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Abstract
Herein we present the synthesis of symmetrically and unsymmetrically substituted 1,3-bissulfanylbicyclo[1.1.1]pentanes from

disulfides and [1.1.1]propellane. Bicyclo[1.1.1]pentanes (BCPs) recently gained interest as rigid linkers and as bioisosters of para-

substituted benzene and alkyne moieties. The most promising precursor for BCPs is [1.1.1]propellane (1). The available methods to

synthesize BCPs are quite limited and many groups contribute to the development of novel methods. The insertion of 1 into disul-

fide bonds is known, but has never been thoroughly investigated. In this study, we show that an UV initiated radical reaction can be

used to synthesize symmetrically and unsymmetrically substituted BCP sulfides by reaction of [1.1.1]propellane (1) with disulfides.

Depending on the ratio of 1 to the disulfide, only the BCP product (with up to 98% yield) or a mixture of BCP and [2]staffane can

be obtained. The reaction tolerates functional groups such as halogens, alkyl and methoxy groups. The separation of the corre-

sponding BCP and [2]staffane products is challenging but possible by column chromatography and preparative TLC in most cases.

Single crystal X-ray diffraction analysis confirms the rod-like structure of the [2]staffanes that is often required in material applica-

tions.
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Introduction
Rigid structures are emerging in both materials science and me-

dicinal chemistry [1]. Often referred to as bioisosteres, small

strained hydrocarbons are used to replace phenyl [2-4] or

alkyne groups [5] in well-known compounds, e.g., imatinib [3]

and tazarotene [5]. The increase of the three-dimensionality and

the disruption of the π-system can lead to improved properties,
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Scheme 1: Summary of the most recent methods to obtain different BCPs from 1.

e.g., increased water-solubility of drug candidates [2] or the

electronical separation of a photoswitch and a chromophore [6].

Often used moieties for these kinds of applications are trip-

tycenes, cubanes, bicyclo[2.2.2]octanes (BCOs) and

bicyclo[1.1.1]pentanes (BCPs) [1]. In their pioneering work

Stepan et al. replaced a para-substituted fluorophenyl ring in

the γ-secretase inhibitor BMS-708,163 with a BCP whereby the

oral absorption and in vitro metabolic stability could be signifi-

cantly increased [2]. BCPs are usually derived from

[1.1.1]propellane (1) [7]. However, the available methods to

synthesize useful BCP building blocks are quite limited and

current research focuses on the development of such methods

(Scheme 1).

After the first synthesis of [1.1.1]propellane (1) by Wiberg and

Walker in 1982 [8] and the improved route by Szeimies et al. in

1985 [9] the compound and its reactions were intensely investi-

gated [10]. Michl et al. synthesized terminally functionalized

polymers derived from 1, so-called [n]staffanes, and discussed

their application as rigid tectones [11,12].

The characteristic reactivity of 1 emerges from the strained

central bond, which was opened with free radicals in most

cases. The reaction with diacetyl and subsequent oxidation

leads to the important intermediate bicyclo[1.1.1]pentane-1,3-

dicarboxylic acid which provides access to unsymmetrically

substituted BCPs (not shown) [13]. It is assumed that the reac-

tion of 1 with nucleophiles also proceeds through a radical

mechanism [14,15]. The reaction with alkyl halides, initially de-

scribed by Michl et al. [16], has recently been further investigat-

ed by Anderson et al. (Scheme 1) [17]. Both groups showed that

the BCP halide can be lithiated to further modify the products.

The opening of 1 with Grignard reagents enables the synthesis

of aryl and some alkyl-substituted BCPs and a subsequent

cross-coupling reaction [5,18].

To provide bicyclo[1.1.1]pentylamine as a building block in

large-scale syntheses, Bunker et al. developed a synthesis of

hydrazine BCP via a manganese-catalyzed reaction, which can

easily be converted to the corresponding amine [19]. An alter-

native approach by Baran et al. installs the BCP late-stage at a

secondary aliphatic amine via the corresponding turbo-amide

[20,21]. Uchiyama et al. investigated the reaction mechanism of

a radical multicomponent carboamination of 1. This reaction

provides access to internal BCPs next to amines [22].

