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Huntington’s disease (HD) is a rare
genetic neurodegenerative disorder

for which there is currently no cure. Early
hyperkinetic motor symptoms are consis-
tent with reduced activity of indirect
pathway striatal projection neurons
(iSPNs) responsible for suppression of
unwanted actions. Our recent work sug-
gests that one of the factors contributing
to this deficit is impaired brain-derived
neurotrophic factor (BDNF) signaling
that regulates the strength of iSPN excit-
atory synapses. Specifically, we found
that BDNF-dependent corticostriatal
synaptic long-term potentiation (LTP)
was lost in iSPNs from 2 genetic models
of HD, just as they began to robustly
manifest motor symptoms. This deficit
was not attributable to problems in
BDNF production, delivery or receptor
binding. Rather, the plasticity deficit
stemmed from enhanced signaling
through p75 neurotrophin receptors
(p75NTRs) and the phosphatase and ten-
sin homolog (PTEN), leading to antago-
nism of intracellular TrkBR cascades and
LTP. This study suggests HD therapeu-
tics should target p75NTR signaling, not
TrkBR.

Huntington’s disease (HD) is an auto-
somal dominant neurodegenerative disor-
der caused by a polyglutamine expansion
in the coding region of the huntingtin
gene.1 Among the brain regions most con-
spicuously affected are the striatum and
cerebral cortex.2 In fact, progressive loss of
enkephalin expression, a marker of indi-
rect pathway striatal projection neurons
(iSPNs), and ultimately striatal neuronal
atrophy, are among the most well
described HD pathologies.3 According to

the classical model of basal ganglia motor
control,4,5 impaired iSPN function should
compromise the ability to suppress
unwanted movements, consistent with the
choreic motor symptoms associated with
early to mid-stage HD.2,6

In recent years, the impairment of
iSPNs has been attributed to diminished
trophic support of the striatum by the
cerebral cortex.7 Specifically, the delivery
of cortically made brain-derived neurotro-
phic factor (BDNF) to the striatum has
been posited to be responsible for iSPN
atrophy. Despite the wide acceptance of
this model, there are key aspects of it that
have not been tested. In particular, it has
never been shown that BDNF release by
cortical axons and binding to postsynaptic
TrkBRs is down-regulated in HD models
at the point in time when motor symp-
toms begin to emerge. To address this
need, we developed a novel synaptic plas-
ticity protocol that requires engagement
of TrkBR signaling cascades by BDNF. In
wild-type iSPNs, LTP induction at axo-
spinous corticostriatal synapses requires
co-activation of TrkBRs, N-methyl-D-
aspartate (NMDA) receptors, and A2a
adenosine receptors. In conjunction with
patch clamp recording and 2 photon laser
scanning microscopy, 2 photon uncaging
of glutamate or optogenetic activation of
cortical terminals can be used to monitor
LTP induction on a spine-by-spine basis.
This type of LTP is only seen at spines
that have cortical synapses, consistent with
the cortex being the predominant source
of striatal BDNF.8 The ability to support
this TrkBR-dependent synaptic plasticity
was progressively lost in iSPNs in brain
slices from BACHD and Q175 mouse
modes of HD. By the time HD mice were
6 months of age – an age when the motor
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symptoms are very evident – LTP in
iSPNs was completely lost but still normal
in neighboring direct pathway SPNs
(dSPNs).

Why was BDNF/TrkBR-dependent
synaptic plasticity lost in HD mice? One
explanation would be that BDNF produc-
tion and delivery to iSPNs (but not
dSPNs) is impaired. As difficult as this is
to envision given the overlap in the corti-
cal projections to these 2 cell types,9,10 it
is possible. However, using qPCR primers
recognizing 6 regions spanning the BDNF
gene, normalized to a panel of at least 6
reference genes, we found no evidence of
altered cortical BDNF expression in 6
month-old HD mice; nor did we find
altered TrkBR expression in either dSPNs
or iSPNs in these models. Furthermore,
there was no deficit in cortical or striatal
BDNF protein at this age and activity-
dependent phosphorylation of striatal
TrkBRs was unperturbed. Thus, dimin-
ished BDNF production, delivery or acti-
vation of TrkBRs cannot be the culprit.

