
BJR

Cite this article as:
Manganaro L, Nicolino GM, Dolciami M, Martorana F, Stathis A, Colombo I,  et al. Radiomics in cervical and endometrial cancer. Br J Radiol 
2021; 94: 20201314.

© 2021 The Authors. Published by the British Institute of Radiology 
under the terms of the Creative Commons Attribution- NonCommercial 
4.0 Unported License http:// creativecommons. org/ licenses/ by- nc/ 4. 0/, 
which permits unrestricted non- commercial reuse, provided the original 
author and source are credited.

FEMALE GENITOURINARY ONCOLOGY SPECIAL FEATURE: 
REVIEW ARTICLE

Radiomics in cervical and endometrial cancer
1LUCIA MANGANARO, 2GABRIELE MARIA NICOLINO, 1MIRIAM DOLCIAMI, 3FEDERICA MARTORANA, 
3,4ANASTASIOS STATHIS, 3ILARIA COLOMBO and 4,5STEFANIA RIZZO, MD

1Department of Radiological, Oncological and Pathological Sciences; University of Rome Sapienza (IT), Rome, Italy
2Post- graduate School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono 7, Milan, Italy
3Oncology Institute of Southern Switzerland, San Giovanni Hospital, 6500 Bellinzona, (CH), Switzerland
4Facoltà di Scienze biomediche, Università della Svizzera italiana (USI), Via Buffi 13, 6900, Lugano (CH), Switzerland
5Istituto di Imaging della Svizzera Italiana (IIMSI), Ente Ospedaliero Cantonale, Via Tesserete 46, Lugano (CH), Switzerland

Address correspondence to: PDdr Stefania Rizzo
E-mail:  stefania. rizzo@ eoc. ch

INTRODUCTION
Personalized medicine is paving the way towards tailored 
and individualized treatments based on the clinical and, 
more recently, genetic characteristics of cancer patients.

Traditionally, radiologists evaluate clinical images according 
to qualitative features, based on their training and experi-
ence in order to provide a diagnosis or an assessment of a 
clinical state.1 Radiomics represents a recently introduced 
translational field of research aiming to find associations 
between quantitative information extracted from imaging 
examinations and clinical data to support the best clinical 
decision. So far, few studies have evaluated the associa-
tions between radiomics and prognosis of gynecological 
malignancies, such as cervical and endometrial cancer. The 
purpose of this narrative review is to give a quick overview 
on radiomics, to place into context the available data on 
radiomics in cervical and endometrial cancer.

Radiomics
The concept underlying the textural analysis is that, irre-
spectively of expressing a mass density (for CT), a Signal 
Intensity (for MR) or Standardized Uptake Value (for PET), 
the information contained in each voxel of a radiological 

image may reflect the underlying pathophysiology of the 
tumor tissue.

The radiomics workflow includes the following distinct 
steps: image acquisition and reconstruction; image 
segmentation; features extraction and qualification; anal-
ysis and model building2,3 (Figure  1). Image acquisition 
and reconstruction is the first step to extract values from 
the images, although it is not strictly related to radiomics. 
Image parameters, such as tube voltage, slice thickness, 
tube current and others should ideally not have an impact 
on the values used to infer the textural features. However, it 
has been demonstrated that some of these parameters affect 
textural features, and therefore preliminary analysis should 
help in selection of robust and reproducible features.4 
Segmentation refers to the tracing of the borders within the 
radiomics features will be extracted. Segmentation can rely 
on manual, semi- automatic or automatic methods, being 
each one associated with its pros and cons, related to a 
balance between reproducibility and correspondence to the 
real margins of the lesion. Many authors consider manual 
segmentation by expert readers as ground truth. However, 
it suffers from high inter- reader variability and it is labor 
intensive, thus, it is not always feasible for radiomics 
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ABSTRACT

Radiomics is an emerging field of research that aims to find associations between quantitative information extracted 
from imaging examinations and clinical data to support the best clinical decision. In the last few years, some papers 
have been evaluating the role of radiomics in gynecological malignancies, mainly focusing on ovarian cancer. Nonethe-
less, cervical cancer is the most frequent gynecological malignancy in developing countries and endometrial cancer 
is the most common in western countries. The purpose of this narrative review is to give an overview of the latest 
published papers evaluating the role of radiomics in cervical and endometrial cancer, mostly evaluating association 
with tumor prognostic factors, with response to therapy and with prediction of recurrence and distant metastasis.
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analysis requiring very large data sets.5 As previously described,2 
common requirements for segmentation methods include as 
high automaticity as possible, with minimum operator interac-
tion; time efficiency; accuracy and boundaries reproducibility. 
Among the most common segmentation algorithms, there are 
region- growing methods, requiring an operator to select a seed 
point within the volume of interest6; level set methods, repre-
senting a contour as the zero level set of a higher dimensional 
function (level set function); graph cut methods constructing 
an image- based graph7; active contours (snake) algorithms, 
working as stretched elastic bands. Although the existence of 
many different segmentation methods, there is still no universal 
segmentation algorithm that work well for all medical image 
applications. Indeed, some features may show stability and 
reproducibility by using one segmentation method and may not 
be the same by using another.

