
https://doi.org/10.1007/s12021-019-09451-w

ORIGINAL ARTICLE

Understanding Computational Costs of Cellular-Level Brain Tissue
Simulations Through Analytical Performance Models

Francesco Cremonesi1 · Felix Schürmann1

© The Author(s) 2020

Abstract
Computational modeling and simulation have become essential tools in the quest to better understand the brain’s makeup and
to decipher the causal interrelations of its components. The breadth of biochemical and biophysical processes and structures
in the brain has led to the development of a large variety of model abstractions and specialized tools, often times requiring
high performance computing resources for their timely execution. What has been missing so far was an in-depth analysis of
the complexity of the computational kernels, hindering a systematic approach to identifying bottlenecks of algorithms and
hardware. If whole brain models are to be achieved on emerging computer generations, models and simulation engines will
have to be carefully co-designed for the intrinsic hardware tradeoffs. For the first time, we present a systematic exploration
based on analytic performance modeling. We base our analysis on three in silico models, chosen as representative examples
of the most widely employed modeling abstractions: current-based point neurons, conductance-based point neurons and
conductance-based detailed neurons. We identify that the synaptic modeling formalism, i.e. current or conductance-based
representation, and not the level of morphological detail, is the most significant factor in determining the properties of
memory bandwidth saturation and shared-memory scaling of in silico models. Even though general purpose computing
has, until now, largely been able to deliver high performance, we find that for all types of abstractions, network latency
and memory bandwidth will become severe bottlenecks as the number of neurons to be simulated grows. By adapting and
extending a performance modeling approach, we deliver a first characterization of the performance landscape of brain tissue
simulations, allowing us to pinpoint current bottlenecks for state-of-the-art in silico models, and make projections for future
hardware and software requirements.

Keywords Computational models of neurons · Brain tissue simulations · Performance modeling ·
High performance computing

Introduction

In the field of computational neuroscience, simulations of
biological neural networks represent one of the fundamental

This study was supported by funding to the Blue Brain Project, a
research center of the École polytechnique fédérale de Lausanne
(EPFL), from the Swiss governments ETH Board of the Swiss
Federal Institutes of Technology

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s12021-019-09451-w) contains
supplementary material, which is available to authorized users.

� Felix Schürmann
felix.schuermann@epfl.ch

1 Blue Brain Project, Brain Mind Institute, École polytechnique
fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva,
Switzerland

tools for hypothesis testing and exploration. A widely
used scale of representation are neuron-based approaches,
i.e. models of brain tissue in which the fundamental unit
is represented by a neuronal cell. This representation is
important as it allows for a faithful matching of the
model with a range of anatomical and electrophysiological
data (Markram et al. 2015; Potjans and Diesmann 2012;
Pozzorini et al. 2015; Hagen et al. 2016, 2018). While
determining the adequate level of detail is a formidable
challenge with respect to the system modeled, so is the
addressing of an efficient implementation of the simulation
in software. The size of such networks, both in terms
of number of neurons and synapses and rate of synaptic
events, as well as the level of biological detail required
to answer meaningful questions about the brain, mean that
these simulations come at a large computational cost.

Much of the early increase in computational require-
ments of models and simulations have been supported by

Published online: 13 February 2020

Neuroinformatics (2020) 18:407–428

http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-019-09451-w&domain=pdf
http://orcid.org/0000-0001-5379-8560
https://doi.org/10.1007/s12021-019-09451-w
mailto: felix.schuermann@epfl.ch


Dennard scaling (1974) and Moore’s law (1995), but with
chip-manufacturing technology reaching its limit and the
consequent rise of multi-core and heterogeneous architec-
tures (Hardavellas et al. 2011; Simonite 2016), computa-
tional neuroscientists have been forced to develop more
efficient algorithms and software to be able to keep up with
the increasing demands of modellers. Research efforts in
the context of simulation neuroscience have investigated the
efficient utilization of modern multicore processors (see e.g.
Kumbhar et al. 2016, 2018; Eichner et al. 2009; Brette and
Goodman 2011), parallel computing (see e.g. Morrison et al.
2005; Ovcharenko et al. 2015; Helias et al. 2012), acceler-
ators (see e.g. Knight and Nowotny 2018; Fidjeland et al.
2009; Brette and Goodman 2012) and brain-inspired hard-
ware (see e.g. Painkras et al. 2013; Benjamin et al. 2014;
Indiveri et al. 2011).

Despite the multiple years of research in efficient
implementations of neuron models, we are still missing
a more quantitative treatment of what are the actual
computational characteristics of a given level of detail
and how a particular level of detail may be limited by
specific hardware trade-offs. How much more costly is a
morphologically detailed neuron simulation compared to a
representation modeling the same neuron as a point? What
is the influence of how the synapses are being modeled? Can
we expect that point neuron models can scale to massively
parallel computers in a similar way than detailed neuron
models?

For the first time, we extend performance modeling
techniques to the field of computational neuroscience,
allowing us to establish a quantitative relationship between
the parameters dictated by the biophysical model, the
complexity properties of the simulation algorithm and
the details of the hardware specifications. Although we
require a reasonable level of accuracy and validation
against benchmarks, our goal is not to obtain highly
accurate performance predictions, but rather to design
a tool with sufficient generality to identify current and
future bottlenecks for different levels of abstraction on the
spectrum of models for neural cells’ dynamics. Based on our
requirements, we choose a performance modeling approach
that is neither purely based on first-principles (see e.g.
Williams et al. 2009) nor purely empirical (see e.g. Calotoiu
et al. 2013) but is instead an hybrid approach known as grey-
box analytical modeling. Our analysis is based on state-
of-the-art high performance computing (HPC) hardware
architecture and applied to three published neural network
simulations that have been selected to represent the diversity
of neuron models in the literature.

Our analysis shows that there are significant differences
in the performance profiles of in silico models falling
within the same category of cell-based representations.
Features related not only to the neuron abstraction but

also to the scientific question under analysis can cause
variations in the hardware bottlenecks and ultimately
influence simulation performance. We find instances where
the level of morphological detail is not a factor in
distinguishing between models’ performance, while the
synaptic formalism is, allowing us to identify the key factors
that determine a model’s computational profile. Finally,
we show that our analysis is strongly conditioned on the
published models’ parameters and simulation dynamics,
predicting how changes in some values, notably the firing
frequency, can significantly alter the performance profile.
Short of being able to run benchmarks on different kinds
of hardware architectures, we use our model to explore the
effects of machine balance and hardware design choices
on the performance of in silico brain tissue simulations,
providing actionable guidelines for hardware procurement
and co-design. Ultimately we come to the conclusion
that while general-purpose computing has, until now,
largely been able to deliver high performance, the next
generation of brain tissue simulation will be severely
limited by hardware bottlenecks. Indeed this trend was
already foreshadowed in empirical studies (Jordan et al.
2018), and solutions involving hardware accelerators such
as General Purpose Graphical Processing Units (GPGPUs)
have been proposed (Fidjeland et al. 2009; Yavuz et al.
2016; Brette and Goodman 2012), while the development of
custom brain-like hardware is being actively explored with
promising results (van Albada et al. 2018; Wunderlich et al.
2018).

We believe that the situation calls for a better, deeper
understanding of how hardware capabilities interact with
brain tissue simulation algorithms. In turn, this would allow
a stronger collaboration between in silico modelers, devel-
opers and hardware specialists to orchestrate the co-design
of software and hardware architectures. The methodology
developed in this work constitutes a quantitative means
through which these scientific communities can collaborate
in the task of designing and optimizing future software and
hardware for the next generation of brain tissue simulations.

Related Work

As a testament to the growing interest of the community in
the performance of brain tissue simulations, several studies
on this topic have been published in the literature. To our
knowledge, however, none of them have used performance
modeling as a tool to explain the empirically observed
performance properties of simulations, nor have they tried to
analyze such a wide scope of models as we do in this paper.

The review work of Brette et al. (2007) presented a
large number of different simulators and corresponding
in silico models, but included only basic formulas for
asymptotic complexity, without exploring the complicated

408 Neuroinform (2020) 18:407–428



effect that implementation and hardware have on measured
performance. In a series of papers, the developers and users
of the NEST software have investigated the issues related to
scaling simulations of neurons to very large scales (Kunkel
et al. 2014; Peyser and Schenck 2015; Ippen et al. 2017;
Jordan et al. 2018) and proposed solutions to avoid the
performance bottlenecks they encountered. Similarly, new
simulators and spike communication strategies have been
explored (Ananthanarayanan and Modha 2007; Kozloski
and Wagner 2011; Hines et al. 2011). All these studies
provide very useful data to compare against our own
model and conclusions, but are restricted to distributed
simulations and focus on optimizing efficiency using novel
algorithmic and implementation techniques. A performance
model for a NEST simulation was fully described in
Schenck et al. (2014), but focuses only on distributed
simulations, neglecting single-node performance, and uses
a different performance modeling approach based on
interpolating empirical observations instead of the semi-
analytical approach used in this work. Focusing on very
small clusters composed of only a few nodes with shared-
memory capability, Eichner et al. (2009) demonstrated how
to exploit multicore processor efficiently in simulations
of morphologically detailed neurons, while an analysis
concluded that real-time simulations of medium sizes
plastic networks are not feasible on small clusters of CPUs,
but will require accelerators or dedicated hardware (Zenke
and Gerstner 2014). The work on the multisplit method
(Hines et al. 2008) demonstrated that efficient acceleration
of individual neurons on single compute nodes is difficult
beyond a restricted number of cores, and recent work
on micro-parallelism (Magalhaes et al. 2019a; 2019b)
has found significant limitations to strong-scaling due to
Amdahl’s law.

Several GPU implementations of brain tissue simulations
have been proposed in the literature (Brette and Goodman
2012; Fidjeland et al. 2009; Yavuz et al. 2016; Kumbhar
et al. 2019b). A comparison between GPUs, HPC hardware
and neuromorphic hardware found that, under certain
conditions, GPUs can beat neuromorphic hardware in terms
of energy efficiency but not an HPC server in terms of
performance (Knight and Nowotny 2018). However, the
authors did not perform a detailed performance analysis nor
used a performance model to explain this comparison, thus
providing valuable yet anecdotal evidence. Their work is
tightly linked to the neuron model, the configuration of the
simulation as well as the hardware being analyzed.

In the process of creating the neuromorphic hardware
SpiNNaker, the designers were deeply interested by the
consequences of their decisions in terms of performance.
An analysis showed that, in the context of real-time
simulations, SpiNNaker is inherently limited in its scope
to a restricted subset of synaptic formalism, because the

single node’s memory bandwidth puts a hard limit on the
number of synaptic parameters that can be streamed at every
timestep (Painkras et al. 2013). In designing the network
for SpiNNaker, a performance model was used to determine
the ideal topology and network connectivity (Navaridas
et al. 2012), proving that performance modeling can be an
extremely valuable tool in optimization and co-design for
brain tissue simulations.