The reaction of 1 with thiophenol has been known since 1985

and, given the high yield, used to determine the concentration of

propellane solutions [23]. Our group investigated this reaction

further and proved the generality of the thiol addition [24].

In analogy to this reaction, the insertion of 1 into disulfide

bonds has been discovered early, but only very few examples

can be found in the literature [10,11,25-28].
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Scheme 2: Screening reaction performed with different types of irradiation (see Figure 1).

Figure 1: Optimization of the reaction conditions. The relative conversion was determined by GC–MS. The use of a radical initiator (di-tert-butyl
peroxide, DTBP) led to increased amounts of insoluble polymer.

In this work, the insertion of [1.1.1]propellane (1) into disulfide

bonds was investigated further to enable the synthesis of novel

BCP building blocks. After optimizing the reaction conditions,

the scope of the reaction was tested, followed by a proof-of-

concept that enables a new route to unsymmetrically substi-

tuted BCPs.

Results and Discussion
As a starting point, [1.1.1]propellane (1) has been prepared by a

published procedure as a solution in diethyl ether [20], quanti-

fied by the reaction with thiophenol [23] and stored at −78 °C.

Solutions of 1 were obtained with concentrations between

0.40–0.55 M.

Optimization
As some reactions of disulfides with 1 have been reported under

different conditions we decided to compare and tune these

conditions. Szeimies et al. used azobisisobutyronitrile (AIBN)

as a radical initiator and heated the reaction mixture in a Carius

tube to 80 °C [27]. Wiberg et al. initiated the reaction by irradi-

ation with a 60 W light bulb overnight [10]. Michl et al. were

the first to use UV irradiation in this reaction, but did not report

detailed conditions [28]. They used diacetyldithiol and 1 to

obtain bisacetylthio[n]staffanes. To find feasible conditions for

the insertion of 1 into disulfide bonds, a screening with irradia-

tions of different wavelengths and other reaction conditions was

performed (Scheme 2). The screening reaction was set up with

1.0 equiv of diphenyl disulfide (10a) and 1.0 equiv of 1 in

diethyl ether at room temperature and the consumption of the

starting material was monitored by GC–MS over a period of 1 h

(Figure 1). In this first screening approach the products were

not isolated. The relative conversion was determined by inte-

grating the signals of 10a and the products 6a and 11a. No other

signals were detected and the sum of the integrals was defined

as 100%. This method cannot be used to determine yields or

absolute concentrations as no internal standard was added.

In the dark, no conversion could be observed at all. The expo-

sure to daylight led to a conversion of less than 10% after 1 h.

With a 500 W halogen lamp, 90% of the starting material was

consumed after 1 h. By the addition of di-tert-butyl peroxide

(DTBP) as a radical initiator, the conversion could be acceler-

ated in the beginning of the measurement. However, after the

work-up of the reaction with radical initiator, an insoluble white
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Table 1: Results of the insertion of 1 into aromatic disulfide bonds. The ratio of 1:10 determines the amount of [2]staffane formed.

Entry Disulfide 10 R Ratio of 1:10 Yield 6 [%] Yield 11 [%]

1 10a H 1:3 98a –b

2 10a H 1:1 51c 5c

3 10a H 2:1 32c 10c

4 10a H 3:1 33c 20c

5 10b 4-Cl 1:3 98a –b

6 10b 4-Cl 2:1 34c 15c

7 10c 3,5-Cl2 1:3 96a –b

8 10c 3,5-Cl2 2:1 34c 8c

9 10d 4-Me 1:3 96a traces
10 10d 4-Me 2:1 35c 12c

11 10e 4-OMe 1:3 94a traces
12 10f 2-Ph 1:3 61a –b

aIsolated yield, purified by column chromatography. bNot observed. cIsolated yield, purified by preparative TLC.

solid, presumably longer [n]staffanes, was discovered. When

the reaction was performed in a 500 W UV reactor (medium-

pressure mercury-vapor lamps, 254 nm) without a radical initia-

tor almost full conversion (≈90%) was observed after 15 min.