After segmentation, usually made in three dimensions, the next 
step is the extraction of the features. Traditional features are 
semantic, indicating a descriptive common lexicon (size, shape 
margins etc). Quantitative features, typical for radiomics studies, 
can show different levels of complexity, going from first order 
statistics features (e.g. mean, median, maximum, minimum, 
and uniformity or randomness of the values on the image, as 
well as the skewness and kurtosis of the histogram of values) to 
second- order statistics features, expressing intralesional hetero-
geneity such as the ones included in matrices (e.g. the grey level 
co- occurrence matrix, GLCM; the grey level run length matrix, 
GLRLM and so on) to higher order statistics features, generated 
by statistical methods after imposing filter grids on the image 
to extract repetitive or non- repetitive patterns (e.g. fractal anal-
yses; Minkowski functionals; wavelets and so on). With all the 
features extracted, radiomics analysis usually includes dimen-
sionality reduction and feature selection, and then association 
analysis with one or more specific outcome. The many different 
analysis approaches depend on the purpose of the study and 
the outcome category, ranging from statistical methods to data 
mining/machine learning approaches, such as random forests, 
neural networks, linear regression, logistic regression, least 
absolute shrinkage and selection operator and Cox proportional 
hazards regression.2,8,9

Many studies evaluated the association between radiomics and 
prognosis in different tumors13.

In gynecological malignancies, some data exist in evaluation 
of texture analysis in ovarian cancer, demonstrating that some 
quantitative metrics, capturing spatial imaging heterogeneity, 
may be related to short overall survival and incomplete surgical 
resection.10–14 Furthermore, Meier et al demonstrated that high 
inter site entropy might be related with shorter progression free 
survival.15 More recently, Beer et al16 have provided the first 
insights into the potential association between CT imaging 
traits, texture measures of tumor burden heterogeneity and the 
abundance of several tumor- associated proteins. The authors 
demonstrated that an integrated analysis of transcriptomic and 
proteomic data was able to identify four proteins associated with 
CT- based imaging traits.

METHODS AND MATERIALS
Starting in September 2020, a structured search using PubMed 
database was performed and included all relevant original arti-
cles and reviews, published in and after 2010. The search used the 
following key word combinations: [((uterus) OR (uterine) OR 
(cervix) OR (cervical) OR (endometrium) OR (endometrial)) 
AND ((tumour) OR (tumoral) OR (cancer) OR (neoplasm)) 
AND ((radiomic) OR (radiomics) OR (texture) OR (textural))]. 
Data extraction was independently performed by two reviewers 
(SR and LM) and any disagreement was discussed with a third 
reviewer (MD).

All papers published on human subjects were included. Citations 
and references of the retrieved studies were used as additional 
sources. Reviews, case reports, editorial comments, conference 
abstracts and short communications were excluded.

RESULTS
As shown in Figure 2, the literature search found a total of 559 
articles. Ultimately, 41 articles were deemed relevant and used 
as the literature basis of this review (cervical cancer, n = 31; 
endometrial cancer, n = 10). Regarding the selected studies on 
radiomics in cervical cancer imaging, 6 were prospective and 25 
retrospective, including one multicentre; 21 applied radiomics to 

Figure 1. Main steps of a radiomics study.
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MR, 5 to PET/CT, 2 to both MR and PET/CT, 2 to CT and 1 to 
ultrasound (Table 1). Concerning endometrial cancer, 2 of the 
10 selected studies were prospective and 8 were retrospective; 7 
applied radiomics to MR and 3 to PET/CT (Table 2).

The flow chart of the selection process is shown in Figure 2.

Radiomics in cervical cancer
Cervical cancer (CC) is the fourth most common and cancer- 
related mortality cause in females, with the highest incidence in 
developing countries.58

Although CC incidence is decreasing thanks to human papil-
loma virus screening and vaccination programs, it continues to 
be a major public health problem with over half a million new 
cases per year and around 300,000 deaths per year.59,60 Multiple 
treatment strategies are available, and the best therapeutic choice 
is mainly based on various prognostic risk factors.61,62 Surgery 
is the gold- standard for the management of early- stage cervical 
cancer (International Federation of Gynecology and Obstetrics- 
FIGO IA1- IIA2), while patients with locally advanced cervical 
cancer (LACC; FIGO stage IIB- IVA) usually require a multi-
modality approach, with platinum- based concurrent chemo- 
radiation therapy (CCRT) as standard treatment.63–65

Despite the available treatment options, 5 year overall survival 
rate is about 66%, with significant differences according to FIGO 
stage, being 92% in early stages, 56% in LACC and 17% in meta-
static disease.66,67

Multiple diagnostic imaging modalities exist for the diagnosis 
and staging of CC including ultrasound, CT, MR, [18F]- fludeox-
yglucose (FDG) PET, with the latter two playing an essential role 
in assessing local and distant disease spread and in evaluating 
response to treatment.

Initial studies on radiomics applied to CC were published in 
2013–2016 and focused mainly on potential applications in 
nuclear medicine.17,18 In 2013 Yang et al18 firstly investigated 
the heterogeneity in the temporal behavior of intratumoral 
[18F]- FDG accumulation in patients with CC undergoing 
CCRT, finding significant differences between patients with 
complete response and patients with partial response or 
non- responders.

From 2017 onwards, radiomics applied to CC has become 
increasingly popular, requiring reproducibility studies to 
assess inter- and intraobserver variability and robustness of 
features.19,68 Currently, radiomics has been applied as investi-
gation tool to CC for identification of tumor prognostic factors, 

Figure 2. Flow- chart showing study selection.
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Table 1. Main information about the articles included for assessment of radiomics in cervical cancer.

Authors Year
Study 
design

Number of 
patients

Imaging 
technique

Texture 
features

Main 
conclusions Software

Mu et al17 2015 R 42 PET/CT First, and higher 
order

Intratumor tracer 
uptake heterogeneity 

on baseline PET/CT is 
associated with tumor 

stage.

nd

Yang et al18 2013 R 20 PET/CT First, and higher 
order

Intratumoral uptake 
heterogeneity may 
help understanding 
tumor response to 

CCRT.

nd

Lin19 2019 R 169 MR First, and higher 
order

Deep learning can 
perform accurate 
localization and 

segmentation of CC 
in DWI MR.