Materials and Methods

We develop our analysis of the performance landscape in a
two-step process as show in Fig. 1: first we identify relevant
in silico models and experiments from the literature that
constitute a representative sample of state-of-the-art models
and algorithms, and present a set of hardware-agnostic
descriptive metrics that can give a first insight on their
performance properties; then we intersect the hardware-
agnostic description with a model of the hardware platform,
by extending and adapting well-established performance
models to neuroscientific simulations use cases.

In Silico Models and Experiments

The approach of identifying and singling-out recurrent
computational patterns within a scientific field has been
applied with great success in the domain of parallel
computing, leading to the definition of the dwarfs of
computing (Asanovic et al. 2009). In computational
neuroscience, the review by Brette et al. (2007) proposed
a similar approach and introduced some fundamental
concepts, such as conductance based (G-based) and current
based (I-based) formalisms for synaptic models, or point
and detailed representations of neuronal morphology. Using
the nomenclature introduced in that review, we base our
analysis of the performance landscape on three published
models, chosen as representative of the extent of neuron
models covered in literature. We denote the set of these
representative use cases as in silico models and experiments,
and summarize their salient properties in Fig. 2a.

The Brunel model is a randomly connected network
reproducing the property of balanced excitation and
inhibition that can be observed in the brain cortex. It is
based on integrate-and-fire (IAF) point neurons with I-based
synaptic dynamics (Gerstner et al. 2014; Brunel 2000). As
a representative example of this model, we consider here a
very large-scale implementation that served as a proof of
concept for the feasibility of human brain scale simulations
(Kunkel et al. 2014).

The Reconstructed microcircuit is based on the recon-
struction of neocortical microcircuit from a mix of experi-
mental data and first principles (Markram et al. 2015). This

409Neuroinform (2020) 18:407–428



mathematical abstraction simulation algorithm

Bottleneck Analysis Performance Predictions Co-Design Projections

memory hierarchy

data transfer bandwidth

instruction throughput

chip-level saturation 

single-node 

distributed 

computation-
communication overlap 

network latency 
and bandwidth

messaging protocol 

hardware model

ECM LogGP
Serial execution

Shared memory execution
Distributed

hardware-agnostic representation

Fig. 1 Comprehensive performance modeling of brain tissue simula-
tions. An hardware-agnostic representation of the in silico model is
obtained by combining detailed information about the mathematical
abstraction, such as e.g. the representation of neurons and its imple-
mentation as data structures, or the formulation of the differential
equations at the basis of the temporal and spatial dynamics, as well
as the simulation algorithm and the dependencies between different
simulation phases. This is combined with an abstract representation
of the hardware based on a few key parameters, as well as a detailed

understanding of the software implementation and the execution of
the flow of instructions on the reference hardware, to obtain runtime
predictions based on the ECM model for serial and shared-memory
execution, and on the LogGP model for interprocess communication.
Once our performance model is validated, we use it to predict the
performance of brain tissue simulations in multiple configurations,
analyze bottlenecks through introspection of the model and provide
informed guidelines for the co-design of future hardware

model uses morphologically detailed neurons and short-
term plastic G-based synapses to capture a large amount of
biological detail.

The Simplified model was obtained by reducing the
detailed models of the Reconstructed microcircuit to
pointwise generalized integrate-and-fire (GIF) models with
similar transfer functions, while retaining the complexity
from G-based synapses (Rössert et al. 2016).

The scope of this paper is restricted to the inference
phase of simulating a neural network, thus neglecting the
simulation of learning, because of the additional layer
of complexity that would arise from including long-
term plasticity in our analysis. Moreover, to allow for
reproducibility and ease of modeling, we have switched the
random synaptic release mechanism in the Reconstructed
and Simplified models with a deterministic implementation
of the same rule, based on an average representation. This
allows us to remove the uncertainty in the performance
model due to probabilistic release, as well as the overhead
from the random number generation, ultimately leading
to better accuracy in the performance model. Although

synaptic noise can be considered a primary driver of cortical
dynamics (Nolte et al. 2019), we consider the complexity
associated with random number generation in performance
modeling outside of the scope of this paper.

Simulation Algorithm We identify similarities and differ-
ences between the simulation algorithm of the in silico
models and experiments. The first important remark is that
the phases that make up the complete algorithm depend only
on the type of synaptic formalism, and not on the level of
morphological detail in the neuronal abstraction. Thus in
Fig. 2a we present two algorithm skeletons: one for I-based
models and one for G-based models. Moreover, regardless
of the in silico model, there are always three nested loops:
the outer one determines when global synchronization and
communication of spike events happens; the central loop
iterates over the simulation timesteps between two global
synchronization events; the inner loop updates the state of
each neuron by one timestep. In the I-based simulation
workflow one needs, in addition to the event-driven inte-
gration of synaptic events, only to update the voltage of

410 Neuroinform (2020) 18:407–428



connections per neuron

vars per neuron

vars per connection

6000

12000

6
12

10000
20000

Brunel

vars per neuron

vars per connection connections per neuron

6000

12000

6
12

10000
20000

Simplified

vars per neuron

vars per connection connections per neuron

6000

12000

6
12

10000
20000Reconstructed

Brunel Simplified Reconstr.

Se
qu

en
tia

l c
om

pr
es

si
bi

lit
y 

lim
it

0

2

4

6

8

10

12

14

Co
up

lin
g 

ra
tio

In
fo

rm
at

io
n 

tr
an

sm
itt

ed
 b

y 
a 

co
nn

ec
tio

n

update voltage
Hines solver

threshold
detection

foreach neuron
foreach ∆ t
until δmi n

spike exchange

foreach δmi n
until Tstop

event driven
spike delivery

syn current
ion ch current

syn update
ion ch update

stimuli

event driven
spike delivery

update voltage
solve ODE

PSC contributions

threshold
detection

foreach neuron
foreach ∆ t
until δmi n

spike exchange

foreach δmi n
until Tstop

stimuli

10 2

10 1

100

101

102

103

104

Ite
ra

tio
n 

co
m

pr
es

si
bi

lit
y 

lim
it

Brunel Simplified Reconstr.

10 5

10 4

10 3

103

104

a1 a2

b2

b1

Brunel Simplified Reconstructed

point neuron

i
current-based

g
conductance-based detailed neuron

a

Fig. 2 In silico models and experiments. Presentation and summary of
the in silico models and experiments examined in this paper. a Color-
coding for the three in silico models and salient features: in red the
I-based point neuron Brunel model, in purple the G-based point neuron
Simplified model and in green the G-based detailed neuron Recon-
structed model. a1,a2 I-based (resp. G-based) simulation algorithm.
The simulation kernels within light grey boxes are included for com-
pleteness but are not considered in our analysis because they are not
part of the computation loop. The larger boxes denote a synchroniza-
tion point for distributed simulations. b1 Hardware-agnostic metrics.
Coupling ratio denotes the number of simulation timesteps before a
global synchronization point. Information transmitted by a connection
denotes the average number of variables transmitted via a connection

during one minimum delay period. Sequential compressibility limit
denotes the number of time iterations required to simulate one second
of biological time. Iteration compressibility limit denotes the number
of degrees of freedom updated in a δmin interval. Lighter bars repre-
sent clock-driven updates, darker bars represent (average) event-driven
updates. b2 Breakdown of the unit size metric. This metric captures
the memory footprint of in silico models, broken down in three com-
ponents: number of variables to represent a single neuron excluding
synaptic connections, number of variables to represent a connection,
and number of connections per neuron. Orange dots represent mean
values, red bars represent standard deviation and green dots represent
maximal values. The lines represent actual samples from the model

individual neurons by solving a few simple ordinary differ-
ential equations (ODE) and to update for each neuron the
total post-synaptic current (PSC) contributions. In the G-
based model, a linear system of equations must be solved
for each neuron and each timestep to updated the voltage. In
addition, for every synapse and ion channel one must com-
pute its corresponding contribution to the matrix in the so
called current kernels as well as update its state in the state
kernels.

Hardware-Agnostic Metrics to Describe in silico Models
and Experiments As a first approach to navigating the
performance properties landscape of in silico models and
experiments we propose a collection of hardware-agnostic

metrics that can be computed directly from inspection of
the model specifications. These metrics have the same
value regardless of the underlying simulation hardware, an
interesting property if one wants to compare intrinsic model
features. To set a common ground on which we define
these metrics we identify the following features shared by
all in silico models and experiments: i) all neural networks
can be represented by a graph where neurons are nodes
and synaptic connections are edges; ii) synaptic connections
can be approximated by a perfect delayed transmission
of information; iii) simulation algorithms include a clock-
driven portion to integrate neuronal states and an event-
driven portion to integrate synaptic events; iv) all simulation
algorithms considered here follow the Bulk Synchronous

411Neuroinform (2020) 18:407–428



Parallel (BSP) paradigm, where computation phases carried
out independently by each parallel rank alternate with
global synchronization steps, happening at fixed time
intervals called minimum network delay (denoted by δmin).
We are thus excluding from this analysis asynchronous
communication schemes (Ananthanarayanan and Modha
2007; Magalhães and Schürmann 2019), variable timestep
schemes (Lytton and Hines 2005) and models that explicitly
represent axons (Kozloski and Wagner 2011).

We evaluate the performance metrics of in silico
models on three aspects: memory, serial complexity and
information propagation. In the memory dimension we
consider aspects of the model that can affect the memory
capacity footprint such as the number of parameters
and degrees of freedom required to represent a neuron.
Specifically we count the number of state variables and
parametes per neuron, the number of state variables
and parameters per connection and the fan in (i.e. the
number of incoming connections) per neuron. In the serial
complexity dimension we consider aspects tied to sequential
iterations such as timestep and the number of state
variables updated at each iteration. We define the sequential
compressibility limit as the inverse of the timestep �t and
the iteration compressibility limit as the number of state
variables updated in a single time iteration. Finally, in the
information propagation dimension, we consider aspects
tied to communication of information between neurons such
as the frequency at which a global synchronization must
happen and the amount of information exchanged in this
step. Here we define the coupling ratio as the number of
timesteps that can be taken before a global synchronization
point must happen, given by the formula δmin

�t
, and the

information transmitted by a connection as the number of
variables communicated by a connection on average during
a minimum network delay period.

