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This review is devoted to the phenomenon of intermittent hypoxic training and is aimed
at drawing the attention of researchers to the necessity of studying the mechanisms
mediating the positive, particularly neuroprotective, effects of hypoxic training at the
molecular level. The review briefly describes the historical aspects of studying the
beneficial effects of mild hypoxia, as well as the use of hypoxic training in medicine and
sports. The physiological mechanisms of hypoxic adaptation, models of hypoxic training
and their effectiveness are summarized, giving examples of their beneficial effects in
various organs including the brain. The review emphasizes a high, far from being realized
at present, potential of hypoxic training in preventive and clinical medicine especially in
the area of neurodegeneration and age-related cognitive decline.
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INTRODUCTION

Adaptation to hypoxia is an extremely widespread event among living organisms, apparently
being one of the most ancient evolutionary forms of adaptation (Bickler and Buck, 2007). The
concept of hypoxia as an insufficient supply of oxygen to tissues and cells was initially associated
only with pathological conditions (Meerson, 1984). However, these ideas underwent a significant
transformation when it was shown that the state of hypoxia can also occur within “natural activity
of the body” and, gradually, a conceptual transition was formed suggesting that hypoxia has
both physiological significance for adaptive changes in response to the action of external hypoxic
factors, and clinical significance for various pathophysiological conditions, especially cardio- and
cerebrovascular diseases (for review see Hochachka, 1998). At the same time, the adaptogenic
potential of hypoxia was successfully used in therapeutic strategies for prevention, rehabilitation,
and treatment (Meerson et al., 1996; Rybnikova et al., 2008; Gonzalez-Rothi et al., 2015; Zenko and
Rybnikova, 2019).

The adaptive reactions to physiological and exogenous hypoxia are of the same nature and have
much in common with the compensatory and adaptive mechanisms in diseases accompanied by
tissue hypoxia. Specific systemic mechanisms of adaptation to hypoxia include changes in lung
ventilation, changes in the functioning of the cardiovascular system that enhance the delivery of
oxygen to the tissues in need, and changes at the tissue level that allow more efficient use of oxygen
for metabolic processes (Meerson et al., 1989; Serebrovskaya et al., 1999). The specific reactions to
hypoxia are accompanied by an increase in the blood levels of glucocorticoids and this adaptive
response ensures enhanced resistance not only to hypoxia but to many other environmental factors
(Meerson et al., 1996; Zenko and Rybnikova, 2019).
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The regulation of adaptive hypoxic response at the cellular
level is largely due to the activation of hypoxia-sensitive
transcription factors, in particular hypoxia-inducible factor 1
(HIF-1) which exists as a heterodimer of HIF-1α and HIF-1β

subunits (Semenza, 2000). The oxygen level dose-dependently
regulates the level of HIF-1α, which gradually increases following
the decline of oxygen content in the air from 20 to 5% being
particularly pronounced below 5% O2 (Jiang et al., 1996). More
than 100 direct target genes have been identified for HIF-1, which
cover erythropoiesis, angiogenesis, glucose transporters, as well
as epigenetic machinery in the cells (for review see Corrado
and Fontana, 2020; Kindrick and Mole, 2020). The dynamics
of the HIF-1α level is characterized by rapid changes, both its
increase and decline: for example, signs of HIF-1α decay after
lung tissue reoxygenation appear in less than 1 min (Yu et al.,
1998). Such rapid dynamics allows timely adaptive response to
episodes of short-term hypoxia, which is especially important
in the case of periodic hypoxia, and HIF-1, apparently, is a
critical factor in initiating and reversing adaptive reactions to
periodic hypoxia.

HISTORY OF THE HYPOXIC TRAINING
IMPLEMENTATION

One of the first written records of hypoxic therapy belongs
to Hippocrates (430–370 BC), who recommended that patients
move to live at a moderate altitude whereas the traveler Marco
Polo (1,254–1,324) noted that inhabitants of Asia, when they are
ill, go to the mountains to recover. The effects of moving to
the mountain can be attributed to a special case of adaptation,
acclimatization, which is an individual reaction of the body
during a long stay in certain natural and climatic conditions.
The duration of the acclimatization period depends on the
altitude of the mountainous terrain, the temperature regime
and the individual characteristics of the human body and can
take from 7 to 25 days. Shorter periods of hypoxia (minutes-
hours) alternating with periods of normoxia are called periodic
or intermittent hypoxia. Experiencing this type of hypoxia
has become more common in humans with the industrial
development, progress of aviation and space industry, the
development of high-altitude territories for economic activity, all
of which played an important role in the need for a thorough
study of the effects of periodic hypoxia on humans.

