer the batch coefficients from these. This is un-
like to the other methods, which require known batch labels, which
were provided for the analysis. While running POIBM without trim-
ming produced unsatisfactory results as the similar EGFR and control
phenotypes tended to get intermixed, the exact choice of the trimming
factor was not found to be important, and trimming to ~30% to 60%
produced qualitatively similar results (Supplementary Fig. S1).
Similarly, the choice of the target space impacted accuracy but was
not qualitatively important (Supplementary Fig. S1).

Our results indicate that POIBM is effective in removing the un-
wanted batch variance, while the biological variance is left intact
(Fig. 2f and 1). The principal component analysis (PCA) projections
of the corrected data (Fig. 2a—f) indicate that after batch correction
the control samples of each batch cluster together, although the
EGFR cases remain mixed with the control samples. However,
the latter is exhibited by all of the methods, with and without both
the batch and phenotypic information, suggesting that the pheno-
types are in fact partly overlapping.

Quantitatively, POIBM retains a similar level of phenotypic
(condition) variance as ComBat-seq (Fig. 2b and h) and ComBat
(Fig. 2a and g), while being equally effective in removing batch-
related variance (Table 1), as quantified by a set of one-tailed

Bartlett’s test for equal variances. Meanwhile, RUVSeq appears
(Fig. 2d and j) to be poor in removing the batch-related variance al-
together, possibly disturbed by the correlation between the condition
and batch labels, as it appears to be performed well in retaining the
phenotypic variance. As an opposite reference, the PRISM rank-1 cor-
rection (Fig. 2e and k) is the most effective in removing batch variance
but results in both the condition as well as the batch-specific variance
(cf. Fig. 1) to be eliminated. POIBM performs most similar to PRISM
in linear mode, which is expected on these data. The runtimes are
tabulated in Supplementary Table S1.

The results suggest that POIBM can significantly outperform both
RUVSeq and the PRISM rank-1 on these data, and match the perform-
ance of the newest state-of-the-art methods such as ComBat-seq, with
respect to both removing batch specific variation and retaining pheno-
typic variance. However, the main difference here is that ComBat-seq,
ComBat, RUVSeq and linear PRISM are informed of which samples
are controls and which are not (known, or non-blind phenotypic fac-
tors), while POIBM discovers the phenotypic labeling automatically
(unknown, or blind phenotypic factors). Despite this lack of informa-
tion, POIBM still performs no worse. Compared to rank-1 PRISM,
which uses the same RNA-seq model than POIBM but lacks the
phenotypic modeling, we conclude that the novel sample matching ap-
proach is the key to the superior performance.

The methods were also compared using Monte Carlo simulations
as detailed in the Supplementary Material and summarized in
Supplementary Figure S2.

3.3 Batch correction of TCGA data

3.3.1 Processing batches in TCGA data

The Cancer Genome Atlas (TCGA) is a vast collection of molecular
data from various cancer types. Despite the data being collected
from various sources and analyzed at various institutions, studies of
its batch effects are scarce. In most studies, the analysis is limited
into a particular subset of samples to mitigate batch effects (Levine
et al., 2013; The Cancer Genome Atlas Research Network, 2014,
2015, 2017), or outright ignored.

On the TCGA level 3 expression data, one obvious source of
batch effects is that the data are sequenced using either Illumina GA
(‘illuminaga’) or HISEQ (‘illuminahiseq’) sequencing system, were
processed using an older (‘rnaseq’, v1) or a newer pipeline (‘rna-
seqv2’, v2), and were processed either at University of North
Carolina (‘unc.edu’) or at Canada’s Michael Smith Genome Sciences
Centre (‘bcgsc.ca’). These combinations yielded a total of six
batches, a shown in Figure 3.

a PC1 b PC1 c PC1 & Batch1 | e PC1 f PC1
Unadjusted ComBat ComBat-seq RUVSeq 0O Batch2 PRISM rank-1 POIBM
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Fig. 2. PCA projections and fraction of explained variance of the uncorrected and batch corrected data using various methods in the breast cancer cell line dataset, the different
colors encoding batches and markers phenotypes. (a—f) Data projected to first two principal components (PC). (a) Unadjusted, (b) ComBat, (c) ComBat-seq, (d) RUVSeq, (e)
PRISM rank-1, (f) POIBM. (g-1) Kernel density estimates (box kernel with a bandwidth of 0.02) of fraction of variance explained by the phenotypic variation (Condition),
batch (Batch), or both (Both), over all the 18 013, with the six methods, respectively. While lines denote medians. The averages are tabulated in Table 1
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Table 1. Fraction of variance in the data explained by batch, condi-
tion, or a combination of both after applying the different correc-
tion methods