MR Radiomics 
Platform

Guan et al20 2017 P 70 MR First, and higher 
order

ADC first- order 
statistics and texture 

features proved 
relevant in clinical 

staging of CC.

nd

Tsujikawa et 
al21

2017 R 83 PET/CT First, and higher 
order

PET/CT textural 
features may reflect 

the differences 
in histological 

architecture between 
CC subtypes.

CGITA 
MATLAB

Wu et al22 2019 R 56 MR First, and higher 
order

ADC maps show the 
best performance for 

LN metastases; Ve 
maps show the best 
value for LVSI and 

tumor grade.

nd

Liu et al23 2018 P 160 MR First, and higher 
order

High- dimensional 
and quantitative 

image features are 
insensitive to tumor 

delineations.

MATLAB

Wormald et 
al24

2019 P 378 MR Second- order 
features

Textural features from 
ADC maps and T2- W 

images may predict 
recurrence in low- 

volume tumors.

MATLAB

Li et al25 2019 R 105 MR First, and higher 
order

T1CE MR- based 
radiomics nomogram 

may predict LVSI.

Python

Jiang et al26 2019 R 167 MR First, and higher 
order

Deep learning- based 
radiomics may predict 

vessel invasion.

Python

Li et al27 2020 R 62 MR Second- order 
features features.

Combination of 
DCE- MRI and 
texture analysis 

improved sensitivity 
in parametrial 

infiltration.

ITK- SNAP 
software and 
O.K. software

(Continued)
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Authors Year
Study 
design

Number of 
patients

Imaging 
technique

Texture 
features

Main 
conclusions Software

Wang et al28 2020 R 137 MR First, and higher 
order

A radiomics 
nomogram 

performed well for 
the preoperative 

prediction of 
parametrial invasion 

in early CC.

MATLAB

Shen29 2017 R 170 PET/CT First, and higher 
order

LN metastases can be 
predicted by textural 
higher order features 

of homogeneity.

nd

Becker et al30 2017 P 23 MR First, and higher 
order

Texture features may 
predict histological 

tumor differentiation 
and nodal cancer 

stage.

MATLAB

Kan et al31 2019 R 143 MR First, and higher 
order

MR radiomic 
signature can be 

used as a biomarker 
for preoperative 

assessment of LN.

MATLAB

Wang et al32 2019 R 96 MR First, and higher 
order

A radiomics 
nomogram based 

on T2WI and 
DWI improved the 
prediction of LN.

MATLAB

Wu et al33 2019 R 189 MR First, and higher 
order

A radiomics model 
from intratumoral 
and peritumoral 

tissue of T2W can 
predict LN status in 

LACC.

PyRadiomics

Xiao et al34 2020 R 233 MR First, and higher 
order

A radiomics 
nomogram may 

facilitate the 
prediction of LN in 
patients with early- 

stage CC.

Python

Jin et al35 2020 R 172 US First, and higher 
order

A radiomic model 
predicted LN 

metastases based 
on preoperative 

ultrasound images.

LIFEx

Chen et al36 2020 R 150 CT First and higher 
order

A CT radiomic 
model, combining 

two radiomic features 
and the FIGO stage 

predicted the LN 
status in early stage 

CC.

nd

Ciolina et al37 2019 R 28 MR First, and higher 
order

TA applied to T2- 
W MR sequences 
may differentiate 

adenocarcinoma from 
SCC and may predict 
response to NACT in 

LACC

TexRAD

Table 1. (Continued)

(Continued)
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evaluation of response to therapy and prediction of tumor recur-
rence and distant metastasis.

Tumor prognostic factors
- Histology

Many prognostic factors in cervical cancer can be obtained from 
histologic examination (such as revised FIGO tumor stage at 
diagnosis, tumor size, depth of tumor invasion, lymphovascular 
space invasion- LVSI and histological subtype and grade) and 

Authors Year
Study 
design

Number of 
patients

Imaging 
technique

Texture 
features

Main 
conclusions Software

Sun et al38 2019 R Multicentre 275 MR First, and higher 
order

MR- based radiomic 
features may predict 
response to NACT in 

LACC.

MATLAB

Fang et al39 2020 R 120 MR First, and higher 
order

A radiomic model 
may predict treatment 

response before 
CCRT in patients 

with LACC.

MATLAB

Tian et al40 2020 R 277 CT First, and higher 
order

A CT- based radiomic 
combined model 

well predicted NACT 
response.

MATLAB

Reuzé et al41 2017 R 118 PET/CT First, and higher 
order

Radiomic features 
may predict local 

recurrence of LACC.

nd

Meng et al42 2017 P 36 MR First, and higher 
order

Pre- and mid- 
treatment whole- 

lesion ADC histogram 
and texture analysis 
may predict tumor 

recurrence of LACC 
treated with CCRT.

nd

Meng et al43 2018 P 34 MR First, and higher 
order

T2 and ADC 
textural may predict 
recurrence in LACC 
treated with CCRT.

IBEX software

Lucia et al44 2017 R 102 PET/CT MR First, and higher 
order

Radiomics features 
from FDG/PET and 

ADC maps may 
serve as independent 
prognostic factors for 

outcome in LACC.

nd

Lucia et al45 2018 R 190 PET/CT MR First, and higher Validation of 
previously developed 

radiomics models 
in two independent 

external cohorts.

nd

Fang et al46 2020 R 248 MR First, and higher A MR derived Rad- 
score can be used as a 
prognostic biomarker 

for patients with 
early- stage CC.