The use of UV light at room temperature seemed feasible and

the conversion was faster than reported by Wiberg et al. [10].

The absence of a radical initiator is advantageous as the forma-

tion of longer [n]staffanes is usually promoted by the initiators.

After this initial screening a reaction time of 20 min was

chosen.

Scope and limitations
The ratio of the products 6a and 11a could easily be changed by

the amount of disulfide used in the reaction. We found that

3.0 equiv of the disulfide led to almost exclusive formation of

6a (Table 1, entry 1). These conditions were applied to differ-

ent aromatic disulfides and the corresponding products were ob-

tained in fair to quantitative yields. The high yields for the

BCPs 6 highlight the advantage of this mild method. Wiberg et

al. reported a yield of 45% for 6a [10] and Szeimies et al. ob-

tained 63% of 6a and 27% of 11a [27]. Halogen substitutions

were tolerated as well as methyl and methoxy groups. All prod-

ucts of substituted aromatic disulfides are previously unre-

ported.

The analysis of compound 6a by single-crystal X-ray diffrac-

tion [29] revealed a distance of 1.844(3) Å between the bridge-

head carbons of the BCP unit (Figure 2).

Figure 2: Molecular structure of 6a (displacement parameters are
drawn at 50% probability level), distance C1–C3 1.844(3) Å.

When 2.0 equiv of 1 and 1.0 equiv of 10a were used, the yield

of 6a dropped dramatically and the [2]staffane product 11a was

obtained in poor yield (Table 1, entry 3). The separation was

possible by preparative TLC. It is assumed that longer staffane

chains are formed in this reaction. However, the isolation and

characterization of these compounds was not successful. The in-

fluence of the ratio of 1:10 on the formation of the [2]staffane

was also investigated for some of the substituted disulfides. The
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Scheme 3: Proposed mechanism of the propellane insertion into disulfide bonds.

Scheme 4: The insertion of 1 into dibenzyl disulfide (12) led to the formation of BCP 13 and traces of [2]staffane 14. The structure of 14 could be
proven by single-crystal X-ray diffraction (displacement parameters are drawn at 50% probability level).

overall trend was the same for all reactions with yields of

around 35% for 6 and between 8–15% for 11. The yield of 11a

could be increased to 20% by using a ratio of 3:1 (Table 1, entry

4).

The radical reaction as proposed in Scheme 3 should lead to

higher yields of 11 with an increasing amount of 1. As the

kinetically controlled reactions depend on the concentration of

the reaction partners, the dimerization becomes less dominant

with a low concentration of the BCP radical. The propagation

with the disulfide proceeds faster as the disulfide concentration

is higher. The formation of staffanes seems to be less favored

than the propagation with the disulfide. This observation is in

accordance with previous calculations and experimental results

[17,22].

Insertion into aliphatic disulfides
To investigate the insertion of 1 into aliphatic disulfides, benzyl

disulfide 12 was chosen as a model compound. As the forma-

tion of thiyl radicals is critical to the reaction and most aliphat-

ic disulfides do not absorb UV light at the used wavelength,

radical initiators should be taken into account for other disul-

fides. However, for 12 the reaction was successful without

radical initiator and the BCP 13 was obtained as the main prod-

uct (Scheme 4). The purification was possible by HPLC

(reversed-phase) and the yield was significantly lower com-

pared to the aromatic disulfides. Szeimies et al. also synthe-

sized alkyl-substituted BCP and staffane sulfides with the previ-

ously described method (see optimization) in similar yields

[27]. Presumably, there are two factors contributing to the

lowered yield. The bond dissociation energy (BDE) of dialkyl-



Beilstein J. Org. Chem. 2019, 15, 1172–1180.

1177

Scheme 5: Reaction of propellane (1) with the two disulfides 10a and 10d. When two different disulfides were used, all three possible products were
obtained. The yields were determined by NMR spectroscopy (Figure 3).

disulfides is higher than the BDE of diaryl disulfides [30].

Therefore lower concentrations of thiyl radicals are present to

initiate the reaction. The second reason could be the absorption

of the UV irradiation. In the benzyl group only the aromatic part

can absorb the light and a transfer has to take place to promote

the homolytic cleavage of the disulfide.