In the 1870s the French zoologist and physiologist Paul Bert
(1833–1886) conducted around 700 experiments related to the
physiological effects of altered atmospheric pressure, studying
the condition of balloonists flying at different altitudes (Bert,
1878). Based on the results of the 1911 mountain expedition
by John Scott Haldane (1860–1936) and studies in a low-
pressure chamber down to 300 mm Hg (Haldane et al., 1919),
suits for pilots and recommendations for improving adaptation
to hypoxia were developed. In 1919 a chemical engineer
Harold Pierce developed a pressure chamber equipped with a
refrigeration unit, which allowed researchers to study the human
reaction to a combination of cold and low atmospheric pressure
(Jenkins, 2012).

In the 1980s Russian scientists proposed a concept of imitating
mountain and pressure chamber hypobaric protective exposures
by inhaling a gas mixture with reduced oxygen content at normal
atmospheric pressure (Chizhov and Strelkov, 1992). Based on
this concept, the method of intermittent hypoxic training (IHT)
was developed (Serebrovskaya, 2002). Currently a large amount
of clinical and experimental materials has been accumulated in
the scientific literature describing the high effectiveness of IHT
in medicine, including military, sport and wellbeing (Burtscher
et al., 2010). IHT is also effectively used for preadaptation
of troopers to operations in highlands or training of military
or civil pilots (Muza, 2007; Neuhaus and Hinkelbein, 2014;
Leinonen et al., 2021). Many hypoxic training regimens with
periodic hypoxia were developed, with proven effectiveness
in the treatment of cardiovascular, metabolic, neurological
disorders, allergies and bronchial asthma, diabetes, and many
other common diseases (Powell and Garcia, 2000; Bernardi, 2001;
Rusko et al., 2004; Gonzalez-Rothi et al., 2015; Rybnikova et al.,
2015; Serebrovska T. V. et al., 2019).

INTERMITTENT HYPOXIC TRAINING

Intermittent (also called interval or periodic) hypoxic training
(IHT) combines episodes of hypoxia, interspersed with episodes
of normoxia, hypoxia of lesser severity, hypercapnia or hyperoxia.
The IHT schemes used in experiments vary greatly in the
duration of the cycle, the number of hypoxic episodes and the
number of days of training. From relatively short (1–10 min)
episodes of hypoxia, interspersed with 1–20-min episodes of
normoxia in 1 day (Cao et al., 1992) to longer daily exposures (1–
12 h) for periods from 2 to 90 days (Rodriguez et al., 1999). Some
authors differentiate periodic and intermittent hypoxia based on
the duration of hypoxic episodes. Thus, periodic hypoxia includes
sessions lasting from 20 to 30 min to several hours daily or
every other day whereas intermittent hypoxia is characterized
by a shorter duration (5–10 min) but a greater frequency of
sessions (5–30 cycles) (Bykov et al., 2017; Saxena and Jolly,
2019). An example of periodic hypoxia is hypoxic pre- and
post-conditioning techniques where rather severe episodes of
hypoxia are repeated 3–6 times spaced at 24 h intervals, and
such periodic hypoxia precedes (preconditioning) or follows
(postconditioning) severe injurious exposure. In our well-
established model, both pre- and postconditioning is performed
by three trials of hypobaric hypoxia (equivalent to 5 km altitude)
during 2 h each, spaced at 24 h intervals (Rybnikova et al.,
2005, 2012). Such a mode of pre- and postconditioning effectively
protects the brain from post-hypoxic or stress-related injury by
acute mobilization of pro-adaptive gene-dependent responses
(Rybnikova and Samoilov, 2015; Vetrovoy et al., 2017). IHT with
short but more frequent episodes of hypoxia, on the other hand,
results in progressive remodeling of major functional systems of
the organism allowing adaptation to hypoxia.