Figure 2b reports the values of the hardware-agnostic
performance metrics obtained by hand-counting the rele-
vant quantities in the published in silico models. Each of
the metrics described above can be associated to one or
more performance aspects and hardware features. For exam-
ple, the low values of the coupling ratio for the Simplified
and Reconstructed model can be associated to poor strong
scaling properties, while the large information transmitted
by a connection for the Brunel model translates to higher
pressure on the network interconnectivity hardware. Con-
cerning time iterations, the large event-driven component
of the iteration compressibility limit for the Brunel model
points to the fact that it could potentially be bounded by
hardware latency aspects (either memory latency or criti-
cal paths in the execution) as well as dynamic imbalance,
while the Simplified and Reconstructed model are more
likely affected by throughput of hardware features. The
large number of connections per neuron in the Brunel model

and the large number of variables to represent a neuron in
the Reconstructed entail that these in silico models will be
bounded by memory capacity. Finally, the large variability
of individual neurons in the Reconstructed model poses a
potential static load-balancing problem, as was empirically
found in Kumbhar et al. (2018) in the context of manycore
processors.

Analytical Performance Modeling of Brain Tissue
Simulations

The metrics described previously provide an insightful sum-
mary of the performance profile of in silico models and
experiments, but lack the power to give quantitative perfor-
mance predictions and the connection with specific hard-
ware properties. Therefore, we use performance modeling
as a way of bridging the gap between biophysical models,
simulation algorithms and hardware specifications. In par-
ticular, we split the performance prediction in a single-node
component and an interprocess communication component.
We address the single-node performance modeling using
the Execution-Cache-Memory (ECM) model (Treibig and
Hager 2010) and the interprocess communication part using
the LogGP model (Alexandrov et al. 1997). Both are well-
established approaches that have been extensively validated
on several hardware platforms (Hager et al. 2016, 2018;
Hoefler et al., 2009), however significant work is required to
extend and adapt them to the simulation kernels in our anal-
ysis, for example accounting for indirect memory accesses
in the single-node predictions and the representation of
spikes in the communication component. Details for the
extension and validation of the ECM and LogGP perfor-
mance models are provided in the Supplementary Material
S1.1 and S1.2.

Single-Node Performance Model The ECM model uses a
grey-box mixed approach combining an analytic formu-
lation with some phenomenological input, and outputs a
runtime prediction at the granularity of individual clock
cycles (Treibig and Hager 2010). Since its introduction it
has been refined and validated on modern Intel and AMD
multicore architectures (Hofmann et al. 2017, 2018; Stengel
et al. 2015) . To compute the ECM performance model for
serial execution one must first define several contributions
to the runtime of a given loop, such as: the in-core execu-
tion time assuming data is already loaded in registers TOL,
the time needed to load data into registers from the L1 cache
TnOL, the data traffic time between caches TL1L2, TL2L3 and
the data traffic time from main memory TL3Mem. Data traf-
fic times are usually computed combining an estimation of
the data traffic with the bandwidth of the relevant data link.
TOL and TnOL, on the other hand, can be computed by hand
but are typically extracted using code analysis tools such

412 Neuroinform (2020) 18:407–428



as Intel’s IACA (Intel 2017). These contributions must be
combined to obtain two quantities: Tcore and Tdata , repre-
senting the time that the loop would spend in core execution
if data were instantaneously available, and the time required
to move the data across the memory hierarchy, respectively.
One of the core assumptions of the ECM model is that these
two quantities can overlap, therefore single-thread runtime
predictions can be obtained using the formula

T = max (Tcore, Tdata) . (1)

The ECM model is based on the full-throughput assump-
tion, thus neglecting any latency effects in the execution.
This assumption greatly simplifies the analysis by remov-
ing the need for an extremely detailed understanding of the
execution flow while at the same time providing insight
through failure for situations in which the program execu-
tion is the bottleneck. In this context, a particular kernel will
be categorized as core-bound if Tcore > Tdata , and data-
bound otherwise. Note that these definitions apply to the
serial execution. To obtain a performance prediction for par-
allel execution, the ECM model assumes that performance
scales linearly with the number of threads, until a bottleneck
from a shared serial resource is used, typically the memory
interface (Hofmann et al. 2015). The ECM also provides a
formula for computing the saturation point, i.e. the num-
ber of shared memory threads at which saturation of the
memory bandwidth occurs for a given kernel.

We computed the individual ECM dimensions and
the corresponding runtime predictions for all clock-driven
kernels of the in silico models, and report them in
Supplementary Table S4. Moreover, we conducted a
thorough validation of our runtime predictions and report
the results in Supplementary Table S5 and Supplementary
Fig. S10.

Spike Delivery Kernel The performance modeling of the
spike delivery kernel presents several challenges that
warrant the need for a separate treatment. In terms of
algorithm design, all state-of-the-art software use some
sort of priority queue or ring buffer to store synaptic
events to be delivered within a timestep. For modeling and
benchmarking, we separate the operations related to the
bookkeeping of events inside the queue from the actual
kernel execution, and we only consider the latter, because
the scope of our analysis is restricted to computational and
communication kernels.

When a spike is received, the postsynaptic process must
integrate its effects in the state of the target neuron or
synapse. In I-based synapses this amounts to increasing
a spike counter by the relative weight of the connection,
while for G-based synapses an equivalent quantal update
of the synaptic states must be computed, a computationally

expensive procedure since the in silico models considered
in this work all contain a short-term plasticity model.

The spike delivery kernel is characterised by erratic
memory accesses, because the order of activation of
synapses is unpredictable. We always consider the worst
possible case in which every spike to be delivered could
not be cached and thus must come from main memory. We
assume that a full cache line of data needs to be brought in
from memory for every data access, since the unpredictable
order of activation of synapses renders data prefetching and
data blocking largely ineffective. We consider that only
accesses to synapse-specific data are non-contiguous and
thus require a full cache line (64 B) of data to be transferred
for every memory request.

Estimating the runtime proves to be a very challenging
task. We find that the naı̈ve approach of multiplying the
DRAM latency by the number of non-contiguous accesses
yields very pessimistic predictions. This can be attributed to
the fact that, since spikes are independent, it is not necessary
to wait until one spike has been processed before issuing
request for the data of the next spike. It thus seems that the
spike delivery kernel’s performance is determined by the
number of concurrent, independent data requests that can
be handled by the processor and memory. This is different
from the classical purely latency bound kernels in which
the CPU is only allowed to begin a loop iteration after the
previous one is fully completed. The number of independent
memory requests that can be handled concurrently is known
as memory level parallelism (MLP) and allows to mitigate
the performance impact of memory latency by allowing
multiple accesses in parallel (Levinthal 2014). For shared
memory parallelism, we assume that performance scales
linearly with the number of threads until the bottleneck of
memory bandwidth is reached. Details about the runtime
prediction and validation are provided in the Supplementary
Material S1.1 and Supplementary Fig. S11.

Spike Exchange in Brain Tissue Simulations All the in silico
models and experiments considered in this paper are based
on the Bulk Synchronous Parallel (BSP) model (Valiant
1990), which prescribes a clear distinction between an
on-node computation phase (happening in a distributed
parallel fashion) and an inter-node communication phase.
For brain tissue simulations, the inter-node communication
phase corresponds to the spike exchange step in Fig 2a.
Moreover, we make the assumption that the distributed
processing is implemented in MPI, because it represents
the current state of practice in the HPC community.
Throughout this work, we maintain the nomenclature of
shared memory threads and distributed ranks. When we
use the generic term of parallel processes, we make the
assumption that shared memory parallelism capabilities are
always exhausted before distributed memory parallelism.

413Neuroinform (2020) 18:407–428



Details on our application of the LogGP model to the spike
exchange algorithm, as well as on the reference hardware,
are provided in the Supplementary Material S1.2.

In all the state-of-the-art simulators, the spike exchange
step is implemented by a blocking collective call, typically
a variant of the Allgather operation. This entails that all the
parallel ranks have, at the end of the communication step,
knowledge of all the spikes produced by the simulation dur-
ing the last minimum network delay period. Recent work
has shown that at extremely large scales, this implementa-
tion can become prohibitively expensive in terms of memory
requirements, and proposed to use instead the Alltoall oper-
ation to deliver spikes only to the ranks where they are
required (Jordan et al. 2018). Other alternative implementa-
tions have been suggested, using nonblocking point-to-point
communication (Ananthanarayanan and Modha 2007) or
spatial decomposition (Kozloski and Wagner 2011). All
these fall outside of the scope of this paper, which is focused
on small-to-medium cluster sizes and well established,
widely used software solutions.

The LogGP Model for Interprocess Communication We use
the LogGP model (Alexandrov et al. 1997) to predict and
explain the performance of the spike exchange simulation
step. The LogGP model is an extension of the LogP model
(Culler et al. 1993) that uses an additional parameter, the gap
per byte denoted G, as a way to account for the sending and
receiving of long messages. We refer the interested reader
to the Supplementary Material S1.2 for more details. The
main features of all models based on LogP is that their
parameters are easily relatable to hardware characteristics,
thus ensuring a high degree of interpretability. In the LogGP
model, the cost of sending a single message of size m

bytes is given by two contributions: a latency contribution
corresponding to the time it takes for the first byte of
the message to reach its destination, and a bandwidth
contribution corresponding to the throughput at which
messages can be communicated through the interprocess
network. One of the main insights in the LogGP model is
that, under certain circumstances, CPU-side operations such
as copying of data can overlap with network-side operation
such as data sending.

Collective communication operations are difficult to
model because different algorithms can be used to
disseminate the messages across the network, and the
choice of which one to use can happen dynamically and
transparently to the user, depending on several performance
factors. A review mentions however that the ring algorithm
is the most commonly used, especially for large messages,
and thus we base our predictions on this paradigm (Thakur
et al. 2005). In the ring algorithm, the number of times in
which parallel processors establish a network connection
and start exchanging data is proportional to the total number

P of parallel ranks in the simulation, therefore the latency
term of the total cost of the collective communication is
expected to scale linearly in P . Conversely, in the recursive
doubling algorithm this term scale logarithmically, while for
both algorithms the total amount of communicated datais
the same, and thus the bandwidt term for both algorithms
is expected to be the same. Using this information, we
adapt the formula proposed originally by Mamadou et al.
(2006) for recursive doubling, to account instead for the
ring algorithm, as explained in equation (S10) in the
Supplementary Material. In our modeling and validation we
always consider that the number of spikes communicated
by each rank is roughly homogeneous. The validation of
our interprocess communication runtime predictions are
provided in the Supplementary Fig. S12.