PyRadiomics

Takada et al47 2020 R 87 MR Morphology, 
histogram and 

texture

Recurrence could 
be predicted with 

high accuracy using 
expanded VOI for CC 
treated with definitive 

radiotherapy.

LIFEx

ADC, Apparent diffusion coefficient; CC, Cervical cancer; CCRT, Concurrent chemo- radiotherapy; DWI, Diffusion weighted imaging; LACC, Locally 
advanced cervical cancer; LN, Lymph nodes; LVSI, Lymphovascular space invasion; MR, Magnetic Resonance; NACT, Neoadjuvant chemotherapy; 
PET/CT, Positron emission tomography/Computed tomography; PMI, Parametrial invasion; R, Retrospective; SCC, quamous cell carcinoma; TA, 
Texture analysis; VOI, volume of interest; p, Prospective.

Table 1. (Continued)
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Table 2. Main information about the articles included for assessment of radiomics in endometrial cancer.

Authors Year
Study 
design

Number of 
patients

Imaging 
technique

Texture 
features Main conclusions Software

Wang et al48 2019 R 170 PEC/CT First and 
higher order

SUVmax and SUVpeak 
had the highest 

diagnostic values 
for EAH, FC, and 

EC 1a. The addition 
of texture features 

provided information 
for differentiating EAH, 

FC, and EC 1a

Artificial 
Intelligent Kit 

software

Ueno et al49 2017 R 137 MR First order The mathematical 
models that 

incorporated MR 
imaging–based texture 
features were associated 

with the presence of 
DMI, LVSI, and high- 

grade tumor

TexRAD

Ghosh et al50 2019 P 27 MR First order Diffusion tensor 
histogram analysis can 

better evaluate DMI 
and tumor type

3D Slicer

Stanzione et 
al51

2020 R 54 MR First and 
higher order

A radiomics- powered 
machine learning 
model for DMI 

detection increased 
the increased the 

radiologist performance 
from 82 to 100%

PyRadiomics

Ytre- Huage et 
al52

2018 P 180 MR First order MR texture parameters 
independently 

predicted DMI, high- 
risk histological subtype 

and reduced survival

TexRAD

De Bernardi 
et al53

2018 R 115 PET/CT First and 
higher order

The computation of 
imaging features on 
the primary tumour 

increases nodal staging 
detection sensitivity in 

PET/CT

CGITA software

Crivellaro et 
al54

2020 R 167 PET/CT First and 
higher order

PET/CT demonstrated 
high specificity (94%) 

in detecting nodal 
metastases

nd

Xu et al55 2019 R 200 MR First and 
higher order

A model based on 
radiomic and clinical 

features showed a 
good discrimination of 
positive LN, especially 
for normal- sized LN

Python (Version 
3.6.5)

Yan et al56 2020 R 622 MR First and 
higher order

Higher diagnostic 
performance and 

clinical net benefits 
for a radiomics- aided 

model than for the 
radiologists alone

  

Yan et al57 2020 R 717 MR First and 
Higher order

The radiomics 
nomogram exhibited 

good performance 
in the individual 

prediction of high- risk 
EC

Pyradiomics

(Continued)
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they have all been a major subject of research in the radiomics 
field.20,61

In 2017, Tsujikawa et al21 investigated the ability of texture anal-
ysis applied to PET/CT images in identifying differences in histo-
logical architecture of different CC subtypes. They found that 
among the 18 features extracted from PET/CT, the only variable 
capable of reliably discriminating between squamous cell carci-
nomas (SCCs) and non- squamous cell carcinomas (NSCCs) was 
the second- order feature Correlation, derived from NGLCM. 
In contrast, Wu et al22 aiming to predicting several prognostic 
factors in CC, applied radiomic analysis to multiparametric MR, 
which included T2 weighted images (T2WI) with and without 
fat suppression (FS), diffusion- weighted images (DWI) and 
dynamic contrast enhanced (DCE) images. Referring to differen-
tiation grade (G), they observed that all textural maps obtained 
from T2- and T2FS- WI, apparent diffusion coefficient (ADC) 
from DWI, Ktrans, Ve and Vp from DCE images showed a statis-
tically significant difference in distinguishing between G2 and 
G3 tumors, with Ve maps showing the best discriminating value. 
In 2018, Liu et al23 evaluated ADC- based radiomic features in 
assessing the histopathological grade of cervical cancer, specifi-
cally looking for significant differences between features obtained 
from two- dimensional (2D) center- slice vs three- dimensional 
(3D) whole- tumor volumetric measurement. They observed that 
3D whole- tumor volumetric radiomic analysis had better perfor-
mance than using the 2D central slice of the tumor in stratifying 
the histologic grade of cervical cancer.

By applying texture analysis on T2WI images and ADC data 
of 378 patients with Stage I- II of CC, Wormald et al24 found 
significant differences between the radiomics features, including 
dissimilarity, energy, cluster prominence, cluster shade, inverse 
variance, autocorrelation, between cervical tumors above and 
below the volume threshold of eligibility for trachelectomy.

Li et al25 developed and internally validated an MR- based radio-
mics nomogram for predicting LVSI by combining red blood cell 
counts with the radiomic signature consisting of three features. 
More recently, by applying convolutional neural network- based 
radiomic methods on DCE- T1 and T2WI MR images, Jiang el 
al.26 used dynamic contrast- enhanced T1- and T2WI of 167 MR 
of early- stage CC patients, to build and validate a deep learning- 
based radiomics model to predict vascular infiltration in early- 
stage CC.