An important factor in selecting the correct regime of IHT is
the balance of its effectiveness and safety. Training with moderate
hypoxia (9–16% O2) and low cycle frequency (3–15 episodes
per day) most often led to a favorable effect whereas severe
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hypoxia (2–8% O2) and more episodes per day (48–2,400 per day)
resulted in development of pathological conditions (Navarrete-
Opazo and Mitchell, 2014). The accumulated data indicate that a
“low dose” of hypoxic training can be a simple, safe, and effective
method with significant therapeutic potential for clinical practice.
Unlike prolonged hypoxia, which significantly reduces the initial
increase in ventilation and increases the magnitude of ventilation
decline, periodic hypoxia does not lead to a secondary decrease
in ventilation both in experimental animals (Cao et al., 1992)
and humans (Nieuwenhuijs et al., 2000). This may be due to
the specific ability of periodic hypoxia to change the respiratory
activity of neurons due to the induction of serotonergic-
dependent long-term relief of respiratory activity (Bach and
Mitchell, 1996; Turner and Mitchell, 1997), whereas prolonged
hypoxia does not cause this alteration (Dwinell et al., 1997).

BASIC TECHNOLOGY OF NORMOBARIC
INTERMITTENT HYPOXIC TRAINING

Technically hypoxia can be achieved by breathing gas hypoxic
mixtures (GHM) through special equipment (hypoxicators,
rebreathers), based on the principle of return breathing. GHM
with different O2 levels can also be generated by various technical
devices including gas separation membrane installation. At the
present time, the best technology is considered using devices
with short-cycle oxygen adsorption from the air, eliminating
the disadvantages of the membrane (Elbrus-3, Henderson tube,
Epstein’s facial mask, Strelkov’s hypoxicator with chemical
adsorber of CO2, etc.). Other equipment includes hypobaric
chambers and normobaric reduced oxygen rooms (Lopata and
Serebrovskaya, 2012; Serebrovskaya and Xi, 2016).

The most important aspect underlying the efficacy and safety
of IHT application is its personalization (individualization).
Before starting the IHT course, it is recommended to conduct
a three-stage hypoxic test, during which the indicators of
the functional state of the respiratory and cardiovascular
systems are determined when the subject is inhaling 21%
O2 at rest, then during inhalation of the GHM and in the
near recovery period (Serebrovskaya and Xi, 2016). Several
functional probes can be also applied to characterize individual
tolerance to hypoxia, e.g., Shtange’s probe, amplitude of the
oxyhemoglobin, etc. Dosed hypoxia, well tolerated by humans,
develops in the body when breathing GHM containing at
least 10% oxygen. The GHM index reflects the amount of
oxygen in the mixture, for example, a GHM containing 10%
oxygen is called GHM-10. Usually, the respiration with GHM
is performed in a cyclic-fractional mode: breathing with a
GHM—5 min, then breathing with atmospheric air—5 min (one
cycle). As noted above, the number of cycles varies during
one session. The total breathing time of GHM during one
session is 10–15 min with a total session duration of 15–
100 min (Serebrovskaya and Xi, 2016). There are variants of
IHT with alternating hypoxic and hyperoxic episodes (hypoxia-
hyperoxia) (Sazontova et al., 2016; Hadanny and Efrati, 2020)
or hypoxic and hypercapnic episodes (hypoxia-hypercapnia)
(Welch et al., 2022).

IHT has significant advantages in comparison with high-
mountain therapy and barochamber hypobaric hypoxia, in
particular, cost-effectiveness and accessibility of use in the clinic,
the absence of negative effects of confined space (claustrophobia),
and the possibility of adequate direct control of the functional
state of the patient. In the training of pilots in the Royal
Air Force Centre of Aviation Medicine, the breathing methods
of hypoxic training have completely forced out the hypobaric
hypoxia training in a barochamber since they do not have such
risks as decompression sickness and barotrauma (Wrigley, 2015).

THE MECHANISMS OF INTERMITTENT
HYPOXIC TRAINING

Repeated episodes of hypoxia, interspaced with periods of
reoxygenation, being a powerful stress factor, cause significant
cumulative changes in the physiological reactions of the body.
In addition to improving survival in severe hypoxia (Mayfield
et al., 1994), IHT can increase the overall non-specific resistance
of the body (Meerson et al., 1989; Chizhov and Strelkov,
1992). These effects are based on the phenomenon of cross-
adaptation when adaptation to one stressor provides resistance
to another (Meerson et al., 1996; Rybnikova et al., 2020), leading
to the changes in protein expression and synthesis and in the
functioning of the antioxidant systems.