Hardware Models

Our performance modeling methodology requires a detailed
abstraction of the hardware to obtain accurate runtime
predictions. In this work we use the Intel(R) Xeon(R) Gold
6140 Skylake processor as reference for the single-node
hardware, We provide in Supplementary Table S3 the values
of the hardware characteristics that are most relevant for
our performance modeling methodology. while for distribu-
ted communication we use as reference a vendor (HPE)
provided MPI implementation, based on MPT 2.16 and the
MPI 3.0 standard, over an Infiniband EDR 100 GB/s fabric.
This architecture is highly representative of modern, state-
of-the-art high performance computing clusters of CPUs.
For validation purposes, we execute benchmark simulations
on the reference hardware by inputting random synaptic
inputs at a frequency of 1Hz into every cell within a network
of disconnected neurons. All the benchmarks were executed
multiple times under the same conditions (typically around
10 runs), and we define the error (or margin of error) as
the ratio of the difference between the median measurement
and predicted runtime divided by the median measurement.
For validation and benchmarking we use the CoreNEURON
implementation as reference (Kumbhar et al. 2019b).

Using our reference Skylake hardware as basis, we also
develop the concept of strawman architectures: models of
the hardware that do not necessarily reflect reality perfectly
in every detail, but that capture the most salient hardware
properties and can be used to explore the design space
easily. We consider in this work another multicore CPU
server based on the AMD Naples architecture, a manycore
Intel Knight’s Landing (KNL) architecture and a GPU-like
architecture inspired by the Nvidia Volta V100 GPU. For
each strawman architecture, we took the amount of shared-
memory parallelism, the memory bandwidth, the clock
frequency and the cache hierarchy from nominal values
or published studies (Hofmann et al. 2019; Jeffers et al.

414 Neuroinform (2020) 18:407–428



2016; Jia et al. 2018). Other important features such as
the instruction throughput and the memory level parallelism
and latency, that require extensive benchmarking, could
not be obtained directly. Instead, we opted to infer them
from the corresponding values in the reference Skylake
architecture, taking the memory level parallelism and
latency as they were, and scaling the instruction throughput
to the appropriate level of vectorization. For simplicity,
we considered only the high-bandwidth memory on the
KNL architecture, and we treated individual streaming
multiprocessors in the GPU-like architecture as shared
memory threads with SIMD registers of 32 double-precision
floating point variables width, connected directly to the
global GPU memory.

Results

Our goal is to provide a quantitative appraisal of the
performance landscape of brain tissue simulations and
analyze in detail the relationship between an in silico
experiment, the underlying neuron and connectivity model,
the simulation algorithm and the hardware platform being
used. We carry out this analysis with the tool of performance
modeling, allowing us to quantify and explain performance
bottlenecks without the need of time-consuming and
narrowly-scoped benchmarks.

Serial Performance Profile

We uncover the fundamental performance properties of
simulations of biological neurons by examining the serial
performance profile. We counted by hand the number of
floating point operations (flop) and the data traffic required
to simulate one neuron receiving synaptic events at a rate
of 1Hz for one second of activity, for different modeling
abstractions. Table 1 summarizes the results. As expected,
the flop and data requirements grow with the amount of
biological detail in the model, leading to a factor 104

difference between the Brunel and Reconstructed model.
Interestingly, the arithmetic intensity of all the models is
roughly the same, in the order of 10−1. This may be ascribed
to the fact that the arithmetic intensity of the differential
equations being solved in each model is essentially very
similar, and only the number of equations to represent a
neuron within each modeling abstraction is different. We
also looked at the total amount of memory required to
store a neuron’s states and parameters, and found that the
Simplified model’s strategy of lumping synapses allows
it to greatly optimize the memory capacity requirements.
Finally, we conclude the analysis by using our model to
predict the simulation performance, measured in biological
seconds per elapsed wallclock second to simulate a single

Table 1 Average number of flop and data traffic per neuron to advance
its state by 1 second of simulated time

Brunel Simplified Reconstructed

Flop 2.3 × 105 1.7 × 107 8.5 × 109

Data Volume [MB] 1.0 1.3 × 102 3.1 × 104

Arith. Int. [Flop/B] 2.3 × 10−1 1.3 × 10−1 2.7 × 10−1

Mem. Capacity [KB] 2.7 × 102 10 2.9 × 103

Perf. [sim s / wall s] 3.4 × 103 1.7 × 102 3.4 × 10−1

Arithmetic Intensity is defined as the ratio of flop per data
volume. We also report the predicted serial simulation Performance,
measured in simulated seconds per elapsed wallclock second for
a single neuron receiving synaptic events at a rate of 1Hz. The
requirements in this Table are computed considering only the data
structures strictly relevant to computation, thus neglecting overhead
from implementation details such as MPI buffers, data structure
representation, memory padding, etc

neuron receiving synaptic events at a rate of 1Hz. A
factor 104 difference in the performance of the Brunel and
Reconstructed model mirrors perfectly the difference in flop
and data traffic requirements observed above.

We complete our above analysis with a detailed
characterization of the performance profile of simulation
kernels based on the reference hardware. At first we
consider the Tcore and Tdata components of all the
individual kernels that constitute the simulation algorithm of
different modeling abstractions. Figure 3a demonstrates that
most kernels are data-bound on the reference architecture,
even when in the case of short vector registers (SSE).
When larger vector registers are used (i.e. AVX512), the
Tcore component can be greatly improved while the Tdata

remains roughly the same. This is an indication that the
performance of core-bound kernels can be improved by
vectorization, until the kernel becomes data-bound. In
addition, we observe that when using the vectorization
hardware to its fullest potential (i.e. AVX512) several
kernels lie on the boundary between core-boundedness
and data-boundedness. This represents a balanced profile
where the ratio of data traffic and computation matches the
design space of the hardware. To draw conclusions about
the full models, we need to intersect this information with
the relative importance of the individual kernels on the
total runtime. The serial performance of G-based models is
dominated by the state and current kernels, in roughly equal
parts. Thus we conclude that G-based models are mainly
data-bound. In the I-based model the most time consuming
kernel is the event-driven spike delivery. This implies
that, while the clock-driven portion of the I-based model
is definitely data-bound, the serial performance hardware
bottleneck of the whole neuron model is memory-level
parallelism and latency.

415Neuroinform (2020) 18:407–428



0 10 20 30 40
0

10

20

30

40

50

60

0 10 20 30 40
Data traffic component [cy] Data traffic component [cy]

In
 c

or
e 

co
m

po
ne

nt
 [c

y]

SSE AVX512

0 20 40 60 80 100

Reconstructed

Simplified

Brunel

Percent [%]

a b

Fig. 3 Predicted serial performance characteristics of clock-driven
computational kernels in brain tissue simulations. We predict the serial
runtime of in silico models as a sum of their individual kernels on the
reference SKX AVX512 architecture. a: Tcore and Tdata components
of the clock-driven kernels from brain tissue simulations. The dashed
black line delineates the boundary between core-bound kernels (over

the line) and data-bound kernels (under the line). Marker type denotes
the in silico model whence the kernel is taken, while marker size is pro-
portional to the relative importance of the kernel in the total runtime.
b: breakdown of the relative importance of individual kernels over the
total serial runtime

Memory Bandwidth Saturation in Shared-Memory
Execution

One of the most common simulation configurations involves
scaling the number of neurons until the memory capacity
limit is reached. This configuration has been used as proof-
of-concept for brain tissue simulations to the scale of
brain regions and even the full brain and constitutes a
fundamental tool for neuroscientists to simulate networks
whose sizes are representative of the neural systems they are
studying (Ananthanarayanan et al. 2009; Jordan et al. 2018;
Izhikevich and Edelman 2008).

Memory Bandwidth Limits Shared-Memory Parallelism
Modern architectures are typically designed with mem-
ory bandwidth as the most relevant bottleneck for shared-
memory parallelism (McCalpin 1995). This means that if all
the shared memory parallel threads are used, it is very likely
that performance will be bounded by the memory band-
width. Indeed, this has been demonstrated to be the case for
simulations of detailed neurons (Cremonesi et al. 2019) and
strongly suspected in the case of point neurons (Zenke and
Gerstner 2014). To verify this hypothesis we compute the
memory bandwidth utilization for the three in silico models
considered in this work. The results are shown in Fig. 4a.
We find that all models pass the threshold of 90% utilization
well before all available parallel threads are utilized, mean-
ing that memory bandwidth is indeed a bottleneck under
the assumption that data must be pulled from main mem-
ory at every time iteration. However, we surprisingly also
find that, regardless of the level of morphological detail,
G-based models share a similar pattern of early saturation

while the I-based IAF model requires slightly more paral-
lelism to achieve memory bandwidth saturation. In G-based
models this is explained by the dominance of synaptic and
ion channel current kernels which determine the early satu-
ration pattern, whereas in the I-based model the saturation
is driven by the memory latency effect on the spike delivery
kernel.

State-of-the-Art HPC Memory Chips Can Sustain Fast Simu-
lations of the Brunel and Simplified Models at Full Satura-
tion From a practical point of view, in addition to analyzing
the scaling behaviour of simulations, computational neuro-
scientists are also interested in predicting the actual runtime
for a given model. Thus we predict that the simulation per-
formance, under the assumption that memory bandwidth is
fully saturated, is 1.6×104, 7.9×102 and 1.7 simulated sec-
onds per wallclock second per neuron, for the Brunel, Sim-
plified and Reconstructed model respectively. Our results
indicate that the modern, fast memory chips on the reference
architecture are able to sustain faster-than-real time simu-
lations of up to roughly 104 neurons in the Brunel model,
and 103 neurons in the Simplified model, while faster-than-
real time simulations of the Reconstructed model on the
reference hardware are predicted to be theoretically possible
only by a narrow margin, and in practice probably impossi-
ble. Performance predictions under the memory bandwidth
saturation assumption represent a theoretical upper limit on
the achievable performance through shared memory paral-
lelism. The following paragraph explains how this limit can
be overcome through algorithmic improvements.