- Parametrial invasion

Much attention has been given to parametrial invasion (FIGO 
Stage IIB) which represents a turning point in the differentiation 

between early and locally advanced disease with significant 
implications for the therapeutic management. Recently, Li et 
al27 investigated the possibility of predicting parametrial inva-
sion by using a combination of features extracted from DCE- MR 
(k- trans) and texture analysis (energy and entropy, belonging 
to the first- order statistics features). Contrast- enhanced T2WI 
MR of 105 patients, divided into training and validation cohort 
with a ratio of 2:1, were evaluated to select three features and 
one clinical characteristic to be included in a nomogram. Their 
nomogram was able to discriminate between LVSI and non- LVSI 
groups, with an AUC of 0.754 (95% confidence interval [CI], 
0.6326–0.8745) in the training cohort, and of 0.727 (95% CI, 
0.5449–0.9097) in the validation cohort. Wang et al28 developed 
a radiomics nomogram, integrating the radiomics signatures 
obtained from combined T2WI and DWIs with patient’s age and 
pathological grade, showing an excellent discrimination between 
patients with and without parametrial invasion.

- Lymph node status

The presence of pelvic and para- aortic lymph node metastases 
has a prognostic significance, and its detection is paramount to 
define the best treatment option. This is also highlighted in the 
2018 revised FIGO classification system, which currently assigns 
Stage “IIIC” to females with positive pelvic or para- aortic lymph 
nodes.16 Standard diagnostic methods have several limitations 
in assessing lymph node status, especially in detecting microme-
tastases in normal- sized lymph nodes.69 Also, systematic pelvic 
lymph node dissection presents major complications and is not 
indicated in every patient.70,71 Therefore, a new non- invasive 
diagnostic method might help in this setting.

Shen et al29 investigated the use of texture analysis on primary 
tumour [18F]-FDG PET images in evaluating lymph node status, 
finding a significant association between positive pelvic or para- 
aortic lymph nodes and features from GLCM and total lesion 
glycolysis.

The first study investigating radiomics applied to MR in eval-
uating lymph node status in CC was published by Becker et 
al30 in 2017. By extracting texture features from a polygonal 
ROI drawn on the primary lesion at baseline pelvic MR, they 
found that higher skewness or kurtosis (belonging to the first- 
order statistics features) in the main tumor were associated with 
lymph nodes involvement. Using a support- vector machines 
algorithm, belonging to higher order statistics features, Kan 
et al31 constructed a radiomic model on a study cohort of 100 
patients, then validated on a cohort of 43 patients able to predict 
nodal status in patients with early- stage CC using features 
extracted after manual segmentation from T2WI and enhanced 

Authors Year
Study 
design

Number of 
patients

Imaging 
technique

Texture 
features Main conclusions Software

DMI, deep myometrial invasion; EAH, endometrial atypical hyperplasia; EC, Endometrial Carcinoma; FC, Field cancerization; LN, lymph nodes; 
LVSI, lymphovascular invasion; MR, Magnetic Resonance; PET/CT, Positron emission tomography/Computed tomography; R, retrospective; SUV, 
standardized uptake value; nd, not declared; p, prospective.

Table 2. (Continued)
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T1WI. Accordinlgy, Wang et al32 used similar methods, based 
on support- vector machine on manually segmented T2WI and 
DWI, in a cohort of 96 patients including a validation group, to 
demonstrate that a radiomics nomogram integrating the radio-
mics signature with clinicopathologic risk factors showed a 
significant improvement over the nomogram based only on clin-
icopathologic risk factors in the primary cohort (C- index, 0.893 
vs 0.616; p = 4.311×10–5) and validation cohort (C- index, 0.922 
vs 0.799; p = 3.412×10–2) . Wu et al33 performed a study including 
189 patients, divided into training (n = 126) and validation (n = 
63) cohorts. The authors proposed a decision tree for predicting 
nodal disease that combines a radiomic model, obtained from 
T2WI of both intratumoral and peritumoral tissue, with the stan-
dard morphological evaluation of the lymph nodes on MR. In 
2020, Xiao et al34 evaluated 233 patients, divided into a primary 
cohort (n = 155) and a validation cohort (n = 78) to develop a 
radiomic nomogram (obtained by manual delineation of a two- 
dimensional ROI on the primary tumor), by incorporating the 
radiomics signature with the MR- reported lymph nodes status 
and FIGO stage. This model was able to facilitate the prediction 
of nodal disease in patients with early- stage CC.

Recently, some reports have also shown that there are radiomic 
features able to predict the lymph node status from ultrasound 
and from CT images of the primary lesion.35,36

Evaluation of response to therapy
Patients with LACC are not suitable for surgery and the stan-
dard treatment of care is platinum- based CCRT. Although this 
treatment has led to a significant improvement in locoregional 
control and overall survival, approximately 40% of patients 
with LACC experience disease relapse. The large difference in 
response to therapy is likely linked to clinical and pathologic 
prognostic factors (such as FIGO stage, tumor size, histological 
type or grading, parametrial and LVS invasion, nodal status) and 
also on the phenotypic and genomic tumor characteristics that 
cannot be revealed by the standard diagnostic methods and their 
heterogeneity not depicted by random sampling or biopsy.63,72