The precise mechanisms of IHT have been studied rather
poorly. The accumulated data allow to conclude that IHT helps to
increase the efficiency of the functioning of both the respiratory
system and the whole organism. It can increase production of
erythropoietin (EPO) (Knaupp et al., 1992), enhance adaptive
capabilities of the respiratory and cardiovascular systems in
hypoxic conditions and increase the hypoxic ventilatory response
via reduced vagal withdrawal during progressive hypoxia
(Bernardi et al., 2001).

IHT results in significant improvement of the autonomic
nervous system functioning, arterial stiffness, arterial endothelial
function, and haemorheological function (Zembron-Lacny et al.,
2020; Park et al., 2022) IHT also enhances cardiac muscle
resistance to hypoxia via increasing the activity of the myocardial
metabolic enzymes and percentage of α-myosin heavy chain
(Cai et al., 2010). Activation of antioxidant enzymes and stress
proteins may also be part of the mechanisms contributing to the
cardioprotection of the intermittent hypoxic adaptation. Periodic
hypoxia was shown to induce an increase in the concentration
of heat shock proteins (HSP) in the myocardium which has a
cardioprotective and antiarrhythmic effect due to intracellular
changes in the ion balance (Meerson et al., 1989, 1991). Low
intensity workout combined with IHT leads to a significant
modulation of the immune system and inflammatory parameters,
including cytokine expression, inducible nitric oxide synthase
(iNOS) activity, and oxidative stress parameters (Balestra et al.,
2021). IHT also resulted in increased blood superoxide dismutase
(SOD) and decreased catalase (CAT) activities in an age-
dependent manner (Kolesnikova et al., 2003). An increase in
the efficacy of energy metabolism after hypoxic adaptation may
be another mechanism for the IHT-induced cardioprotection
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FIGURE 1 | Schematic presentation of potential therapeutic benefits of IHT.

(Gangwar et al., 2020). The possible roles of several signaling
transduction pathways, including adrenoceptors, prostaglandins,
and the adenosinergic system, in the beneficial effects of IHT have
also been suggested (Zhuang and Zhou, 1999).

As could be expected, IHT has been shown to affect
glucose metabolism (Ling et al., 2008; Cheng et al., 2011). In
particular, it improves glucose tolerance and insulin response
to a glucose challenge (Chen et al., 2010; De Groote et al.,
2018). This effect of IHT might be related to its stimulatory
action on the peptidergic neurons in the paraventricular
hypothalamic nucleus (PHN) and neurons of the dorsal
motor nucleus which, in turn, regulate pancreatic δ-cells
and induce insulin-stimulating and insulin protective effects
(Abramov, 1998).

IHT also has a direct effect on brain function and was
shown to improve cerebral blood flow (Steinback and Poulin,
2016), protect cerebrovascular function (Manukhina et al., 2016),
strengthen brain connectivity and increase its hypoxia tolerance
(Li et al., 2016). Moreover, IHT can reduce oxidative stress

caused by post-traumatic disorders at the level of carbonylated
proteins and lipid peroxidation products (Manukhina et al.,
2020). IHT has also been shown to suppress the cytotoxic
signaling cascades activated by excess glutamate induced by
ethanol withdrawal in the rat, preventing p30 activation and
down-stream increase of presenilin 1 (PS1), Aβ1–40 and Aβ1–
42 content in the prefrontal cortex of rats (Ryou et al., 2017).
In a mouse model of Alzheimer’s disease (AD), it was shown
that IHT can improve learning and memory deficits, slow
Aβ accumulation in the cerebral cortex and hippocampus and
increase there the levels of such neuroprotective trophic factors
as erythropoietin and brain-derived neurotrophic factor (BDNF)
(Ryou et al., 2021). The neuroprotective action of IHT might
be associated with generation of reactive oxygen species which
in turn activate an extensive defense program, including nuclear
factor erythroid 2-related factor 2 (Nrf2)—a transcriptional factor
regulating expression of genes encoding numerous phase II
defense enzymes that collectively afford powerful antioxidant and
anti-inflammatory cytoprotection (Dringen et al., 2015).
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THE THERAPEUTIC POTENTIAL OF
HYPOXIC TRAINING