Ordering of Loops to Avoid Memory Bandwidth Saturation
State-of-the-art simulators employ a specific ordering of the

416 Neuroinform (2020) 18:407–428



a b

Simplified Brunel
Reconstructed

0

20

40

60

80

100
M

em
or

y 
ba

nd
w

id
th

 u
til

iz
at

io
n 

[%
]

Shared memory threads min
t

10

20

30

40

50

60

Sa
tu

ra
tio

n 
po

in
t

0

5 10 15 200

c

DRAM

L3

wallclock time

1 4 7 10 13 16 18

Fig. 4 Predicted shared-memory performance characteristics. We pre-
dict the shared-memory runtime of in silico models as a sum of
their individual kernels on the reference SKX AVX512 architecture.
a Percentage of memory bandwidth utilization as a function of the
number of shared memory threads. The dashed black line denotes
the threshold of 90% utilization. b To mitigate the effect of memory
bandwidth saturation, a smart ordering of time and neuron loops is
implemented by state-of-the-art simulators, as shown in the diagram
on the right. We plot the number of threads required to reach saturation
of memory bandwidth as a function of the coupling ratio. Different
coupling ratios were enforced by keeping the �t fixed to each model’s
published value, and changing the δmin accordingly. Dashed lines rep-
resent the actual published values for the coupling ratio. c schematic

representation of the loop ordering optimization to improve cache
reuse. The top shows the naı̈ve implementation: each neuron, repre-
sented by an horizontal line, is advanced by a single timestep, as shown
by the short black arrows. In this case, every time a neuron’s state is
advanced by one timestep data must be fetched from the main memory
(red lines), since the caches will be overwritten by the data from other
neurons at the same timestep. The bottom shows the optimized version:
each neuron is advanced by several timesteps (longer black arrows)
until it reaches a δmin boundary. In the optimized version data must be
fetched from main memory only during the first timestep, while con-
sequent operations can reuse the data for the same neuron immediately
(green lines represent data coming from the L3 cache)

loops over neurons, timesteps (�t) and minimum network
delay steps (δmin) to minimize the impact of memory
bandwidth by maximizing data locality. This optimization is
summarized in Fig. 4c. Throughout this work we make the
conservative assumption that, when using the loop ordering
optimization, data must be fetched from main memory on
the first timestep and from the L3 cache on consecutive
timesteps until a minimum delay barrier is reached. The
number of timesteps within a minimum delay period has of
course a great influence on the effectiveness of this strategy
in terms of reducing pressure on the memory bandwidth. To
quantify this, we compute the number of threads to reach
saturation – nsatur – and plot the results in Fig. 4b as a
function of the coupling ratio defined by δmin

�t
. In G-based

models, there is an almost linear relationship between the
coupling ratio and nsatur , indicating that investigating ways
to increase the coupling ratio could be highly beneficial
for parallelism. Note that, in this regard, increasing the
coupling ratio by decreasing �t presents a performance
tradeoff: it allows more parallelism but increases the
computational requirements (number of iterations) of the
model. Conversely, while the minimum network delay is
obviously a fixed parameter of the network that cannot
be arbitrarily changed, methods that experimented with
a per-neuron delay, instead of a network-wide minimum
delay, demonstrated significant speedup (Magalhães and
Schürmann 2019). The relationship between coupling ratio
and nsatur for I-based models is bounded by a relatively
small limit of roughly nsatur ≤ 17, above which no

additional parallelization is predicted to provide any benefit.
This is explained by the fact the spike delivery kernel,
in virtue of its event-driven nature, is unaffected by the
benefits of the coupling ratio. Since our assumption is
that data for this kernel must always come from main
memory, as soon as it becomes the dominating performance
factor and it reaches saturation, it inhibits any benefit from
parallelism.

High Speed Single-Node Simulations

Another widespread simulation regime is focused on
simulating a fixed size network as fast as possible. We call
this the constant problem size regime, and within it we make
the assumption that the optimized loop ordering is always
implemented to minimize the pressure on the memory
bandwdith. One use case falling within this performance
regime is real time simulations, in which one second of
simulated time requires at most one second of wallclock
time. Currently, on the one hand it is unclear whether real
time is realistically achievable on modern hardware (Zenke
and Gerstner 2014), and on the other hand special hardware
that breaks this limit by design has already been conceived
and tested for small networks (Aamir et al. 2018).

Memory Bandwidth Dominates the Shared-Memory Strong
Scaling of Brunel and Simplified Models, while a Mix
of Hardware Features Influences the Performance of the
Reconstructed Model Simulations of networks comprising

417Neuroinform (2020) 18:407–428



Table 2 Predicted performance per neuron without the memory
bandwidth saturation assumption, considering all available threads are
used

Brunel Simplified Reconstructed

performance (DRAM) 5.2 × 104 7.9 × 102 3.9

speedup in L3 2.5 4.7 1.8

speedup in L2 8.7 6.5 2.4

speedup in L1 33.9 6.6 2.4

Performance is measured in simulated seconds per wallclock second

a small number of neurons can be advantageous because
if the dataset can be fully contained in the CPU caches,
superlinear speedup can be observed. Therefore we predict
the simulation performance per neuron assuming the dataset
could be fully contained in different levels of the memory
hierarchy. For simplicity, we neglect the fact that some
of these model and cache combinations are infeasible in
practice, e.g., due to the memory footprint of a single
neuron in the Reconstructed model exceeding the L1

cache size. The performance predictions are reported in
Table 2 assuming all available threads in the reference
architecture (18 in total) are being utilized. Note that the
reported performances are better than the theoretical limit
computed in the previous section by assuming memory
bandwidth saturation. While this may seem counterintuitive,
it can be readily explained by the use of the loop
ordering optimization, which allows to perform multiple
time iterations without the need to pull data from DRAM.

Figure 5 shows the predicted performance breakdown
into simulation kernels as well as hardware features for all
in silico models, assuming that the dataset fits in different
levels of the memory hierarchy. When data is in the highest
level of the cache hierarchy (L1), the most important kernels
for all models are state update kernels, and the most relevant
hardware feature is the CPU throughput. Additionally, in
the G-based models the computation of the exponential (for
updating the synaptic states) constitutes a significant portion
of the overall execution time. As the dataset increases in size
and is only able to fit in lower levels of the cache (L2 or L3)
the predicted performance of the G-based models remains

Fig. 5 Predicted shared-memory
runtime contributions from
computational kernels and
hardware features. We assume a
single node of the SKX AVX512
and using the maximum number
of threads (18 threads). We do
not make the assumption of
memory bandwidth saturation,
but we assume that the loop
ordering optimization is used.
For each level of the cache
hierarchy, we show the
breakdown of the total runtime
into computational kernels on
the left of each box.
Furthermore, we show the
breakdown of the runtime, as
well as the breakdown of
individual computational
kernels, into hardware
contributions on the right of
each box. Hardware
contributions labels have the
following meaning: CPU stands
for the execution of
non-memory access instructions
in the core (excluding the
exponential function), exp for
the computation of exponential
function, Tload for the execution
of memory access instructions
in the core, and the rest for the
data traffic time of the relevant
datapath

g g i

linear algebraion channel state

syn stategif state

iaf update ion channel current

syn currentgif current
iaf psc

spike delivery TL1L2 DRAM

cpu TL2L3Tload

exp

computational kernels hardware contributions

418 Neuroinform (2020) 18:407–428



quite stable while that of the Brunel model degrades rapidly,
although admittedly our model for the spike delivery kernel
in caches might be highly optimistic. In practice, this could
be an indication that the Brunel model is bounded by the
data path while the G-based models are bounded by the
maximum achievable flop rate. Our breakdown analysis
confirms this, although for the reference architecture G-
based models are best represented by a mix of core-bound
and data-bound kernels, especially when the dataset fits only
in the L3 cache. Complementarily, in G-based models the
relative importance of the core-bound state update kernels
gradually loses weight in favour of data-bound current
kernels, while in the Brunel model the weight of the spike
delivery kernel gradually increases, eventually becoming
the most relevant kernel in the execution, as data moves
further away from the CPU. In spite of this technique,
both point neuron models are clearly dominated by the
saturation of the memory bandwidth. In particular, the fact
that memory bandwidth is the only factor in determining the
performance of the Simplified model can be directly related
to the fact that its coupling ratio has a value of 1, as shown
in Fig. 2. The performance profile of the Reconstructed
model is more diverse, and while 60% of the execution time
is still dominated by memory bandwidth, the data transfers

between the caches, arithmetic instructions, and throughput
of exponential function evaluations also take up a significant
portion of the runtime.

Distributed Simulations

An effective strategy for improving simulation performance
or to handle larger networks is to dedicate more hardware
to the task, distributing the simulated neural network across
multiple compute nodes. Here we consider two scenarios,
based on the terminology introduced by Singh et al. (1993):
a memory constrained scenario and a constant problem
size scenario. In the memory constrained scenario the
number of neurons is scaled proportionally to the available
parallelism (i.e. the number of distributed ranks), while in
the constant problem size scenario the number of neurons
to be simulated is kept fixed. These scenarios translate
respectively to the concepts of weak and strong scaling in
high performance computing.

Performance Predictions of Distributed Brain Tissue Simula-
tions We predict the performance of in silico models in both
scaling scenarios using our performance model, and present
the results in Fig. 6. In the memory constrained scenario

10 7

10 5

10 3

10 1

101

103

g g ia

Pe
rf

or
m

an
ce

 [s
im

 s
/w

al
lc

lo
ck

 s
]

10 5
10 4
10 3
10 2

100 101 102 103

Number of distributed ranks

10 1
100
101
102

30 neurons per rank

100 101 102 103

Number of distributed ranks

280 neurons per rank

100 101 102 103

Number of distributed ranks

60 neurons per rank

Pe
rf

or
m

an
ce

 [s
im

 s
/w

al
lc

lo
ck

 s
]

1e+5 neurons per rank

1e+5 neurons per rank

1e+5 neurons per rank

1e+8 neurons
1e+8 neurons 1e+8 neurons1e+3 neurons

1e+3 neurons

1e+3 neurons

b

Fig. 6 Performance of distributed scaling and most relevant hardware
bottlenecks. The SKX AVX512 architecture with HPE Infiniband EDR
is used as reference. a Predicted performance of the three in silico mod-
els in a memory constrained scenario. We consider different numbers
of neurons per distributed ranks. The solid lines represent simulations
with 105 neurons per rank, while the dashed lines represent the esti-
mated minimum number of neurons that is still larger than an L3

cache. The unit of performance is simulated seconds per wallclock sec-
ond to simulate the whole network. b Predicted performance of the
three in silico models in a constant problem size scenario. We consider
different total network sizes. The dashed and solid lines represent sim-
ulations with networks of 103 and 108 neurons respectively. The unit
of performance is simulated seconds per wallclock second to simulate
the whole network

419Neuroinform (2020) 18:407–428



the simulation performance remains constant regardless of
the total number of neurons as long as the number of neu-
rons per rank is sufficiently large. In addition, as expected,
the Brunel model has the best predicted performance, beat-
ing by up to a factor 10 the performance of the Simplified
model and up to a factor 104 the performance of the
Reconstructed model. For small values of the number of
neurons per rank, the performance of the Brunel model
degrades with the amount of parallelism, while that of the
Reconstructed model is roughly constant, exhibiting only
a small degradation at large cluster sizes. In the constant
problem size scenario, for all in silico models, as long
as the network size is sufficiently large, the performance
initially improves as we distribute the problem over increas-
ingly more ranks. However, for all in silico models there
exists a threshold number of ranks after which the benefits
from adding hardware become less prominent. Interestingly
the striking differences in performance between in silico
models at small cluster sizes can be evened out quite sig-
nificantly at large cluster sizes. For example, simulating a
large Brunel network on 10 distributed ranks can be roughly
four orders of magnitude faster than a Reconstructed net-
work on the same hardware, but the difference between
models goes down to two orders of magnitude at large clus-
ter sizes. Scaling to larger cluster sizes after this threshold
can be counter-productive, and even result in performance
degradation.

