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Abstract
Background: Noninvasive therapies such as focused ultrasound were developed to be used for 
cancer therapies, vessel bleeding, and drug delivery. The main purpose of focused ultrasound therapy 
is to affect regions of interest (ROI) of tissues without any injuries to surrounding tissues. In this 
regard, an appropriate monitoring method is required to control the treatment. Methods: This study 
is aimed to develop a noninvasive monitoring technique of focused ultrasound (US) treatment using 
sparse representation of US radio frequency (RF) echo signals. To this end, reasonable results in 
temperature  change estimation in the tissue under focused US radiation were obtained by utilizing 
algorithms related to sparse optimization as orthogonal matching pursuit (OMP) and accompanying 
Shannon’s entropy. Consequently, ex vivo tissue experimental tests yielded two datasets, including 
low‑intensity focused US (LIFU) and high‑intensity focused US (HIFU) data. The proposed 
processing method analyzed the ultrasonic RF echo signal and expressed it as a sparse signal and 
calculated the entropy of each frame. Results: The results indicated that the suggested approach 
could noninvasively estimate temperature changes between 37°C and 47°C during LIFU therapy. In 
addition, it represented temperature changes during HIFU ablation at various powers, ranging from 
10 to 130 W. The normalized mean square error of the proposed method is 0.28, approximately 
2.15 on previous related methods. Conclusion: These results demonstrated that this novel proposed 
approach, including the combination of sparsity and Shanoon’s entropy, is more feasible and effective 
in temperature change estimation than its predecessors.
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Introduction
Open surgeries are the most common 
treatment for tumors, specifically solid 
tumors, but it is invasive, expensive, 
and has side effects. As a result, several 
noninvasive methods have been perused 
to improve therapeutic efficacy and 
patient comfort. One major noninvasive 
technique currently utilized is radiation 
therapy which radiates ionizing X‑ray 
beams to destroy cancer cells. However, 
X‑ray radiation can cause potential side 
effects, necessitating determining the 
optimal dose and monitoring throughout 
treatments.[1]

Another promising noninvasive technique 
for treating cancer cells is high‑intensity 

focused ultrasound (HIFU). In this 
treatment, ultrasound (US) waves are 
focused on the regions of interest (ROI) to 
heat and ablate abnormal tissue and cells. 
Compared to radiation therapy, it is cost 
efficient, nonionizing, and harmless for 
surrounding tissues. Furthermore, HIFU 
therapy can be performed repeatedly due 
to its minimal side effects. However, it is 
unsuitable for tumors in organs such as 
the lungs and bowel because of the high 
attenuation of US waves in the air and 
bone. In spite of these limitations, HIFU is 
an intriguing method that can treat cancer 
tumors noninvasively and without severe 
side effects. Thus, HIFU therapy has been 
applied to numerous types of cancerous 
tumors in organs such as the liver, kidney, 
prostate, breast, and uterine.[1]

Access this article online

Website: www.jmssjournal.net

DOI: 10.4103/jmss.jmss_23_23

Quick Response Code:

Kiarash Behnam 
Malekzadeh1, 
Hamid Behnam1, 
Jahangir (Jahan) 
Tavakkoli2,3

1Department of Biomedical 
Engineering, School of 
Electrical Engineering, Iran 
University of Science and 
Technology, Tehran, Iran, 
2Department of Physics, 
Toronto Metropolitan University, 
3Institute for Biomedical 
Engineering, Science and 
Technology (iBEST), Keenan 
Research Centre for Biomedical 
Sciences, St. Michael’s Hospital, 
Toronto, ON, Canada

Submitted: 05‑Jun‑2023          Revised: 27‑Sep‑2023          Accepted: 01‑Nov‑2023          Published: 27‑Mar‑2024



Malekzadeh, et al.: Monitoring temperature changes induced by focused ultrasound

2 Journal of Medical Signals & Sensors | Volume 14 | Issue 3 | March 2024

HIFU is a noninvasive technique that induces selective 
thermal and mechanical effects in a ROI.[2] In this method, 
the thermal effect depends on the focal spot’s temperature 
increase due to the absorption of US. This increase can 
depend on the intensity and duration of the treatment, 
resulting in various stages of tissue or cell destruction, 
ranging from reversible heat‑induced changes (43°C–45°C) 
to coagulation necrosis at temperatures above 50°C. 
Mechanical effects induced by HIFU involve nonthermal 
tissue destruction and are associated with high‑intensity 
acoustic pulses, resulting in cavitation, microstreaming, and 
radiation force, leading to the disruption of the vascular 
structure, connective tissue, and cellular damage.[3] HIFU 
requires a suitable imaging technique to envisage the target 
and monitor the treatment process. While imaging guidance 
can potentially increase clinical use and broaden HIFU’s 
applications, which imaging platform should be used 
remains debatable.[4]