From 2018, prediction of therapy response and survival has stim-
ulated great interest in radiomics research. In a study of Ciolina et 
al37 the kurtosis (belonging to the first- order statistics features), 
extracted from the primary tumor of 28 patients in T2WI and 
ADC maps of baseline MR, was indicated as a predictor of 
tumor response to platinum- based neoadjuvant chemotherapy 
(NACT), showing a significantly higher value in responding 
patients. Sun et al38 retrospectively reviewed 275 LACC patients, 
divided into training and testing sets with a 2:1 ratio, treated with 
NACT, that underwent pretreatment MR By combining features 
extracted from intratumoral zone of T1- and T2WI and peritu-
moral zone of T2WI, they constructed a radiomic model, able 
to accurately predict the response to therapy (AUC of 0.998). 
Similarly, Fang et al39 studied a cohort of 120 patients (allocated 
equally into training or test sets), and, by applying three kind 
of machine learning models, developed a radiomic model based 
on features extracted from sagittal T2WI, axial enhanced T1WI 
and ADC data, which showed good performance in predicting 
response to CCRT in patients with LACC. Tian et al40 performed 
a retrospective study on 277 LACC patients treated with NACT, 

divided into training (n = 221) and validation (n = 56) cohorts. 
By analyzing multiple texture features obtained from pretreat-
ment CT examination, they selected six significant features to 
build a radiomic signature which, combined with the patient’s 
age and FIGO stage, showed a high predictive value in evaluating 
the response to therapy.

Prediction of recurrence and distant metastasis
Local recurrence and distant metastases are the most frequent 
causes of therapeutic failure and death from CC. Microscopic 
residual disease represents the most important risk factor and 
is mostly undetectable with current diagnostic techniques, 
explaining the high rate of failure after treatment of about 35% 
in patients with LACC.62,73 New reliable diagnostic tools able to 
predict recurrence and distant metastasis at an early stage are 
needed, in order to guide therapeutic choice in advance.

In 2017, Reuzé et al41 investigated the ability of texture anal-
ysis applied to baseline [18F]-FDG PET images of 118 patients, 
divided into two groups according to the PET scanner used, to 
predict recurrence in LACC patients treated with CCRT and 
brachytherapy. Eight radiomics features were statistically signif-
icant predictors of local relapse in both groups. Meng et al42 
enrolled prospectively 36 females with advanced squamous CC 
to explore the value of whole- lesion ADC histogram and texture 
analysis in predicting tumor recurrence. The authors demon-
strated that pre- and mid- treatment whole lesion ADC histogram 
and texture analysis hold great potential in predicting tumor 
recurrence. The following year, the same group prospectively 
included 34 patients to explore the application of texture param-
eters extracted from ADC maps and T2WI to predict tumor 
recurrence of patients with advanced cervical cancers treated 
with CCRT. The authors demonstrated that the support vector 
machine classifier using ADC textural parameters performed 
best in predicting recurrence, while the combination with T2WI 
textural parameters added little value in prognosis.43

Lucia et al in a multicentric study included 102 patients, divided 
into training (n = 69) and test (n = 33) groups, to determine if 
radiomics features from PET/CT and MR could contribute to 
predict prognosis in cervical cancer. In their multivariate anal-
ysis, the authors identified a feature belonging to the GLRLM 
from PET and a feature belonging to the GLCM from ADC maps 
of MR as independent prognostic factors. These two features 
showed significantly higher prognostic power than clinical 
parameters, as evaluated in the testing cohort with accuracy of 
94% for predicting recurrence and 100% for predicting lack of 
locoregional control (vs ~50–60% for clinical parameters).44 In a 
subsequent study, the same group successfully validated a previ-
ously developed PET/MR radiomics predictive model in two 
independent external cohorts, demonstrating images for predic-
tion of disease- free survival and locoregional control in LACC.45 
Fang et al46 extracted multiple radiomics features from T2WI 
and enhanced T1WI on baseline MR in 248 patients, divided 
into training cohort (n = 166) and validation cohort (n = 66), 
with early- stage (IB–IIA) cervical cancer, developing a Rad- score 
able to predict DFS, where higher Rad- scores were significantly 
associated with worse DFS in the training and validation cohorts 
(p < 0.001 and p = 0.011, respectively). Finally, Takada et al47 
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performed MR radiomics analysis to identify the most appro-
priate volume of interest (VOI) setting in prediction of prognosis 
in patients with CC treated with definitive radiotherapy. In a 
study cohort of 87 patients, the authors constructed a model by 
extracting features from the VOI drawn within the tumor, and 
then mechanically expanding the VOI to +4 mm and +20 mm. 
They demonstrated that VOI expansion improved AUC- ROCs 
compared with the predictive models of VOI tumor (0.59 and 
0.67 in T2WI and ADC, respectively), and that the AUC- ROCs of 
the models with imaging features from expanded VOI +4 mm in 
T2WI and VOI +4 mm and VOI +8 mm in ADC were 0.82, 0.82, 
and 0.86, respectively.47

Radiomics in endometrial cancer
Endometrial cancer (EC) represents the sixth most frequent 
tumor type among female individuals.74 EC is usually classified 
into two major types (I and II), based upon microscopic appear-
ance, clinical behavior, and epidemiology. Types I (endome-
trioid adenocarcinomas), account for about 80% of endometrial 
carcinomas, are well differentiated, have a favorable prognosis 
(overall survival >85% at five yers) and are estrogen responsive. 
Types II tumors account for 10–20% of EC, include high grade 
endometrioid tumors and non- endometrioid tumours (serous, 
clear- cell, mucinous, squamous, transitional cell, mesonephric, 
carcinosarcoma, and undifferentiated). These tumors have 
a poor prognosis (overall survival 55% at 5 years) and are not 
clearly associated with estrogen stimulation..75–78 More recently, 
a molecular reclassification of endometrial tumors has been 
proposed. In fact, genomic features of the disease strongly influ-
ence its clinical behavior and prognosis.77 Endometrial cancer 
treatment includes surgery, radiation, standard chemotherapy 
and hormonal treatment. Single agent immunotherapy is now 
an option for patients whose disease harbors microsatellite insta-
bility (MSI) and immune- check point inhibitors in combination 
with antiangiogenic represent a promising treatment for micro-
satellite stable tumors.78–81