Network Latency and Memory Bandwidth are the Main
Bottlenecks in Strong Scaling Through introspection of
the performance model, we are able to provide an
explanation for the observed performance patterns. For
each in silico model, we investigate the reasons for

performance degradation by plotting the most significant
hardware bottlenecks for all combinations of network size
and cluster size in Fig. 7. We assume that the loop ordering
optimization is being used. Even though we do not make
the explicit assumption of memory bandwidth saturation,
this hardware feature is still among the most relevant
for all in silico models. Moreover, network bandwidth is
never the dominating bottleneck for all in silico models
and all configurations, while network latency always
becomes the most important bottleneck at large cluster
sizes. When network latency is the bottleneck we observe a
corresponding degradation in performance as more parallel
ranks are utilized. This can be directly attributed to the
fact that network latency introduces a performance overhead
that increases linearly with the number of distributed
ranks. Thus we conclude that large-scale simulations are
dominated by the latency of the collective communication,
and that investigating spike communication strategies such
as neighbourhood collectives (Jordan et al. 2018), non-
blocking point-to-point schemes (Ananthanarayanan and
Modha 2007), asynchronous execution (Magalhaes et al.
2019b) or custom hardware (Navaridas et al. 2012) will be
essential to reach brain-scale simulations.

Strawman Architectures and Hardware Design
Decisions

A useful feature of our performance model is that it can
be generalized to other architectures in a strawman fashion.
In this section we focus on providing an educated guess
on the performance profile of brain tissue simulations on
hardware architectures made with fundamentally different
design choices. For this goal we develop the concept of

Fig. 7 The SKX AVX512
architecture with HPE
Infiniband EDR is used as
reference. Most prominent
hardware bottlenecks as a
function of the total number of
neurons (inverted y axis) and the
number of distributed ranks (x
axis) in the simulation. The grey
areas denote a configuration that
would require splitting of
individual neurons, and are thus
deemed outside the scope of this
investigation.

10

0

10

1

10

2

10

3

104
10

5

10

6

10

7

10

8

N
um

be
r 

of
 n

eu
ro

ns

g g i

100 101 102 103 100 101 102 103

Number of distributed ranks
100 101 102 103

NETW LATENCYMEM BW CACHES CPU + EXP

420 Neuroinform (2020) 18:407–428



strawman architectures, i.e. models of the hardware that do
not necessarily reflect reality perfectly in every detail, but
that capture the most salient hardware properties and can be
used to explore the design space easily.

Our strawman analysis predicts a speedup of 3x-5x when
using the KNL manycore architecture and a speedup of 7x-
9x when using the GPU-like architecture compared to the
runtime on the reference SKX AVX512 architecture, for
all models (Fig. 8). These results have been qualitatively
confirmed in cross-platform performance studies (Knight
and Nowotny 2018; Kumbhar et al. 2019a; Akar et al.
2019). In this work, however, we are able to dig deeper and
identify substantial differences in the hardware bottleneck
profiles of individual in silico models. The Reconstructed
model, for example, is bounded by a mix of scalable
features (e.g. arithmetic operations and exponentials) and
non-scalable features such as the memory bandwidth. In
particular, in architectures with a low clock frequency
(KNL) or smaller vector registers (AMD Naples) the
non-scalable components constitute more than half of the
predicted execution time, indicating that more parallelism
could potentially still be beneficial. On the other hand,
the Simplified model is predicted to be bounded by
memory bandwidth on all architectures. While improving
the performance of such a model may seem a difficult task,
our previous analysis has shown that improving the coupling
ratio of the Simplified model would prove quite beneficial.
Finally, The Brunel model is bounded mainly by memory
bandwidth on the multicore server-like architectures, but
appears bounded by memory level parallelism and latency

on the manycore KNL and the GPU architecture. While
a more detailed analysis based on actual memory latency
values from each architecture would be required to confirm
this, it points to an interesting tradeoff between the memory
bandwidth and the available parallelism, and indicates
that the Brunel model could potentially benefit from
high amounts of shared-memory parallelism even with a
relatively slower memory bandwidth.

Effect of Model Parameters

Parameters of the in silico models have an important, yet
often difficult to explain, impact on performance. Firing
frequency is commonly cited as one of the most impactful
parameters on simulation performance (Yavuz et al. 2016).
Firing frequency affects communication by changing the
size of the spike message as well as computation by
changing the amount of events that must be integrated by
neurons. By predicting the performance profile for different
values of the firing frequency our analysis shows that, in the
median case, the performance of the Reconstructed model
is largely unaffected by this parameter, while in the case
of the Simplified and Brunel model performance scales
linearly with the firing frequency in simulations with large
amounts of synaptic activity, as shown in the Supplementary
Fig. S13. We further investigate how firing frequency
affects the relative importance of hardware bottlenecks,
and show in Fig. 9a that while the Reconstructed and
Simplified model are largely unaffected by this parameter,
the Brunel model’s performance profile becomes highly

g i

0.00

Ru
nt

im
e 

pe
r n

eu
ro

n 
[w

al
l s

 / 
si

m
 s

]

0.05

0.10

0.15

0.20

0.25

SK
X AVX51

2

Nap
les

 AV
X

KN
L A

VX51
2

GPU
-lik

e

core
exp
Tload
TL1L2
TL2L3
memory
memory lvl parall

0.0e-3

0.2e-3

0.4e-3

0.6e-3

0.8e-3

1.0e-3

1.2e-3

0.0e-6

2.5e-6

5.0e-6

7.5e-6

10.0e-6

12.5e-6

15.0e-6

17.5e-6

SK
X AVX51

2

KN
L A

VX51
2

GPU
-lik

e

SK
X AVX51

2

KN
L A

VX51
2

GPU
-lik

e

Nap
les

 AV
X

Nap
les

 AV
X

Fig. 8 Breakdown of contributions to total runtime from individual
hardware features. Bars represent the total predicted runtime on differ-
ent strawman hardware architectures for the Reconstructed, Simplified
and Brunel model on the left, center and right respectively. Each
strawman architecture represents a simplified version of the target
hardware, capturing salient hardware properties such as the amount
of available shared-memory parallelism, the memory bandwidth, the

clock frequency and the memory hierarchy. The rest of the hardware
details, most notably the throughput of instructions in the core and
the memory level parallelism and latency, were obtained by adapting
the corresponding known values from the reference Skylake architec-
ture. The meaning of individual hardware contributions is based on the
corresponding ECM model dimension as in Fig. 5

421Neuroinform (2020) 18:407–428



100 102 104 106 108 1010
100

101

102

103

104

105

106

D
is

tr
ib

ut
ed

 r
an

ks

1KB 1MB 1GB

K = 100
K = 3000
K = 11250R

el
at

iv
e 

im
po

rt
an

ce

10
2

10
1

10
0

10
1

10
2

10
3

firing frequency [Hz]

g

i

10
1

10
0

10
1

min [ms]

10
4

10
3

10
2

10
1

10
0

10
1

10
2

10
3

10
4

10
5

Fan in

Number of neurons

g
0.5

1

0

0.5

1

0

0.5

1

0

a b c

d

Brunel

Simplified

Reconstructed

Brunel Simplified

Reconstructed caches
DRAM BW
DRAM LAT

Network lat
Network BW

cpu + exp

Fig. 9 a Stacked plot of the mean relative contributions from hardware
features as a function of the average firing frequency of neurons in the
simulation. The mean was extracted by simulating 1000 randomly gen-
erated simulation configurations, defined by number of neurons and
number of distributed ranks. b Stacked plot of the mean relative con-
tributions from hardware features as a function of the δmin. The range
of acceptable values for δmin changes across different in silico mod-
els because they were computed as multiples of the model’s timestep,

hence the greyed-out areas. c Number of neurons able to fit in 1 GB
of memory, normalized by the memory requirements of a model with
10 incoming synapses, as a function of the average fan in per neuron.
d Contour plot of predicted memory requirements of the connections
table, as a function of the total number of neurons (x axis) and the
number of distributed ranks (y axis). The contour levels corresponding
to 1 KB, 1 MB and 1 GB are shown for different values of the fan in

skewed towards the memory bandwidth at large values of
the firing frequency. Interestingly, our analysis also shows
that the minimum network delay also has a significant
impact on performance, despite the fact that it does not
change the total number of operations to be performed. In
particular, for point neuron models there is a transition from
a regime dominated by communication to one dominated by
computation, while the Reconstructed model is dominated
by computation for all values of the minimum network
delay, as shown in Fig. 9b. Finally, we show how the
average number of incoming synaptic connections presents
a subtle tradeoff of increasing the computational load
(thus decreasing performance) while at the same time
increasing memory requirements, and thus potentially the
amount of distributed parallelism required to simulate a
given number of neurons (thus increasing performance).
We examine two ways in which fan influences memory
requirements: Fig. 9c shows the fraction of neurons that
can fit in 1 GB of memory for different values of the fan
in, solely by virtue of the additional parameters and state
variables required to represent the corresponding synapses;
Fig. 9d further investigates the memory requirements of
the connection table, required by each distributed rank to
determine whether a specific source neuron has any local
postynaptic connections on that rank. We refer the interested
reader to the Supplementary Material S2 for additional
details in the analysis.

Synaptic Plasticity The scope of this work is limited to
the investigation of the performance properties of the
inference phase of biological neural networks, assuming
that the learning process, if any, is carried out in a separate
experiment. However, using insight from our analysis, we
can still show that synaptic plasticity would not likely
change the performance profiles that we have identified
in a dramatic way. First of all, given the event-driven
and unpredictable nature of synaptic activation, it should
be noted that plasticity kernels share the same memory
access pattern as the spike delivery kernels, and are thus
also potentially affected by memory level parallelism and
latency. While long-term plasticity rules typically also
involve computationally heavy operations, it is reasonable
to assume that the memory level parallelism will be the
dominant hardware bottleneck, given that the G-based
spike delivery kernel has a similar profile. Therefore, we
expect that in the Reconstructed and Simplified models
the impact of synaptic plasticity rules would be negligible,
since the event-driven portion of the runtime was already
found to be small, and although synaptic plasticity would
definitely increase it, it is unlikely that this would
ultimately amount to a significant effect. In the Brunel
model, which is dominated by event-driven computations,
synaptic plasticity would simply exacerbate this profile as
it shares the same bottleneck profile as the spike delivery
kernel.

422 Neuroinform (2020) 18:407–428



Discussion

In this work we have delivered a quantitative characteri-
zation of the performance properties of different published
in silico models at the core of state-of-the-art brain tissue
simulations. Using a grey-box model that combines biolog-
ical and algorithmic properties with hardware specifications
we have identified performance bottlenecks under different
simulation regimes, corresponding to a variety of prototypi-
cal scientific questions that can be answered by simulations
of biological neural networks.