Currently, two types of imaging systems are integrated 
with HIFU: magnetic resonance imaging‑guided (MRI) and 
US‑guided procedures. While substantial device‑specific 
variations may exist, the underlying process is generally 
consistent. Both methods have proponents and opponents. 
The US‑guided procedures are inexpensive and convenient 
and may be performed in real time, where MR‑HIFU 
can provide high‑quality resolution images and better 
thermometry data.[5] MRI systems are typically used 
to confirm the ROI and measure the corresponding 
temperature clinically. MRI is a suitable imaging modality 
that can provide volumetric images. Nevertheless, it has the 
following limitations: (1) setting up the system requires a 
large space and is quite costly, (2) it must be compatible 
with all other devices, including HIFU, and (3) MRI has a 
low temporal resolution. US imaging can also evaluate and 
differentiate the temperature rise by tracking the shifts in 
speckle patterns caused by changes in the speed of sound. 
Even though US images have cost effective, real‑time 
imaging capability, and high temporal resolution, they are 
prone to excessive noise and artifacts that limit its adoption 
for clinical applications.[1]

US thermometry is a simple and portable method that 
may be more effective than other methods. The leading 
US thermometry methods for hyperthermia therapies, in 
which the tissue temperature does not transgress 45°C, 
are currently based on the signal changes in backscattered 
energy (CBE), the backscattered radio frequency (RF) 
echo shift due to a change in the speed of sound, and in 
amplitudes of the acoustic harmonics.[6] Among these 
techniques, the backscattered RF echo shift is currently the 
most established, and its viability in small animals has been 
demonstrated in vivo. Nevertheless, the echo‑shift method 
is highly sensitive to tissue motion.[6]

The US thermometry method based on CBE of the acoustic 
harmonics is used to estimate the temperature in ex vivo 

tissues. Moreover, the feasibility of using the CBE method 
to identify heated ROI generated by low‑intensity focused 
US (LIFU) and to control the temperature in the heated 
region has been demonstrated.[6] Such control systems 
can be used for targeted drug delivery applications, where 
keeping the temperature between 41°C and 45°C for a few 
minutes is adequate to release the drugs.[6]

In addition, entropy imaging is a technique that can quantify 
the uncertainty of a random process and is usually utilized 
as a measure for probability distributions.[7] Shannon’s 
entropy of RF time series signal possesses promising 
features which show that the change of the entropy 
parameter of the RF time series signal is proportional to 
temperature changes recorded by a calibrated thermocouple 
in the temperature range of 37°C–47°C by considering the 
uncertainty in given data that can be used, as a method, 
to measure temperature changes noninvasively and 
quantitatively in the deep region of tissue.[7] In entropy 
method (Behnia et al.[7]), they prepared time series of 
consecutive B‑mode images. When all amplitude values in 
the time series are the same, the entropy is 0, and when 
every amplitude value is unique, it is 1.28. Spatiotemporal 
interpolation is carried out on the final results of their study 
by a cubic spline function.[7]

Compressive sensing (CS) and sparse representation have 
become more prevalent in signal and image processing 
applications, such as pattern recognition and machine 
vision. To the best of our knowledge, however, there has 
been limited research on CS for US signal and image 
reconstruction. The number of measurements in CS can 
be significantly less than the number of samples typically 
taken in the traditional sampling method known as the 
Nyquist rate.[8]

In general, signal reconstruction from CS measurements 
is performed through optimization algorithms. The signal 
is contaminated with various noises and artifacts in 
many medical and engineering applications. In addition 
to corrupting the original signal, noise and artifacts 
also impact the reconstructed signal. To this end, CS 
theory can be applied as a method for reducing noise if 
the sparse space of the signal is known.[9] This fact is 
attributable to two causes: signal and noise are relatively 
distinct in sparse space, and the number of measurements 
can only contain limited information about noise and 
artifacts. Multiple studies have demonstrated that CS 
can be used for two main purposes: (1) it can reduce the 
amount of data required, thereby increasing the speed of 
data acquisition and (2) it can be used in applications with 
data recording limitations.[8] Ex vivo porcine muscle tissue 
was used for all experiments and results in the current 
study.[7,9]