Tumor prognostic factors
- Histology

Endometrial atypical hyperplasia (EAH) is caused by continuous 
estrogen stimulation in the endometrium without progesterone 
antagonism, resulting in changes in endometrial cell morphology 
and clonal hyperplasia of endometrial glands and stroma. EAH is 
known as a precancerous lesion for type I EC.48

EAH with field cancerization (FC) and Stage 1A EC have been 
evaluated by radiomics research. Wang et al analyzed 170 
patients, including 57 cases of EAH, 45 cases of FC, and 68 
cases of Stage 1A EC.48 They found moderate positive correla-
tions between the PET standardized uptake values and post-
operative pathological features with correlation coefficient of 
0.663, 0.651, and 0.651, respectively (p < 0.001). To differen-
tiate between the diagnosis of EAH and FC, maximum stan-
dard uptake value -SUVmax displayed the largest AUC of 
0.857 (sensitivity, 82.2%; specificity, 84.2%), whereas to differ-
entiate between the diagnoses of FC and Stage 1A EC, the 
SUVpeak displayed the largest AUC of 0.715 (sensitivity, 67.6%; 

specificity, 77.8%). Thus, the authors concluded that SUVmax 
and SUVpeak had the highest diagnostic values for EAH, FC, 
and Stage 1A EC, and that the addition of texture features may 
provide valuable information for differentiating EAH, FC, and 
Stage 1A EC.48

- Deep myometrial invasion

Ueno et al49 evaluated the associations between MR radiomics 
features and deep myometrial invasion (DMI). The authors 
extracted 11 features associated with DMI from pelvic MR scans 
of 137 patients who underwent surgery, demonstrating that 
mathematical models incorporating the significant MR based 
texture features for DMI in cancers larger than 1 cm, achieved 
equivalent accuracy to that of subspecialty radiologists. However, 
these results were not validated on independent cohorts and the 
small number of patients may have resulted in overfitting of the 
models. Ghosh et al50 focused on the evaluation of DMI and 
tumor type, using diffusion tensor imaging sequences to assess 
the lesion’s mean fractional anisotropy, belonging to higher order 
statistics features. They showed sensitivity and specificity of 94 
and 88% respectively to predict DMI. In their small cohort (n = 
27), the authors decided to get the features only from ADC maps. 
Stanzione et al51 investigated a radiomic model which could 
increase radiologists’ performance in interpreting correctly 
DMI. The authors made a three- dimensional segmentation of 
the endometrial lesion and extracted a large number of radiomic 
features from a small cohort of patients (n = 54), concluding 
that the radiologists performance is higher with the radiomics 
support.51

Ytre- Hauge et al prospectively analyzed texture parameters from 
pre- operative MR of 180 patients, to assess if they were associated 
with the known prognostic factors.52 The authors manually drew 
two- dimensional regions of interest on the slice displaying the 
largest cross- sectional tumor area. They showed that high tumor 
entropy in ADC maps independently predicted DMI (OR 3.2, p 
< 0.001), whereas high mean of positive pixels in post contrast 
T1WI independently predicted high- risk histological subtype 
(OR 1.01, p = 0.004).

- Lymph node status

The presence of positive lymph nodes is a well- known nega-
tive prognostic factor in EC. Since extended lymphadenectomy 
may be associated to high rates of early and late post- operative 
complications, radiologists have tried to support the surgeons 
in pre- operative evaluation of lymph nodes involvement.11,77,78 
However, in recent years the advent of the use of sentinel node at 
surgery, has made the pre- operative assessment of lymph nodes 
less stringent. Nevertheless, the interpretation of lymph nodes at 
imaging is still under debate, and some radiomics studies have 
evaluated this topic.78 In 2018 De Bernardi et al53 retrospectively 
analyzed 115 [18F]-FDG PET scans of patients affected by EC 
with different grading and staging. They showed in two different 
cohorts, used as training and validation sets, how the compu-
tation of imaging features on the primary tumor increased the 
nodal staging detection sensitivity of [18F]-FDG PET.
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Crivellaro et al54 analyzed 167 patients with EC who underwent 
surgical staging after [18F]-FDG PET and used histology as refer-
ence. Radiomics features were computed inside tumor contours 
using standard Image Biomarker Standardization Initiative 
(IBSI) for features extraction. They demonstrated a significant 
association between the presence of lymph node metastases and 
64 radiomics features. Among these, volume density was the 
most predictive one (p = 0001, AUC = 0,77, cut- off 0.35).