In first purification attempts [2]staffane 14 could be identified

in a mixture with 13 in traces. From the product mixture we

could obtain single-crystals of 14 to confirm the structure by

X-ray diffraction (Scheme 4) [31]. The rod-like structure of the

[2]staffane unit now becomes more tangible. The distance in

one BCP unit equals 1.857(3) Å (C1–C5) and the two units are

1.491(4) Å apart from each other (C1–C1’).

Reaction with different mixtures of disulfides
The synthesis of useful unsymmetrically substituted BCPs

remains a challenge and only few direct routes from 1 are avail-

able (see Introduction). The insertion into disulfides could

provide an alternative approach. With the two disulfides 10a

and 10d as starting materials a product mixture of 6a, 15 and 6d

was obtained (Scheme 5). The yields were determined by NMR

spectroscopy as the products could not be separated by column

chromatography (Figure 3). Analytical samples could be ob-

tained by purification of this mixture via HPLC (reversed-phase

column). If one assumes equal reaction rates for the propellane

insertion, independent from the substitution of the disulfide, a

product mixture with the ratio 1:2:1 would be expected. The ob-

tained yields of 18, 45 and 24%, respectively differ slightly

from this ratio.

To facilitate the separation of the products we switched the

disulfides used in this reaction to 10a and 10e (Scheme 6). With

the bigger difference in polarity of the substituents, the prod-

ucts 6a, 16 and 6e could be separated by column chromatogra-

phy and preparative TLC. Again, we observed a deviation from

the expected product ratio. This leads to the assumption that the

4-methoxybenzenethiyl radical is either formed faster and/or

reacts more rapidly with 1 than the corresponding benzenethiyl

radical. The calculated BDE (DFT calculation) of 10e is slightly

lower with 49.0 kcal/mol compared to 10a with 54.5 kcal/mol

[32]. This difference hints towards the faster formation of the

4-methoxybenzenethiyl radical, but the values are in the same

region. To ascertain the main factor for this trend further inves-

tigations are necessary. We observed the same trend in the thiol

addition to 1, when thiophenol and 4-methoxythiophenol were

used in a competitive reaction [24].

The structure of 16 could be confirmed by single-crystal X-ray

diffraction [33]. With 16 as the main product of this reaction,

this method provides new access to unsymmetrically substi-

tuted BCPs directly from 1 and purely symmetrical starting ma-

terials. This finding will be pursued with a selective cleavage or

oxidation of one sulfide in further studies.
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Figure 3: NMR spectra of pure 6a (green) and 6d (red) and the obtained mixture with the new compound 15 (blue).

Scheme 6: The reaction of 1 with the two disulfides 10a and 10e led to the known products 6a, 6e and to the unsymmetrically substituted BCP 16 as
the main product. The compounds could be separated by column chromatography and preparative TLC. The structure of 16 could be confirmed by
single-crystal X-ray diffraction (displacement parameters are drawn at 50% probability level).
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Conclusion
The reported reaction of [1.1.1]propellane with aromatic and to

a certain extend aliphatic disulfides provides access to

[2]staffanes and symmetrical and unsymmetrical BCPs. The

separation of these compounds is often challenging due to the

similar polarity. However, the reaction conditions can be tuned

to obtain solely the BCP compound in high yields. By mixing

two aromatic disulfides in this reaction three different products

can be obtained, with the unsymmetrically substituted com-

pound as the main product. This method will become particular-

ly interesting if the two sulfides of the product can be modified

individually. This approach to unsymmetrically substituted

BCPs will be further investigated.

Supporting Information
Full experimental details and analytical data (1H NMR,
13C NMR, X-ray analysis) are provided in the following

files.

Supporting Information File 1
Description and analyses.

[https://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-15-114-S1.pdf]

Supporting Information File 2
Spectra.

[https://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-15-114-S2.pdf]

Supporting Information File 3
RInChIs.

[https://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-15-114-S3.xlsx]

Supporting Information File 4
DOIs data repository.