In mentioned methods, the CS method (Ghasemifard 
et al.[8,9]) was applied for HIFU lesion detection. In addition, 
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the entropy (Behnia et al.[7]) and the CBE (Shaswary 
et al.[6]) methods were applied for LIFU thermometry. 
Citing past articles, utilizing a combination of sparsity 
or CS and other related methods as the entropy could be 
feasible to improve the monitoring method of focused US 
because sparsity would reduce the amount of data and 
noise.

The analysis results demonstrated the novel proposed 
method’s effectiveness for the noninvasive monitoring of 
tissue changes induced by both LIFU radiation and HIFU 
thermal lesion production.

Materials and Methods
Two types of data were used for the analysis in this study. 
The data were recorded in the Advanced Biomedical US 
Imaging and Therapy Laboratory in the Department of 
Physics at Toronto Metropolitan University (formerly 
Ryerson University), Toronto, Canada, and the Institute for 
Biomedical Engineering, Science, and Technology, Keenan 
Research Center for Biomedical Science, St. Michael’s 
Hospital, Toronto, Ontario, Canada.

Dataset 1: Low‑intensity focused ultrasound data

Ex vivo excised pork muscle tissue obtained from a 
local butchery was immersed in 0.9% saline solution 

at 5°C for 24 h. The tissue sample was placed in a 
holder, where the dimensions of the tissue sample were 
5 cm × 8 cm × 3 cm (axial × lateral × height). The 
holder was subsequently placed in a water tank with a 
single‑element focused therapeutic transducer (Imasonic 
SAS, Voray sur l’Ognon, France) operating in the LIFU 
range. A schematic diagram of the setup is shown in 
Figure 1 (reproduced from[6]).

The central frequency of the LIFU transducer was 1 MHz, 
its focal length was 100 mm, and its aperture diameter was 
125 mm. The temperature of the tank’s water was fixed 
and controlled at 37°C by a circulating water bath (Haake 
DC10, Thermo Electron Corp., Newington, NH, USA). 
The LIFU transducer was derived by a 175 mVpp input 
signal (corresponding to an acoustic output power of 
4.5 W) for 1000 cycles at 1 MHz, with a duty cycle of 
50%. The base temperature was 37°C, and the temperature 
in the focal zone reached 47°C after 6 min of exposure. 
The simulated intensity field of the therapeutic transducer 
produced by an acoustic scope and temperature response 
simulator (LATS) is shown in Figure 2.

Because of utilizing the same LIFU dataset, more details 
about data acquisition and equipment have been mentioned 
in references Behnia et al.[7] and Shaswary et al.[6]

Figure 1: The experimental setup[6]

Figure 2: Simulated low‑intensity focused ultrasound transducer intensity field in (a) side (b) cross‑sectional views. The field was generated using a 
linear acoustic and temperature simulator[6]

ba
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In the first set of experiments, a thermocouple was placed at 
the focus of the therapeutic transducer, and the temperature 
of the tissue was recorded as it was exposed to LIFU. Due to 
thermocouple artifacts, no backscattered RF data were collected 
during these experiments. In the second set of experiments, the 
thermocouple was removed from the tissue before exposure to 
LIFU with the same exposure parameters as the first set. This 
was repeated five times for different tissue samples.[6]

Dataset 2: High‑intensity focused ultrasound data

In this experiment, porcine muscle tissue was exposed to 
HIFU exposure in vitro. To this end, a piezo composite 
single‑element spherically focused HIFU transducer (Model 
6699A101, Imasonic SAS, Voray sur l’Ognon, France) with 
a frequency of 1 MHz and aperture diameter of 125 mm was 
used. It is the same transducer used in the LIFU study. They 

just increased its deriving input voltage and the acoustic 
power to run it in the HIFU mode. In addition, an US imaging 
system (Sonix RP scanner, Ultrasonix Inc., Richmond, BC, 
Canada) was utilized to record US images and RF echo 
signals data. The imaging probe and the HIFU transducer 
were assembled in a confocal arrangement [Figure 3]. The 
timing sequence of the HIFU exposure is shown in Figure 
4. Because of utilizing the same HIFU dataset, more details 
about data acquisition and equipment have been mentioned 
in references Ghasemifard et al.[8,9] and Rangraz et al.[10]