Why did our results ostensibly differ
from those of previous reports?7,11,12 One
possibility is that the procedure used to
calibrate estimates of mRNA abundance
using quantitative PCR in previous studies
yielded spurious results. Nearly all studies
reporting changes in BDNF were normal-
ized to a single variable reference gene,
either GAPDH or b-actin; both tran-
scripts can be affected by a variety of fac-
tors which are undesirable for a
‘housekeeping’ gene. We avoided this situ-
ation by using a weighted average of at
least 6 mRNAs.13 Another possibility is
that the level of mutant huntingtin

(mHtt) expression is critical to phenotype;
there is no doubt for example that high
levels of mHtt can disrupt axonal traffick-
ing of BDNF.14 The level of expression
needed to have a measurable impact might
not be reached in the heterozygous
BACHD and Q175 models used in our
work. Indeed, in homozygous Q175 mice,
cortical expression of BDNF was reduced
at 6 months of age. Lastly, the stage in the
evolution of the disease might be critical
to phenotype. Our work focused on ages
when symptoms were becoming clear. But
as the disease evolves, other regions and
mechanisms might come into play. It is
important to remember that the cerebral
cortex and the basal ganglia are part of an
interdependent neural network. Neverthe-
less, from the therapeutic standpoint, the
earliest events in a pathophysiological cas-
cade should be the best targets.

Although BDNF expression and deliv-
ery to the striatum were not altered in HD
mice, TrkBR signaling was, as determined
by phosphorylation of its downstream tar-
get, protein kinase B (PKB, also known as
Akt). Surprisingly however, signaling ele-
ments downstream of TrkBRs appeared to
be intact. Rather, the inability of TrkBR
activation to induce LTP was due to atten-
uated signaling through an immediate
player in the TrkBR cascade: phosphoino-
sitide-3 kinase (PI3K). This deficit was
traced back to p75NTR. While overall
p75NTR mRNA and protein expression
did not appear to be altered, expression
of its downstream target PTEN was
increased. Thus, p75NTR signaling was
amplified in iSPNs from HD mice
(Fig. 1). Indeed, the capacity to support

LTP was completely restored in BACHD
iSPNs by inhibiting p75NTR and PTEN
activity.

p75NTRs can be activated by a number
of ligands, including nerve growth
factor (NGF), pro-NGF, neurotrophin 3
(NT3), neurotrophin 4 (NT4), and even
BDNF itself, albeit less effectively than
TrkBRs.15,16 This raises the possibility
that, in HD, BDNF is stepping on both
the accelerator (TrkBRs) and the brake
(p75NTRs) at the same time. This is consis-
tent with other work showing that the
balance between TrkBR and p75NTR sig-
naling is altered in HD and that this
imbalance can lead to synapse-specific
adaptations.17 If this is the case, com-
pounds that are agonists at TrkBRs, but
not p75NTRs, could be effective therapeu-
tics.18,19 The other possibility is that
p75NTR signaling is being driven in HD
by one of the other agonists at this
receptor.

Regardless of the activation mechanism
of p75NTRs, their signaling is amplified by
increased PTEN expression in symptom-
atic HD iSPNs. It is interesting to specu-
late about other potential consequences
elevated PTEN activity may have. A well-
described synaptic pathology in HD
mouse models is increased insertion of
N-methyl D- aspartate receptor subtype
2B (NR2B)-containing extrasynaptic
NMDA receptors.20 Besides shunting
PI3K signaling by dephosphorylating
PtdIns(3,4,5)P3 into PtdIns(4,5)P2,
PTEN physically interacts with NR2B
containing NMDARs, enhancing extrasy-
naptic NMDAR function.21 If such an
interaction is at play in iSPNs, PTEN
may represent another means of enhanc-
ing extrasynaptic NMDARs in HD,
and the neurotoxic cascades extrasynaptic
NR2B receptors are associated with.

Though pathological p75NTR signaling
in HD iSPNs seems to be a consequence
of elevated PTEN expression, it is a poor
therapeutic target because of its role as a
tumor suppressor.22 Interestingly, a recent
epidemiological study showed that the
incidence of cancer is lower in HD
patients,23 a phenomenon that is consis-
tent with elevated PTEN expression.
p75NTR is a much better therapeutic target
as it is developmentally downregulated in
most parts of the brain, suggesting it is

Figure 1. Diagram of TrkBR and p75NTR signaling in iSPNs in normal and HD conditions.

e968482-2 Volume 2 Issue 1Rare Diseases



dispensable. Although we don’t know of a
selective p75NTR antagonist, conditional
knockouts of p75NTR in adult mice
are feasible, making their role, and their
viability as a therapeutic target, testable.
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