General Purpose Computing has Sustained a Diverse Perfor-
mance Landscape up to Now Our results show that there
exists a large diversity of performance profiles and bottle-
necks that shape the landscape of brain tissue simulations,
corresponding to the diversity of sizes and scales at which
research questions in simulation neuroscience can be asked.
Thus, our research highlights that the computational neu-
roscience community is currently greatly benefitting from
the adaptability of general purpose computing, exploiting
the ease of development and high performance capability to
explore different areas of the modeling landscape.

Memory Bandwidth and Network Latency Severely Limit
Maximum Filling and Real Time Strong Scaling Using a
state-of-the-art HPC server CPU and cluster as a reference,
our analysis revealed that all the in silico models saturate the
memory bandwidth using quite a small number of shared
memory threads. Even when algorithmic improvements are
put into place to mitigate this effect we have identified that
the coupling ratio, a dimensionless number that counts the
number of timesteps in a mininum network delay period,
strongly regulates the saturation of memory bandwidth and,
in the extreme case of the Simplified model analyzed here,
effectively prevents any benefit to be gained from the effort
of developing a more efficient algorithm. Additionally,
we discovered that it is not the level of morphological
detail, but rather the formalism used to represent synapses,
that is the most important factor in explaining the
memory bandwidth saturation profile, with G-based models
saturating much faster than the I-based model. Our analysis
of strawman architectures has shown that the extremely fast
memory bandwidth of current manycore architectures is
currently able to sustain large amounts of shared-memory
parallelism for all models, with performance improvements
proportional to bandwidth improvements. In distributed
simulations we identified the network latency, and not the
network bandwidth, as the major bottleneck for scaling
to very large networks or very large cluster sizes. This
provides a new motivation and justification for the extensive
efforts described in Navaridas et al. (2012) in designing

a specific communication infrastructure for the SpiNNaker
neuromorphic system.

Model-Specific Features have a Significant Impact on
Shared-Memory Performance Inspection of our perfor-
mance model allowed us to pinpoint which kernels, hard-
ware specifications and model parameters have the largest
impact on performance. The Brunel model based on the I-
based formalism and IAF neurons is mainly bounded by
the spike delivery kernel, which exhibits a good shared-
memory scaling behaviour and, in the case of extreme
strong scaling, a strong dependence on the inter-cache data
paths for good performance. The two G-based models we
analyzed, i.e. Simplified and Reconstructed, have a simi-
lar shared-memory scaling behaviour, mainly driven by the
current kernels required to compute the contributions of
individual synapses (and ion channels) to the membrane
potential equation. However, while the Simplified model is
100% dominated by memory bandwidth, the morphologi-
cally detailed Reconstructed model is dominated partially
(around 40%) by other hardware components such as caches
and CPU throughput. Using strawman architectures, we
have confirmed that these profiles are valid for a wide
range of hardware design choices, with differences aris-
ing only when memory bandwidth is not fully saturated. It
becomes clear that a performance model and a detailed per-
formance analysis are fundamental tools to disentagle the
complex web of relationships between in silico models, their
software implementation and hardware concretization.

Static and Dynamic Model Parameters Affect Performance
in Significant but Subtle Ways Finally, we examined the
impact of model parameters on the performance profiles
described above. We found that firing frequency, but
surprisingly also minimum network delay, can have a
large impact on determining which hardware features may
constitute a performance bottleneck. For firing frequency it
is obvious that larger values correspond to more operations
required by the simulation algorithm, and thus a lower
performance, but our analysis shows that different values
of the firing frequency also change the relative importance
of hardware features. Interestingly we found that the
minimum network delay, in spite of it not affecting the
total number of operations per simulated second, can
have an effect on performance simply by shifting the
importance of the hardware bottlenecks. We also found
that the average number of incoming connections per
neuron plays a subtle role in influencing performance.
Trivially, a larger fan in increases the computational
requirements of a single neuron. However, it also increases
the memory capacity requirements, thus requring a larger
degree of parallelism to handle the same network size. This
creates a tradeoff between performance degradation arising

423Neuroinform (2020) 18:407–428



from larger computational requirements and performance
improvement from parallelism requirements.

Limits and Future Improvements In this work we have
concentrated solely on the aspect of maximizing perfor-
mance, without considering limitations such as cost or
energy. However, it must be stated that energy efficiency is
a central issue in the computational neuroscience commu-
nity, and one of the main selling points of neuromorphic
hardware (Cassidy et al. 2014; Stromatias et al. 2013).
Therefore, a meaningful extension to this work would be
to incorporate a model for power consumption alongside
performance prediction, as a way to constrain the feasibil-
ity and efficiency of certain simulation configurations. To
achieve this, one could exploit already established power
consumption models that are easily integrated with the
ECM and have been shown to provide valuable insight into
the power and performance properties of simulation ker-
nels (Hager et al. 2016; Hofmann et al. 2018). Moreover,
our analysis has been focused on computational and com-
munication kernels, effectively neglecting other aspects of
simulation performance such as generation of stimuli, ran-
dom number generation and managing the queue of synaptic
events. While these kernels constitute necessary steps in
the simulation of brain tissue, the goal of our investiga-
tion is to study the performance properties related to the
mathematical modeling of neurons, and not implementa-
tion and hardware details such as the most efficient random
number generation strategy. Despite excluding some parts
of the simulation algorithm, our analysis still maintains
a lot of relevance with regards to the overall simulation
performance. Indeed, in both G-based and I-based mod-
els, it was found that computational and communication
kernels often constitute more than 90% of the total simu-
lation runtimes (Kumbhar et al. 2019a; Ewart et al. 2015;
Schenck et al. 2014; Peyser and Schenck 2015). From the
modeling point of view, an important aspect that we have
neglected in this analysis is synaptic plasticity. A large
portion of research questions that require brain tissue sim-
ulations involve learning and synaptic plasticity, so this
represents an important extension to our analysis. However,
in this work we decided to concentrate on the inference part
of brain tissue simulations because the diversity and com-
plexity of plasticity models warrants a separate analysis.
However, we have shown that we do not expect synap-
tic plasticity to significantly change our analysis. In the
future, given that the performance modeling infrastructure is
already in place, we believe that the addition of plasticity for
a more detailed analysis would not be a technical challenge,
although it would considerably complexify the resulting
analysis. Even though we already considered potential hard-
ware improvements in our analysis, it would be interesting

to extend this study to include hardware with different a
design space such as the non-overlapping caches of AMD
CPUs (Hager 2017) or massive SIMD parallelism of GPG-
PUs (Knight and Nowotny 2018). Finally, the methods
developed in this paper can be extended to different sim-
ulation approaches ranging from different communication
strategies (Kozloski and Wagner 2011; Ananthanarayanan
and Modha 2007) up to fully asynchronous executions
(Magalhães and Schürmann 2019).

Performance Modeling is Required to Enable Next-
Generation High Performance Brain Tissue Simulations
Our analysis shows that, if future iterations of general-
purpose hardware architectures maintain the same balance
as the current state-of-the-art, it will be very difficult to
achieve fast, large scale simulations of brain tissue. Even if
hardware peak performance were to improve significantly
over the next years, the required speedup could only be
achieved via specifically targeted advancements and under
very restrictive simulation and model configurations. To
support the next generation of brain tissue simulations, the
community must therefore focus on the design of dedicated
hardware.

In this work we have shown that different modeling
choices and abstractions lead to a large diversity in the per-
formance landscape of cellular-level simulations, in spite of
being representations of the same biological phenomenon,
thus making the task of designing the hardware and soft-
ware necessary to achieve high performance simulations
extremely difficult. The level of diversity means that design
tradeoffs will inevitably require very restrictive decisions
about the scale, model and configuration of the target sim-
ulation, such as e.g. (Navaridas et al. 2012; Knight and
Nowotny 2018). For example, in the context of accelerat-
ing small networks of neurons up to real-time, we predict
that I-based models would benefit from architectures with
high memory level parallelism and a simple cache hierar-
chy, while for G-based models the cache bandwidth as well
as the throughput of CPU arithmetic operations must be
improved concurrently in order observe the desired speedup.
Additionally, simulation parameters can influence the per-
formance profile in a tangible way. In the case of the
Simplified model, for example, simulations are on average
bounded by memory bandwidth and network latency at the
current value of the minimum network delay, but the pro-
file would change drastically if the minimum network delay
were increased to the same value of the Brunel model, with
memory bandwidth losing importance in favour of cache
and CPU throughput. Even in ideal cases where the in sil-
ico experiment falls perfectly within the design space of
the hardware and software being used, simulation dyna-
mics outside of the control of the modeler such as firing

424 Neuroinform (2020) 18:407–428



frequency can rapidly push the performance of simulations
towards suboptimal regimes.

Conclusions

We have demonstrated the diversity and complexity of the
performance landscape of brain tissue simulations, using
an analytical performance model that combines algorithm
definitions and hardware specifications as an exploration
tool. Thanks to the analytical modeling tools developed by
us, we are able to gain insight on intrinsic model properties
at the root of the observed performance variability across
models, and to pinpoint hardware and software culprits
for performance bottlenecks in brain tissue simulations.
We conclude that, even though state-of-the-art published
simulations are currently greatly benefitting from general
purpose computing, it is likely that reaching fast, brain-scale
simulations on general purpose HPC platforms will not be
feasible in the near future. In order to achieve this goal,
computational neuroscience modelers must cooperate with
software developers and hardware designers. Ultimately, we
stress that performance modeling represents a powerful tool
to enable communication between these communities We
believe that our work embodies a concrete step in defining
and understanding key performance properties of a wide
variety of in silico models, necessary to enable the next
generation of brain tissue simulations.

Resource Sharing Statement

All the information about the in silico models was obtained
directly from the corresponding publications and is publicly
available.

Acknowledgements The authors gratefully acknowledge the compute
resources and support provided by the Erlangen Regional Computing
Center (RRZE), and in particular Georg Hager for the fruitful
discussions regarding the ECM model and the interpretation of
performance predictions. We are also indebted to the BlueBrain HPC
team, and in particular Bruno Magalhaes and Pramod Kumbhar, for
helpful support and discussion regarding CoreNEURON.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Aamir, S.A., Stradmann, Y., Müller, P., Pehle, C., Hartel, A., Grübl,
A., Schemmel, J., Meier, K. (2018). An accelerated lif neuronal
network array for a large-scale mixed-signal neuromorphic archi-
tecture. IEEE Transactions on Circuits and Systems I: Regular
Papers (99), 1–14. https://doi.org/10.1109/tcsi.2018.2840718.