Data acquisition and processing methodology

The data obtained in this study were processed using 
MATLAB software (MATLAB 2018b, The MathWorks 
Inc., California, USA). The RF US echo signals from the 
ROI were selected in the first step based on the considered 
data, one of which was the US images obtained during the 
LIFU treatment, and the other data were the US images 
obtained during the HIFU treatment. This space was 
defined by considering the images in the frames and the 
information above and subsequently subjected to the basic 
transformation, which included the Hilbert transform and 
absolute magnitude as follows Eq. 1:

( )( )=y abs Hilbert x

Figure 3: Confocal arrangement of the imaging probe and the high‑intensity 
focused ultrasound transducer[8]

Figure 4: The timing sequence of high‑intensity focused ultrasound 
exposure and radio frequency echo data acquisition[8]

Figure 5: Illustration and comparison of the radio frequency signal of an 
arbitrary frame (frame 2) in the regions of interest before and after the initial 
transformation using low‑intensity focused ultrasound data

Figure 6: Illustration and comparison of the radio frequency signal of an 
arbitrary frame (frame 2) in the regions of interest before and after the initial 
transformation using high‑intensity focused ultrasound data
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Example images of RF signal changes before and after 
initial conversion are shown in Figures 5 and 6.

In the second step, the obtained signal was fed into the 
sparse optimization algorithm to obtain atoms with the aid of 
a well‑designed dictionary that can be used to reconstruct the 
signal and create the reconstructed sparse signal. In this study, 
the greedy orthogonal matching pursuit (OMP) algorithm 
(Retrieved from https://sparse‑plex.readthedocs.io/en/latest/
book/complexity/omp.html) was used, which, according to 
previous research, has a low computational speed but an 
excellent approximation of signal reconstruction.[11] The 
pseudo‑code of the OMP is shown in Figure 7.

For accurate signal reconstruction, we arrived on wavelet 
family bases, including Daubechies wavelet (db), 
Symlet (sym), and discrete Meyer (dmey), where 
db4, sym2, sym4, and dmey constitute this dictionary, 
respectively. Figure 8 depicts the wavelet images and 
scaling of the aforementioned wavelet packets.

According to the specified algorithm and dictionary that we 
used, the greedy OMP algorithm yields one atom each time 
it is executed. With 100 algorithm iterations (by evaluating 
different iterations between 50 and 500 these 100 iterations 
have been chosen) and 100 nonzero coefficients, we were 
able to reconstruct the signal and obtain a sparse signal of 
the desired quality after extensive investigation.

It should be noted that the dictionary is designed according 
to experience, test, and based on Gifani’s dictionary (Gifani 
et al.[11]). Further, the designed dictionary is a rectangular 
matrix with dimensions ratio of 4 (the number of columns is 
four times the rows), for example, for a signal with a length 
of 10,000 samples, the dictionary matrix has 10,000 rows, 
40,000 columns, and does not follow the properties of a 
square matrix. For this reason, the OMP algorithm has been 
used. Furthermore, we have 40,000 atoms.

Afterward, we entered the entropy portion of the processing. 
This implementation of the sparse algorithm will reduce the 
noise in the signal, and it is predicted that the signal will 
behave more favorably than demonstrated by the previous 
research. Figures 9 and 10 depict an example of the signal 
image generated by the OMP algorithm with 100 iterations.