[https://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-15-114-S4.xlsx]

Supporting Information File 5
Reference samples molecule archive.

[https://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-15-114-S5.xlsx]

Acknowledgements
R.M.B. acknowledges the SFB 1176 funded by the German

Research Foundation (DFG) in the context of projects A4 & B3

for funding. We thank A. Dilmac and N. Griebenow for initial

experiments and advice and Prof. Matthias Olzmann (KIT) for

inspiring discussions about reaction kinetics. We acknowledge

the support by two projects of the German Research Founda-

tion, namely BR 1750/34-1 (use of the electronic lab notebook

and repository Chemotion to disclose the herein described

research data) and BR1750/40-1, JU2909/5-1 (service for the

deposit of physical samples of the isolated compounds).

ORCID® iDs
Robin M. Bär - https://orcid.org/0000-0002-5122-7809
Olaf Fuhr - https://orcid.org/0000-0003-3516-2440
Stefan Bräse - https://orcid.org/0000-0003-4845-3191

References
1. Locke, G. M.; Bernhard, S. S. R.; Senge, M. O. Chem. – Eur. J. 2019,

25, 4590–4647. doi:10.1002/chem.201804225
2. Stepan, A. F.; Subramanyam, C.; Efremov, I. V.; Dutra, J. K.;

O’Sullivan, T. J.; DiRico, K. J.; McDonald, W. S.; Won, A.; Dorff, P. H.;
Nolan, C. E.; Becker, S. L.; Pustilnik, L. R.; Riddell, D. R.;
Kauffman, G. W.; Kormos, B. L.; Zhang, L.; Lu, Y.; Capetta, S. H.;
Green, M. E.; Karki, K.; Sibley, E.; Atchison, K. P.; Hallgren, A. J.;
Oborski, C. E.; Robshaw, A. E.; Sneed, B.; O’Donnell, C. J.
J. Med. Chem. 2012, 55, 3414–3424. doi:10.1021/jm300094u

3. Nicolaou, K. C.; Vourloumis, D.; Totokotsopoulos, S.; Papakyriakou, A.;
Karsunky, H.; Fernando, H.; Gavrilyuk, J.; Webb, D.; Stepan, A. F.
ChemMedChem 2016, 11, 31–37. doi:10.1002/cmdc.201500510

4. Measom, N. D.; Down, K. D.; Hirst, D. J.; Jamieson, C.; Manas, E. S.;
Patel, V. K.; Somers, D. O. ACS Med. Chem. Lett. 2017, 8, 43–48.
doi:10.1021/acsmedchemlett.6b00281

5. Makarov, I. S.; Brocklehurst, C. E.; Karaghiosoff, K.; Koch, G.;
Knochel, P. Angew. Chem., Int. Ed. 2017, 56, 12774–12777.
doi:10.1002/anie.201706799

6. de Meijere, A.; Zhao, L.; Belov, V. N.; Bossi, M.; Noltemeyer, M.;
Hell, S. W. Chem. – Eur. J. 2007, 13, 2503–2516.
doi:10.1002/chem.200601316

7. Dilmaç, A. M.; Spuling, E.; de Meijere, A.; Bräse, S.
Angew. Chem., Int. Ed. 2017, 56, 5684–5718.
doi:10.1002/anie.201603951

8. Wiberg, K. B.; Walker, F. H. J. Am. Chem. Soc. 1982, 104, 5239–5240.
doi:10.1021/ja00383a046

9. Semmler, K.; Szeimies, G.; Belzner, J. J. Am. Chem. Soc. 1985, 107,
6410–6411. doi:10.1021/ja00308a053

10. Wiberg, K. B.; Waddell, S. T. J. Am. Chem. Soc. 1990, 112,
2194–2216. doi:10.1021/ja00162a022

11. Kaszynski, P.; Friedli, A. C.; Michl, J. J. Am. Chem. Soc. 1992, 114,
601–620. doi:10.1021/ja00028a029

12. Kaszynski, P.; Michl, J. J. Am. Chem. Soc. 1988, 110, 5225–5226.
doi:10.1021/ja00223a070

13. Kaszynski, P.; Michl, J. J. Org. Chem. 1988, 53, 4593–4594.
doi:10.1021/jo00254a038

14. Rehm, J. D.; Ziemer, B.; Szeimies, G. Eur. J. Org. Chem. 1999,
2079–2085.
doi:10.1002/(sici)1099-0690(199909)1999:9<2079::aid-ejoc2079>3.3.c
o;2-4