The IHT method can be recommended to treat a variety
of diseases (see Figure 1). However, healthy people can
use it for increasing their physical performance and stress
resistance, tolerance to harmful exposures, prolongation of
physical and intellectual life and prevention of dementia and
neurodegeneration (Bernardi, 2001; Shatilo et al., 2008; Balestra
et al., 2021). A comparative analysis of biomedical and clinical
research on emerging preventative, therapeutic, and rehabilitative
modality of IHT indicates that it can also have value in clinical
human rejuvenation (Prokopov, 2007). Intermittent hypoxic-
hyperoxic training (IHHT), when patients breathe (10–14% O2)
for 4–7 min, followed by a 2–4-min exposure to a hyperoxic
gas mixture (30–40%) through a face mask, is well tolerated by
geriatric patients (up to 92 years old) and significantly improves
their cognitive functions (Bayer et al., 2017). Apart from clinical
application, IHT has been widely recognized in the field of
military and sports medicine and is widely used for training
athletes (Hamlin and Hellemans, 2007; Faiss et al., 2013; Hamlin
et al., 2018).

The successful applications of IHT for the treatment of
bronchial asthma, rheumatoid arthritis, anemia, neurocirculatory
dystonia, and for the prevention of postoperative complications
have also been described (Serebrovskaya et al., 2003). In addition
to diseases directly related to hypoxia (diseases of the lungs,
cardiovascular system) IHT has proven effective when used in the
treatment of diseases of the gastrointestinal tract, in dermatology
and hematology (Serebrovska et al., 2016). It has antidiabetic
properties and in adult obese people was shown to improve
weight and body mass index, fat and lean mass as well as systolic
blood pressure (Camacho-Cardenosa et al., 2019).

Application of IHT can have a significant effect for
prevention/treatment of the diseases caused by complications
during pregnancy. Since many adult diseases have fetal origin,
application of IHT in pregnancy or to the infants might prevent
development of various diseases in later life (Basovich, 2013).

Accumulated evidence from ongoing preclinical research
clearly demonstrates that IHT has a powerful cerebro- and
neuroprotective application. IHT was also shown to be a
non-invasive but powerful intervention capable of providing
sustained neuroprotection during ethanol withdrawal (Jung
and Mallet, 2018). It protects the brain from glutamate
excitotoxicity, mitochondrial damage, oxidative stress, and
amyloid β accumulation (Ryou et al., 2017). Moderate IHT via

enhancement of cerebral oxygenation is able to improve short-
term memory and attention in elderly patients with amnestic
mild cognitive decline (MCI) (Wang et al., 2020). In a pilot
study IHT was shown to improve cognitive functions and the
levels of circulating biomarkers of AD in blood of patients
with MCI suggesting that it can slow down development of
AD (Serebrovska Z. O. et al., 2019). IHT was suggested to be
beneficial also for treatment of patients with Parkinson’s disease
(Serebrovs’ka et al., 2003) and depression (Kang et al., 2021).

With the developing COVID-19 pandemic, application of
IHT for treatment of patients during the rehabilitation period
has been considered as a beneficial option. The assessment
of the effects of moderate-intensity IHT on health outcomes
in patients recovering from COVID-19 is now under trial
(Trapé et al., 2021).

CONCLUSION AND PERSPECTIVES FOR
FUTURE RESEARCH

In summary, IHT is a method elaborated for increasing human
physiological defense systems, acclimatizing to high altitude,
treating a variety of clinical conditions and training of sport
athletes. Based on the current data, it can be assumed that training
with periodic hypoxia might be a powerful, non-invasive tool
to achieve reliable and stable neuroprotection. IHT, similarly
to hypoxic pre- and postconditioning, can cause proadaptive
modifications of the glucocorticoid system and stimulate
production of the neurotrophins, in particular BDNF (Rybnikova
et al., 2015) but to date no detailed studies have addressed these
important aspects. The disclosure of IHT molecular mechanisms
will contribute to the successful realization of the therapeutic
and health-promoting potential of this method for the benefits
of human wellbeing and mental health.
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