Figure 8: Wavelet packets utilized in the dictionary design

Figure 7: Different stages of the orthogonal matching pursuit algorithm
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Figure 9: Illustration and comparison of the radio frequency signal of 
an arbitrary frame (frame 2) before and after the sparse algorithm in 
low‑intensity focused ultrasound data

Figure 10: Illustration and comparison of the radio frequency signal of 
an arbitrary frame (frame 2) before and after the sparse algorithm in 
high‑intensity focused ultrasound data

Figure 11: Schematic of the hypothetical window for the thermal distribution 
in an arbitrary frame of high‑intensity focused ultrasound data

The third and final step of the proposed method was the 
application of the entropy criterion, wherein Shannon’s 
entropy (Retrieved from https://en.wikipedia.org/wiki/
Entropy_(information_theory)) was used as follows after 
multiple types of entropies had been evaluated Eq. 2:

( ) ( ) ( )
1

log [ log ( )]
N

x

H x p x p x p x
=

= − = −∑ 

The method was applied to measure the signal obtained 
from the region of interest in each image frame after 
conversion and reconstruction by the stated algorithm by 
the Shannon entropy criterion. Then, the entropy values 
obtained from each signal were arranged in the order of 
the frames, where a signal was then displayed in terms 
of entropy changes in consecutive frames. This method 

was evaluated using LIFU data, where the results of the 
proposed method are provided in the results section.

In the continuation of the study, an attempt was made to 
determine the temperature distribution in a hypothetical 
1 cm × 1 cm window within the ROI of the tissue. This 
method was developed by calculating entropy and is more 
accurate in the specified region. Notably, after analyzing 
this method on both datasets, it was determined that it 
is more precise and valuable for focal US data, as it can 
help detect the thermal lesion and reveal temperature 
changes.

As per Figure 11, in the black rectangle representing the 
investigated region, we extracted a portion of the space 
using a square window (Yellow Square) and processed 
its signal using the proposed method. Then, based on the 
direction of the arrow, we proceeded to the subsequent 
squares in that region and implemented the method to 
examine its output in successive frames. In addition, the 
region of lesion formation denoted with a white circle in 
the figure should be identifiable in the final image of this 
thermal distribution.

Results
This section presents the results of the desired processing 
method. First, the results of this method are compared to 
the LIFU data and then to the HIFU data.

In the first six frames of data related to LIFU, the 
application of LIFU causes an increase in temperature. The 
subsequent phase is tissue cooling. By processing RF US 
signals in different frames in the region of interest using 
the previously mentioned steps of the proposed method, 
which included the Hilbert transform, sparse reconstruction 
algorithm with a newly designed dictionary, and Shannon 
entropy. Figure 12 depicts an example of the processing 
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Figure 12: The first two stages of the proposed method based on the arbitrary 
frame’s (frame 2) signal in low‑intensity focused ultrasound data

Figure  13: The first  two stages of  the proposed method based on  the 
arbitrary frame’s (frame 2) signal in low‑intensity focused ultrasound data

Figure 14: The result of the proposed method for temperature change 
estimation of low‑intensity focused ultrasound data Figure 15: Comparison of the proposed method’s results with those of 

previously suggested methods

Figure 16: Comparison of the proposed method’s results with those of a 
previous related study

steps performed on the RF signal, whereas Figure 13 
illustrates an RF line in greater detail. Subsequently, the 
final result for all frames is provided in Figure 14.

Following the steps outlined above, Shannon’s entropy was 
extracted from the signal of each frame, and the entropy 
values of the frames were placed next to one another to 
demonstrate the temperature change estimation.

In advance, we have tested wavelet transforms instead 
of an experimentally designed dictionary and the OMP 
algorithm. The results were unacceptable, so the proposed 
method changed to the OMP algorithm. The comparison of 
the wavelet transforms results and the proposed method is 
shown below in Figure 15.

In this regard, the normalized mean square error of 
Figure 15 methods is shown in Table 1.
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After comparing the result of estimating changes with 
the thermocouple’s measured temperature, the proposed 
method was compared to previous results (Behnia 
et al.[7]). Although the LIFU dataset and Shannon 
entropy are the same in all methods, they are different 
at all. Obviously, the normalized mean square error 
showed the difference between these methods, and the 
novelty of combining sparsity and entropy improved 
the temperature estimation. In addition, a Gaussian 
filter was used to smooth the curve. The results are 
depicted in Figure 16. Notably, the filter utilized by the 
MATLAB software was a Gaussian‑weighted moving 
average.

As depicted in Figure 16 and Table 1, the performance 
of the proposed method for estimating the temperature 
changes of the target tissue is superior to that of the 
previous methods, with the manner of changes being 
much closer to those of the thermocouple that is 
considered the reference temperature. Using the proposed 
method, we attempted to depict these modifications as 
a heat distribution map, the result of which is shown in 
Figure 17.