Method Both Condition Batch
Unadjusted 74.0% 35.6% 69.0%
ComBat 28.5% (*) 28.5% (x) 8.51% (*)
ComBat-seq 30.5% (*) 27.5% (x) 12.1% (%)
RUVSeq 52.8% 28.7% (x) 42.0%
PRISM rank-1 22.8% (*) 16.5% (**) 1.68% (**)
PRISM linear 27.3% (*) 26.4% (x) 8.82% (*)
POIBM 27.3% (*) 26.3% (x) 9.96% (*)

Note: The markers after the numbers indicate a significant difference
(P <0.05, Bartlett’s test) between the methods: (*) significant difference from
the unadjusted, no differences within the cases; (x) no differences within the
cases; (**) significant difference from the unadjusted and all the others.

llumina HISEQ/V1/UNC
llumina HISEQ/V2/UNC
lllumina GA/V1/UNC
lllumina GA/V2/UNC
lllumina HISEQ/V1/BCGSC

llumina GA/V1/BCGSC

Fig. 3. Processing batches and their dissimilarity in TCGA data across all the can-
cers. Directed dissimilarity between the processing batches of TCGA data, as esti-
mated from the magnitude of variation of the batch correction factors using
POIBM, along with their hierarchical clustering. Numbers reflect mean batch coeffi-
cient fold-change

We performed a pairwise estimation of the batch effects in each
batch-pair using POIBM, which quantifies the extent of batch effects
between the different batches. Correction coefficient of unity is indi-
cative of a lack of batch effect, while large deviations suggest more
drastic batch effects. The deviation of the logarithmic batch coeffi-
cients from unity over all genes were consequently used as distances
between the batches in a hierarchical clustering. The differences be-
tween the clusters (Fig. 3) indicate that the processing pipeline has
have the least effect of the three, while both the sequencing platform
and the processing institute exhibit larger differences. This is in line
with previous findings that suggest that experimental factors rather
than computational algorithms are the major source of batch
induced bias (Rasnic et al., 2019; Wang et al., 2018). Still, the batch
effect between any set is no less than ~1.23x on average (cf. Fig. 3),
suggesting that batch correction is necessary for accurate expression
quantification.

By cancer type (Supplementary Fig. S3) the implications of these
batch effects were discovered to group as follows: (i) 17 cancer types
only feature data from a single batch. For these, the batch correction
might be less urgent, unless the study includes integrative analysis
with other collections or across the cancer types; (ii) Data have been
processed with a newer pipeline (v2) but contain also the v1 data:
BLCA, BRCA, HNSC, KIRP, LIHC, LUAD and THCA. For these,
correcting the batch effects might be appealing, as several of the ori-
ginal TCGA reports were conducted with the older, reduced dataset
(Levine et al., 2013; The Cancer Genome Atlas Research Network,
2014, 2015, 2017). Also, LUSC is similar in that there are less sam-
ples in the newer batch, and for ESCA and OV the data are proc-
essed at a different institutions; (iii) Data from multiple batches with
high overlap between the datasets: LAML and STAD. (iv) Data
from multiple batches, but with a small overlap: COAD, READ and

UCEC. In this group, the need for batch correction is more urgent,
as combining the datasets can provide up to ~67.6% more samples,
increasing the analytical power.

3.3.2 Replicate discovery in stomach adenocarcinoma

We inspected the POIBM established sample matchings in stomach
adenocarcinoma (STAD) (The Cancer Genome Atlas Research
Network, 2014). This cancer type is exemplary in the sense that the
TCGA data features samples from three different batches: Illumina
GA/rnaseq v1/BCGSC (36 samples), HISEQ/v1/BCGSC (271 sam-
ples) and HISEQ/v2/UNC (450 samples), with a large overlap be-
tween the samples of ~67.1%. This makes it a good candidate in
evaluating whether similar cancer patient samples can be automatic-
ally discovered by POIBM.

Between the clusters, we found that ~95.7% of the mapping
weight (~291 samples) of the intersecting samples (304 samples) is
indeed on the matching samples, which suggests that POIBM is cap-
able in automatically identifying the replicates across the batches.
The average mapping entropy for the intersecting source samples is
~1.23 target samples, while for the non-intersecting source samples
is ~264 target samples, indicating that the virtual targets for the
intersecting samples are mapped nearly one-to-one, while the non-
intersecting samples are mapped nearly uniformly to the whole
target population (cf. Fig. 1), as expected in the case of a mixed
population of replicates and non-replicates. As a result, the batch
coefficients are correctly inferred weighting in mostly the replicates
(~216x weight), as one would do in a perfectly informed approach.

Similar findings were made regarding the TCGA acute myeloid
leukemia (LAML) data, as detailed in the Supplementary Material.