Among authors that evaluated the prediction of nodal metastases 
by MR based radiomics, Xu et al developed and compared four 
different predictive models, one based on clinical features only, 
one based on radiomic features only and two based on mixed 
radiomics and clinical features.55 Additionally, performance on 
MR reports of two specialized radiologists was included in the 
final comparison. One of the models based on both clinical and 
radiomic features showed, no difference in diagnostic predic-
tion of nodal involvement for patients with enlarged nodes as 
expected, but it showed relevant increased sensibility for normal 
and small- sized nodes (3 < n<8 mm and n < 3 mm), especially 
when compared with radiologists alone performance.55

Yan et al56 studied a large cohort of 622 patients from five 
different centers, divided into one training set and two validation 
sets, with the purpose of improving the preoperative assessments 
of pelvic lymph node metastasis. They showed that in low risk 
patients, radiologists can detect positive nodes with increased 
sensibility, with an integrated discrimination index ranging from 
0.21 to 0.24. Furthermore, the authors suggested that the radio-
mics co- occurrence matrix plots of pelvic lymph node metas-
tases and the immunohistochemical indexes were correlated 
with estrogen and progesterone receptors, P53, and Ki-67.56

- Assessment for high- risk EC

According to the European Society for Medical Oncology 
(ESMO) guidelines, different clinical and pathological features 
correlate with the risk of disease recurrence, representing well- 
defined prognostic factors for patients with EC.80 High- risk EC 
are those tumors with at least one of the following characteristics: 
deep myometrial invasion, high grade tumor, non- endometrioid 
histological subtype (serous and clear cell), linfovascular space 
invasion, extrauterine spread or nodal involvement. Yan et al57 
studied a cohort of 717 EC patients with the purpose of devel-
oping a radiomics nomogram to predict high- risk EC (refer-
ring to EC needing lymphadenectomy), preoperatively. Their 
nomogram achieved good net benefit by clinical decision curve 
analysis for high- risk EC and the author concluded that their 
radiomics nomogram exhibited good performance in the indi-
vidual prediction of high- risk EC, therefore it might be used to 
plan the surgical management of EC patients.82

Considering the advancements in molecular reclassification 
of EC, Veeraraghavan et al have recently evaluated whether 
radiomic features from contrast- enhanced CT can identify DNA 
mismatch repair deficient (MMR- D) and/or tumor mutational 
burden- high (TMB- H) tumors.83 The authors included 150 
patients, whose EC were evaluated for molecular subtypes and 

TMB. Patients were divided into a training dataset (n = 105) 
and a validation dataset (n = 45). Integrated radiomic- clinical 
classification distinguished MMR- D from copy number (CN)- 
low- like and CN- high- like ECs with an area under the receiver 
operating characteristic curve of 0.78 (95% CI 0.58–0.91). The 
model further differentiated TMB- H from TMB- low (TMB- L) 
tumors with an AUC of 0.87 (95% CI 0.73–0.95). The authors 
conclude that radiomics may provide an adjunctive tool for the 
assessment of tumor molecular profile, especially given its poten-
tial advantage in the setting of intratumor heterogeneity.

Ytre- Hauge et al in their prospective evaluation of 180 MR 
demonstrated that high kurtosis in post- contrast T1- WI was a 
good predictor of reduced recurrence as well as progression free 
survival (HR 1.5, p < 0.001), after adjusting for tumor volume 
and histological risk at biopsy.52

DISCUSSION
In the last few years, radiomics is emerging as a tool able to help 
radiologists in more precise diagnoses and in predicting prognosis 
for different tumors. The studies included in this review demon-
strate that a wide range of imaging techniques and methods have 
assessed the role of radiomics in identification of tumour prog-
nostic factors, evaluation of response to therapy and prediction 
of recurrence and distant metastases in CC. Indeed, for the same 
imaging technique (mainly MR), different sequences have been 
evaluated; likewise, conclusions on significant results have been 
based on different features categories included, frequently evalu-
ated with different statistical methods, ranging from descriptive 
statistics to machine learning methods. Furthermore, not all the 
results described as significant have been validated in external 
cohorts or prospectively. This variability of methods and results 
makes it difficult to draw definitive conclusions about the current 
role of radiomics in prognostication of CC. Therefore, the main 
further steps before full clinical application of radiomics in 
predicting prognosis of CC, should consider the choice of robust, 
reliable and reproducible, radiomics features; to homogenize 
nomenclature and analysis methods; to include not only larger 
populations for building models, but also internal and external 
validation cohorts, or even prospective validations, to test the 
power of the models.

Likewise, many research articles have assessed the role of radio-
mics in evaluation of tumor prognostic factors in EC, demon-
strating for example great promise for the use of models including 
clinical and radiomics features to predict positive lymph nodes, 
especially in small lymph nodes and in populations considered 
at low risk. Furthermore, the results pertaining the identification 
of high- risk groups are promising, but the mentioned models are 
not directly applicable to other cohorts and need further vali-
dation. However, although an increasing number of research 
articles demonstrate that radiomics may provide valuable infor-
mation in prediction of prognosis for patients with cervical 
cancer and endometrial cancer, many issues for reproducibility 
and subsequent applicability in clinical practice, arise.

Indeed, there are still many limitations and disadvantages to 
be considered before implementing radiomics models into 
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clinical practice. For example, segmentation of a lesion using 
manual methods require the delineation of the tumor margins on 
each single slice where the lesion is visible, in order to construct a 
three- dimensional structure. This process can be even more time- 
consuming if the radiomics features must be extracted from more 
than one acquisition (as from morphological and functional MR 
sequences). Furthermore, the repeatability and robustness of radio-
mics features would need dedicated studies, possibly including 
phantom experiments. As demonstrated by this review, different 
studies rely on extraction of features performed by using different 
software, some of which are commercially available, whereas others 

are not and are home tailored. Considering also that many studies 
used small populations to build their prognostic models, and that 
frequently they lacked validation cohorts to confirm the value of 
the models, it is clear that efforts to homogenize nomenclature, 
methods and analyses are needed to make consistent comparisons 
and conclusions across studies.

In conclusion, attempts should focus on current challenges of 
radiomics analyses, in order to shorten the way to a full clinical 
applicability of radiomics scores and models in prognostication of 
CC and EC.
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