As evident in Figure 17, at a depth of approximately 
47 mm (samples points 2000–2099), the focal point of 
LIFU radiation, the same temperature changes are observed 
as in Figure 14.

The proposed method was then applied to the second 
dataset (HIFU) to compare its efficiency at different 
powers. This dataset contains the US produced at 
10 W (217 W/cm2), 30 W (650 W/cm2), 50 W (1084 
W/cm2), 70 W (1517 W/cm2), 90 W (1951 W/cm2), and 
110 W (2384 W/cm2). As expected, temperature changes 
and lesions were observed, as shown in Figure 18.

Compared to the changes in the frames, the variations in 
temperature and the location of the lesion are evident in 
Figure 18. Moreover, according to the cited articles, the 
displacement observed in the image, particularly at high 
powers, can be attributed to the effect of changes in the 
speed of sound due to the tissue temperature changes. The 
speed of sound is temperature dependent, and the time 
delay is proportional to the speed of sound.[12] Due to the 
lack of a common scale in previous images, it is difficult to 
comprehend the effect of HIFU exposure on the formation 
of a lesion. Figure 19 displays images with a common 
scale to address this issue.

Discussion
After reviewing previous studies and numerous tests, the 
current study aimed to develop a novel method based on 
the two experiments, for which data were available, LIFU 
and HIFU. To this end, the sparse expression was utilized 
to reduce the computation and memory requirements for 
noninvasive real‑time monitoring of focused ultrasound  
therapy. The OMP algorithm and Shannon entropy were 
successfully applied to RF US echo signals, yielding the 
expected results.

Further, Behnia et al.’s[7] article is about using Shannon 
entropy on frames, but the proposed method is a combination 
of sparse representation and entropy on signals. Although 
the LIFU dataset and Shannon entropy are the same in both 
methods, they are different at all. Obviously, the normalized 
mean square error showed the difference between these 
methods and the novelty of combining sparsity and entropy 
improved the temperature estimation. In addition to all the 
method’s benefits, several potential areas can be investigated 
in future; some of the recommended ones include:
• Examining the dictionary learning algorithm instead of 

the designed dictionary
• Investigating other sparsity algorithms, such as 

Bayesian compressive sensing (BCS), as an alternative 
to the OMP algorithm

• Evaluating the proposed method on other different data 
with various experimental conditions

• Evaluating the proposed method on the tissue of a living 
organism (in vivo) and documenting its challenges.

Table 1: Normalized mean square error comparison of 
the proposed method’s results with those of previously 

suggested methods
Method’s name Normalized mean 

square error
Behnia et al.[7] 2.1526
Daubechies4 wavelet packet transform 2.2137
Symlet4 wavelet packet transform 2.2596
Proposed OMP and dict 0.2829
OMP – Orthogonal matching pursuit

Figure 17: Tissue thermal distribution during low‑intensity focused 
ultrasound radiation as measured by 100 sample windows and 10 radio 
frequency lines
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Conclusion

This study attempted to demonstrate superior noninvasive 
monitoring of the tissue under focused ultrasound radiation 
through the sparse representation of the RF echo US signal, 

which was performed by reconstructing the signal via the 
OMP algorithm using a designed dictionary and a specified 
number of iterations. Temperature changes comparable 
to the reference temperature changes were estimated in 
the LIFU data, and the location of the lesion and tissue 

Figure 18: Tissue thermal distribution during high‑intensity focused ultrasound radiation at different powers using windows of 200 samples and 10 radio 
frequency lines
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temperature changes at the ROI were estimated in the HIFU 
data. The results demonstrate the viability of the proposed 
noninvasive monitoring method for focused ultrasound in 
both LIFU and HIFU regimes.

Utilizing the primary transformation in conjunction with 
Shannon entropy was a novel technique that accompanied 
the OMP algorithm due to the similarities between the 
proposed method and previous articles. This innovation 

Figure 19: Tissue thermal distribution during high‑intensity focused ultrasound radiation at different powers on a common scale by windows of 200 samples 
and 10 radio frequency lines
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was made more inclusive by the design of a new dictionary 
and its sparse representation. Furthermore, a novel concept 
made it possible to find a suitable and unique answer in 
a wide range of focused ultrasound power for which data 
was available using a designed dictionary and a specified 
number of algorithm iterations.
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