3.3.3 Integration of uterine corpus endometrial carcinoma
expression subtypes across batches

Next, we analyzed the data for uterine corpus endometrial carcin-
oma (UCEC) (Levine et al., 2013). The TCGA data for UCEC fea-
tures two batches: Illumina GA/v2/UNC (381 samples), HISEQ/v2/
UNC (201 samples), and an overlap of 1 sample (~0.262%). Again,
these two clusters are quite distant in the overall batch effect vari-
ation (Fig. 3).

Previously, Levine et al., (2013) performed a clustering of 333 of
the samples, reporting three expression subtypes dubbed as ‘mitotic’,
‘hormonal’” and ‘immunoreactive’. The samples in this study were
from the Illumina GA/v2/UNC dataset, and presumably not all the
data were available at the time of the analysis. We first verified that
we can reproduce the clustering in Levine et al., (2013). We were
able to capture both the published labeling (Fig. 4a) and the histo-
logical features (Fig. 5a) as described in the work, though slight dif-
ferences remained.

Next, we performed clustering using all the UCEC samples avail-
able in TCGA, including new samples and samples in the newer
batch, for a total of 581 (versus 333 samples). We performed the
clustering for both uncorrected data (Fig. 4b), which is expected to
be susceptible to batch effects, and for batch corrected data using
POIBM (Fig. 4c). Both the clustering on the original 333 samples
and on the corrected data are able to well recover each of the clus-
ters (P-values of 2.99 x 107" and 5.97 x 10~* in a one-tailed multi-
nomial test for diagonal enrichment). Meanwhile, clustering the
uncorrected data was unable to recover the clustering of Levine
et al., (2013), neither with three (Fig. 4b; P-value 1) nor with four
clusters (Supplementary Fig. S4a; P-value 1), but had suitable over-
lap with five clusters (Supplementary Fig. S4b; P-value of
3.54 x 1072%). This indicates that the clustering in Levine et al.,
(2013) can be reproduced with the full dataset, but only when batch
corrected, unless a much higher number of clusters, essentially mod-
eling each batch and cluster combination, are used.

We found that the clusterings of the uncorrected data exhibit
strong batch specificity (P-values > 0.96 for specificity of 95% or
more in a one-tailed binomial test, or equivalently specificity of
99.6% or more at a significance level of 0.05). This does not occur
in the batch corrected clustering (P-value of 1.94 x 107", or signifi-
cance for specificity of 81% or more). This suggests that the batch
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Fig. 4. Reclustering of the TCGA UCEC samples. The classes ‘mitotic’,
‘hormonal’ and ‘immunoreactive’ represent those from Levine et al. (2013),
while the clusters on the columns our reproduction. (a) Our best effort of repro-
ducing the Levine et al.’s (2013) clustering, using only the same samples that
were used in the study. (b) Clustering of all available TCGA UCEC dataset sam-
ples, across both batches, with no batch correction. (c) Clustering of all TCGA
UCEC samples, with batch effects corrected using POIBM. The rows and col-
umns with ¥ represent marginal sums of the original 333 samples, and the ones
named after the batches all samples in each. Red circles indicate best matching
clusters
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Fig. 5. Clinical features of the TCGA UCEC expression clusters. Tumor histology
and grade by the clusters: (a) for the 333 samples as in Levine et al. (2013), (b) for
clustering all TCGA UCEC samples without batch correction and (c) for clustering
all TCGA UCEC samples with batch effects corrected using POIBM. The numbers
in parentheses indicate samples of the 333 original samples. Overall survival curves
for the samples stratified by the clustering: (d) for the 333 samples as in Levine et al.
(2013), (e) for clustering all samples without batch correction and (f) for clustering
all samples with batch effects corrected with POIBM, with the inset showing the
survival curves for the 333 original samples

corrected values integrate well across the batches. We also found
that in each case the batches correlate with the clustering (P-values
< 5.74 %1075 in a two-tailed Fisher’s exact test), which suggests
that a batch correction method like POIBM, which models both the
batch and phenotypic effects simultaneously, is necessary to correct
these data, as the populations are not equal in distribution. Also, we
found that for each case the marginals, i.e. the cluster abundances,
change significantly (P-values < 3.1 x 107 in a two-tailed multi-
nomial test for equal distributions), except for the clustering of the
original samples (Fig. 4a; P-value of 0.45), further evidencing that
the addition of the new samples changes the overall population
distribution.