15. Levin, M. D.; Kaszynski, P.; Michl, J. Chem. Rev. 2000, 100, 169–234.
doi:10.1021/cr990094z

16. Kaszynski, P.; McMurdie, N. D.; Michl, J. J. Org. Chem. 1991, 56,
307–316. doi:10.1021/jo00001a058

https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-15-114-S1.pdf
https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-15-114-S1.pdf
https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-15-114-S2.pdf
https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-15-114-S2.pdf
https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-15-114-S3.xlsx
https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-15-114-S3.xlsx
https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-15-114-S4.xlsx
https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-15-114-S4.xlsx
https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-15-114-S5.xlsx
https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-15-114-S5.xlsx
https://orcid.org/0000-0002-5122-7809
https://orcid.org/0000-0003-3516-2440
https://orcid.org/0000-0003-4845-3191
https://doi.org/10.1002%2Fchem.201804225
https://doi.org/10.1021%2Fjm300094u
https://doi.org/10.1002%2Fcmdc.201500510
https://doi.org/10.1021%2Facsmedchemlett.6b00281
https://doi.org/10.1002%2Fanie.201706799
https://doi.org/10.1002%2Fchem.200601316
https://doi.org/10.1002%2Fanie.201603951
https://doi.org/10.1021%2Fja00383a046
https://doi.org/10.1021%2Fja00308a053
https://doi.org/10.1021%2Fja00162a022
https://doi.org/10.1021%2Fja00028a029
https://doi.org/10.1021%2Fja00223a070
https://doi.org/10.1021%2Fjo00254a038
https://doi.org/10.1002%2F%28sici%291099-0690%28199909%291999%3A9%3C2079%3A%3Aaid-ejoc2079%3E3.3.co%3B2-4
https://doi.org/10.1002%2F%28sici%291099-0690%28199909%291999%3A9%3C2079%3A%3Aaid-ejoc2079%3E3.3.co%3B2-4
https://doi.org/10.1021%2Fcr990094z
https://doi.org/10.1021%2Fjo00001a058


Beilstein J. Org. Chem. 2019, 15, 1172–1180.

1180

17. Caputo, D. F. J.; Arroniz, C.; Dürr, A. B.; Mousseau, J. J.;
Stepan, A. F.; Mansfield, S. J.; Anderson, E. A. Chem. Sci. 2018, 9,
5295–5300. doi:10.1039/c8sc01355a

18. Messner, M.; Kozhushkov, S. I.; de Meijere, A. Eur. J. Org. Chem.
2000, 1137–1155.
doi:10.1002/1099-0690(200004)2000:7<1137::aid-ejoc1137>3.0.co;2-2

19. Bunker, K. D.; Sach, N. W.; Huang, Q.; Richardson, P. F. Org. Lett.
2011, 13, 4746–4748. doi:10.1021/ol201883z

20. Gianatassio, R.; Lopchuk, J. M.; Wang, J.; Pan, C.-M.; Malins, L. R.;
Prieto, L.; Brandt, T. A.; Collins, M. R.; Gallego, G. M.; Sach, N. W.;
Spangler, J. E.; Zhu, H.; Zhu, J.; Baran, P. S. Science 2016, 351,
241–246. doi:10.1126/science.aad6252

21. Lopchuk, J. M.; Fjelbye, K.; Kawamata, Y.; Malins, L. R.; Pan, C.-M.;
Gianatassio, R.; Wang, J.; Prieto, L.; Bradow, J.; Brandt, T. A.;
Collins, M. R.; Elleraas, J.; Ewanicki, J.; Farrell, W.; Fadeyi, O. O.;
Gallego, G. M.; Mousseau, J. J.; Oliver, R.; Sach, N. W.; Smith, J. K.;
Spangler, J. E.; Zhu, H.; Zhu, J.; Baran, P. S. J. Am. Chem. Soc. 2017,
139, 3209–3226. doi:10.1021/jacs.6b13229

22. Kanazawa, J.; Maeda, K.; Uchiyama, M. J. Am. Chem. Soc. 2017, 139,
17791–17794. doi:10.1021/jacs.7b11865

23. Mondanaro, K. R.; Dailey, W. P. Org. Synth. 1998, 75, 98–105.
doi:10.15227/orgsyn.075.0098

24. Bär, R. M.; Kirschner, S.; Nieger, M.; Bräse, S. Chem. – Eur. J. 2018,
24, 1373–1382. doi:10.1002/chem.201704105

25. Wiberg, K. B.; Waddell, S. T.; Laidig, K. Tetrahedron Lett. 1986, 27,
1553–1556. doi:10.1016/s0040-4039(00)84310-5

26. Wiberg, K. B.; Waddell, S. T. Tetrahedron Lett. 1988, 29, 289–292.
doi:10.1016/s0040-4039(00)80076-3

27. Bunz, U.; Polborn, K.; Wagner, H.-U.; Szeimies, G. Chem. Ber. 1988,
121, 1785–1790. doi:10.1002/cber.19881211014

28. Friedli, A. C.; Kaszynski, P.; Michl, J. Tetrahedron Lett. 1989, 30,
455–458. doi:10.1016/s0040-4039(00)95226-2

29. CCDC 1896780 (6a) contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via
http://www.ccdc.cam.ac.uk/data_request/cif.

30. Luo, Y.-R. Handbook of bond dissociation energies in organic
compounds; CRC press: Boca Raton, Florida, USA, 2002.
doi:10.1201/9781420039863

31. CCDC 1896794 (14) contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via
http://www.ccdc.cam.ac.uk/data_request/cif.

32. Yang, Y.-M.; Yu, H.-Z.; Sun, X.-H.; Dang, Z.-M. J. Phys. Org. Chem.
2016, 29, 6–13. doi:10.1002/poc.3480

33. CCDC 1908215 (16) contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via
http://www.ccdc.cam.ac.uk/data_request/cif.

License and Terms
This is an Open Access article under the terms of the

Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0). Please note

that the reuse, redistribution and reproduction in particular

requires that the authors and source are credited.

The license is subject to the Beilstein Journal of Organic

Chemistry terms and conditions:

(https://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one

which can be found at:

doi:10.3762/bjoc.15.114

https://doi.org/10.1039%2Fc8sc01355a
https://doi.org/10.1002%2F1099-0690%28200004%292000%3A7%3C1137%3A%3Aaid-ejoc1137%3E3.0.co%3B2-2
https://doi.org/10.1021%2Fol201883z
https://doi.org/10.1126%2Fscience.aad6252
https://doi.org/10.1021%2Fjacs.6b13229
https://doi.org/10.1021%2Fjacs.7b11865
https://doi.org/10.15227%2Forgsyn.075.0098
https://doi.org/10.1002%2Fchem.201704105
https://doi.org/10.1016%2Fs0040-4039%2800%2984310-5
https://doi.org/10.1016%2Fs0040-4039%2800%2980076-3
https://doi.org/10.1002%2Fcber.19881211014
https://doi.org/10.1016%2Fs0040-4039%2800%2995226-2
http://www.ccdc.cam.ac.uk/data_request/cif
https://doi.org/10.1201%2F9781420039863
http://www.ccdc.cam.ac.uk/data_request/cif
https://doi.org/10.1002%2Fpoc.3480
http://www.ccdc.cam.ac.uk/data_request/cif
http://creativecommons.org/licenses/by/4.0
https://www.beilstein-journals.org/bjoc
https://doi.org/10.3762%2Fbjoc.15.114

	Abstract
	Introduction
	Results and Discussion
	Optimization
	Scope and limitations
	Insertion into aliphatic disulfides
	Reaction with different mixtures of disulfides

	Conclusion
	Supporting Information
	Acknowledgements
	ORCID iDs
	References