With the new clustering, we examined whether the clinical prop-
erties of the clusters remain comparable to those reported in Levine
et al., (2013). First, we tested the specificity of the serous and grade
3 endometriod histologies to the mitotic cluster (Fig. Sa—c). In the
original data, both of these significantly associate (P-values of
1.02 x 1072 and 2.2 x 10~ for the serous and endometriod grade
3, respectively, in a one-tailed Fisher’s exact test for enrichment),
while in the uncorrected data they do not (P-values of 0.25 and
0.24). The corrected data exhibits association between the serous

histology and the mitotic cluster (P-value of 3.6 x 10733), but the
endometriod grade 3 samples no longer solely associate with the mi-
totic cluster alone (P-value of 0.09; Fig. Sc¢).

We further examined the association of all the histological types
and the grades with each of the three clustering (Fig. 5a—). We
found that all clusterings are significantly associated with the histo-
logical features (P-values < 3.37 x 1073 in two-tailed Fisher’s
exact test), but the association is weakest for the uncorrected cluster-
ing (odds ratio of 1.69) and strongest for the batch corrected cluster-
ing (odds-ratio of 1.74). The odds ratio for the original clustering
sits in the middle at 1.70, indicating that besides the increased sig-
nificance due to increased number of samples, the new data provide
more accurate extraction of clinically associated clusters. Similarly,
the clusterings of the original and the batch corrected data correlate
with the mutational clusters (P-values < 5.3 x 107 in one-tailed
multinomial test for enrichment) and the CNA clusters (P-values
< 8.5 x 1073) reported by Levine et al., (2013), while the clustering
of the uncorrected data does not (P-values > 0.42).

We tested the association with between the clusters and patient
overall survival (Fig. 5d—e). The survival curves stratified by the
clustering significantly differ in all cases (P-values of 5.2 x
1074, 6.4 x 1077 and 2.8 x 107°® for original, uncorrected and
corrected, respectively, in a two-tailed 3-way log-rank test).
However, only for the corrected clustering are all two-way compari-
sons significant (P-values < 0.03), whereas for the original (P-value
of 0.95) and the uncorrected (P-value of 0.21) the mitotic and the
hormonal clusters, respectively, significantly differ from the other
two which are not significant. This further supports the finding that
adding the new, batch corrected data does not only yield more stat-
istical power but also a clinically more refined picture of the two
minor clusters.

We note that the uterine serous tumors share genomic features
with serous ovarian and basal-like breast cancers (Levine et al.,
2013), so it is plausible that the immunoreactive expression subtype
has been overlooked in the original data with respect to the patient
overall survival, as clinically associated immunoreactive subtypes
have been observed in both ovarian (The Cancer Genome Atlas
Research Network, 2011; Verhaak et al., 2013) and breast cancers
(Ciriello et al., 2015). Consequently, our analysis of the full batch
corrected expression dataset facilitates integration with the corre-
sponding genomic data from TCGA, which might provide insights
into the immunoreactive endometrial carcinomas as well.

4 Conclusion

We designed POIBM, an effective method for batch correction of
RNA-seq data that is designed to perform well on heterogeneous
populations and on discrete, noisy RNA-seq data. The uniqueness of
the method is that for each source sample a virtual target sample is
formed from the target dataset, from which the batch coefficients
are inferred. This implies that the matching samples need not to be
known, and replicates need not to exist, but these are learned from
the data. POIBM also models the discrete and heteroscedastic nature
of RNA-sequencing or other count data, which makes it suitable for
low-coverage sequencing data.

We used engineered breast cancer cell line overexpression experi-
ments to show that POIBM can automatically learn the underlying
phenotypic structure and matching replicate samples. Furthermore,
our results indicate that even in the absence of the phenotypic labels
it performs at least as well as the existing methods, which require
such labeling. This is essential for complex datasets like cancer pa-
tient samples where the phenotypes are not known a priori, but are
under investigation from the datasets in question and/or feature
variation even within the samples of the same tumor.

By examining the publicly available TCGA RNA-seq data, we
discovered that many of the cancer types contain their data distrib-
uted over two or more technical batches, and we showed that these
technical factors can disturb the downstream analyses of the data if
used without correction. We harmonized all the 17 959 RNA-seq
samples with the six batches across all the cancer types, which facili-
tates the use of TCGA expression data for more accurate analyses
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and for unbiased comparisons across cancers. Specifically, we
showed that in stomach adenocarcinoma POIBM can accurately
identify the technical replicates, which allows identification of the
implications of the batch effects, while in endometrial carcinoma we
showed that batch harmonization using POIBM is necessary to ex-
tract full clinical power from the expression dataset.

We expect our methodology is indispensable for analyses inte-
grating data from various collections, and even for long-running
data collections, as the sequencing platforms and analysis pipelines
cannot necessary be kept fixed. Our approach generalizes directly to
any count data such as proteomics, and can be influential in advanc-
ing batch correction efforts for other molecular data domains.
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