Akar, N.A., Cumming, B., Karakasis, V., Küsters, A., Klijn,
W., Peyser, A., Yates, S. (2019). Arbor: a morphologically-
detailed neural network simulation library for contemporary high-
performance computing architectures. In 2019 27th euromicro
international conference on parallel, distributed and network-
based processing (PDP) (pp. 274-282): IEEE, https://doi.org/10.
1109/empdp.2019.8671560.

Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.
(1997). Loggp: Incorporating long messages into the logp model
for parallel computation. Journal of Parallel and Distributed
Computing, 44(1), 71–79. https://doi.org/10.1006/jpdc.1997.1346.

Ananthanarayanan, R., & Modha, D.S. (2007). Anatomy of a cortical
simulator. In Proceedings of the 2007 ACM/IEEE conference on
Supercomputing (p. 3): ACM, https://doi.org/10.1145/1362622.
1362627.

Ananthanarayanan, R., Esser, S.K., Simon, H.D., Modha, D.S. (2009).
The cat is out of the bag: cortical simulations with 10 9 neurons,
10 13 synapses. In Proceedings of the conference on high
performance computing networking, storage and analysis (p. 63):
ACM.

Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer,
K., Kubiatowicz, J., Morgan, N., Patterson, D., Sen, K.,
Wawrzynek, J., et al. (2009). A view of the parallel comput-
ing landscape. Communications of the ACM, 52(10), 56–67.
https://doi.org/10.1145/1562764.1562783.

Benjamin, B.V., Gao, P., McQuinn, E., Choudhary, S., Chan-
drasekaran, A.R., Bussat, J.M., Alvarez-Icaza, R., Arthur, J.V.,
Merolla, P.A., Boahen, K. (2014). Neurogrid: a mixed-analog-
digital multichip system for large-scale neural simulations. Pro-
ceedings of the IEEE, 102(5), 699–716. https://doi.org/10.1109/
jproc.2014.2313565.

Brette, R., & Goodman, D.F. (2011). Vectorized algorithms for spiking
neural network simulation. Neural Computation, 23(6), 1503–
1535. https://doi.org/10.1162/neco a 00123.

Brette, R., & Goodman, D.F. (2012). Simulating spiking neural
networks on gpu. Network: Computation in Neural Systems, 23(4),
167–182. https://doi.org/10.3109/0954898x.2012.730170.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower,
J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris, J.r.
F.C., et al. (2007). Simulation of networks of spiking neurons:
a review of tools and strategies. Journal of Computational Neu-
roscience, 23(3), 349–398. https://doi.org/10.1007/s10827-007-
0038-6.

Brunel, N. (2000). Dynamics of sparsely connected networks of exci-
tatory and inhibitory spiking neurons. Journal of Computational
Neuroscience, 8(3), 183–208. https://doi.org/10.1016/s0925-
2312(00)00179-x.

Calotoiu, A., Hoefler, T., Poke, M., Wolf, F. (2013). Using
automated performance modeling to find scalability bugs in
complex codes. In Proceedings of the ACM/IEEE Conference on
Supercomputing (SC13), Denver, CO, USA (pp. 1-12): ACM,
https://doi.org/10.1145/2503210.2503277.

Cassidy, A.S., Alvarez-Icaza, R., Akopyan, F., Sawada, J., Arthur, J.V.,
Merolla, P.A., Datta, P., Tallada, M.G., Taba, B., Andreopoulos,
A., et al. (2014). Real-time scalable cortical computing at 46
giga-synaptic ops/watt with. In Proceedings of the international
conference for high performance computing, networking, storage
and analysis (pp. 27–38): IEEE Press.

425Neuroinform (2020) 18:407–428

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/tcsi.2018.2840718
https://doi.org/10.1109/empdp.2019.8671560
https://doi.org/10.1109/empdp.2019.8671560
https://doi.org/10.1006/jpdc.1997.1346
https://doi.org/10.1145/1362622.1362627
https://doi.org/10.1145/1362622.1362627
https://doi.org/10.1145/1562764.1562783
https://doi.org/10.1109/jproc.2014.2313565
https://doi.org/10.1109/jproc.2014.2313565
https://doi.org/10.1162/neco_a_00123
https://doi.org/10.3109/0954898x.2012.730170
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1016/s0925-2312(00)00179-x
https://doi.org/10.1016/s0925-2312(00)00179-x
https://doi.org/10.1145/2503210.2503277


Cremonesi, F., Hager, G., Wellein, G., Schürmann, F. (2019).
Analytic performance modeling and analysis of detailed neuron
simulations. The International Journal of High Performance
Computing Applications. In review.

Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos,
E., Subramonian, R., Von Eicken, T. (1993). Logp: Towards a
realistic model of parallel computation. In ACM Sigplan notices,
(Vol. 28 pp. 1-12): ACM, https://doi.org/10.1145/155332.155333.

Dennard, R.H., Gaensslen, F.H., Rideout, V.L., Bassous, E., LeBlanc,
A.R. (1974). Design of ion-implanted mosfet’s with very small
physical dimensions. IEEE Journal of Solid-State Circuits, 9(5),
256–268. https://doi.org/10.1109/jproc.1999.752522.

Eichner, H., Klug, T., Borst, A. (2009). Neural simulations on
multi-core architectures. Frontiers in Neuroinformatics, 3, 21.
https://doi.org/10.3389/neuro.11.021.2009.

Ewart, T., Yates, S., Cremonesi, F., Kumbhar, P., Schürmann, F.,
Delalondre, F. (2015). Performance evaluation of the IBM
POWER8 architecture to support computational neuroscientific
application using morphologically detailed neurons. In: Proc.
6th int. workshop on perfomance modeling, benchmarking, and
simulation of high performance computing systems, ACM.

Fidjeland, A.K., Roesch, E.B., Shanahan, M.P., Luk, W. (2009). Nemo:
a platform for neural modelling of spiking neurons using gpus. In
2009 20th IEEE international conference on application-specific
systems, architectures and processors (pp. 137–144): IEEE,
https://doi.org/10.1109/asap.2009.24.

Gerstner, W., Kistler, W.M., Naud, R., Paninski, L. (2014). Neuronal
dynamics: From single neurons to networks and models of
cognition. Cambridge: Cambridge University Press.

Hagen, E., Dahmen, D., Stavrinou, M.L., Lindén, H., Tetzlaff, T.,
van Albada, S.J., Grün, S., Diesmann, M., Einevoll, G.T. (2016).
Hybrid scheme for modeling local field potentials from point-
neuron networks. Cerebral Cortex, 1–36. https://doi.org/10.1186/
1471-2202-16-s1-p67.

Hagen, E., Næss, S., Ness, T.V., Einevoll, G.T. (2018). Multimodal
modeling of neural network activity: Computing lfp, ecog, eeg,
and meg signals with lfpy 2.0. Frontiers in Neuroinformatics, 12.
https://doi.org/10.3389/fninf.2018.00092.

Hager, G. (2017). Benchmarking the memory hierarchy of the new
amd ryzen cpu using the vector triad. Georg Hager’s blog https://
blogs.fau.de/hager/archives/7810.

Hager, G., Treibig, J., Habich, J., Wellein, G. (2016). Exploring perfor-
mance and power properties of modern multi-core chips via simple
machine models. Concurrency and Computation: Practice and
Experience, 28(2), 189–210. https://doi.org/10.1002/cpe.3180.

Hager, G., Eitzinger, J., Hornich, J., Cremonesi, F., Alappat,
C.L., Röhl, T., Wellein, G. (2018). Applying the execution-
cache-memory model: Current state of practice, poster at
Supercomputing 2018.

Hardavellas, N., Ferdman, M., Falsafi, B., Ailamaki, A. (2011).
Toward dark silicon in servers. IEEE Micro, 31(4), 6–15.
https://doi.org/10.1109/mm.2011.77.

Helias, M., Kunkel, S., Masumoto, G., Igarashi, J., Eppler, J.M., Ishii,
S., Fukai, T., Morrison, A., Diesmann, M. (2012). Supercomputers
ready for use as discovery machines for neuroscience. Frontiers
in Neuroinformatics, 6, 26. https://doi.org/10.3389/fninf.2012.
00026.

Hines, M., Kumar, S., Schürmann, F. (2011). Comparison of
neuronal spike exchange methods on a blue gene/p super-
computer. Frontiers in Computational Neuroscience, 5, 49.
https://doi.org/10.3389/fncom.2011.00049.

Hines, M.L., Markram, H., Schürmann, F. (2008). Fully implicit par-
allel simulation of single neurons. Journal of Computational Neu-
roscience, 25(3), 439–448. https://doi.org/10.1186/1471-2202-8-
s2-p6.

Hoefler, T., Schneider, T., Lumsdaine, A. (2009). Loggp in theory
and practice–an in-depth analysis of modern interconnection
networks and benchmarking methods for collective operations.
Simulation Modelling Practice and Theory, 17(9), 1511–1521.
https://doi.org/10.1016/j.simpat.2009.06.007.

Hofmann, J., Eitzinger, J., Fey, D. (2015). Execution-cache-
memory performance model: Introduction and validation.
arXiv:150903118.

Hofmann, J., Hager, G., Wellein, G., Fey, D. (2017). An analysis of
core-and chip-level architectural features in four generations of
intel server processors. In International supercomputing confer-
ence (pp. 294–314): Springer, https://doi.org/10.1007/978-3-319-
58667-0 16.

Hofmann, J., Hager, G., Fey, D. (2018). On the accuracy and use-
fulness of analytic energy models for contemporary multicore
processors. In Yokota, R., Weiland, M., Keyes, D., Trinitis,
C. (Eds.) International conference on high performance com-
puting (pp. 22–43). Cham: Springer International Publishing,
https://doi.org/10.1007/978-3-319-92040-5 2.

Hofmann, J., Alappat, C.L., Hager, G., Fey, D., Wellein, G. (2019).
Bridging the architecture gap: Abstracting performance-relevant
properties of modern server processors. arXiv:190700048.

Indiveri, G., Linares-Barranco, B., Hamilton, T.J., Van Schaik, A.,
Etienne-Cummings, R., Delbruck, T., Liu, S.C., Dudek, P.,
Häfliger, P., Renaud, S., et al. (2011). Neuromorphic silicon
neuron circuits. Frontiers in Neuroscience, 5, 73. https://doi.org/
10.3389/fnins.2011.00073.

Intel (2017). Intel architecture code analyzer. https://software.intel.
com/en-us/articles/intel-architecture-code-analyzer.

Ippen, T., Eppler, J.M., Plesser, H.E., Diesmann, M. (2017). Construct-
ing neuronal network models in massively parallel environments.
Frontiers in Neuroinformatics, 11, 30. https://doi.org/10.3389/
fninf.2017.00030.

Izhikevich, E.M., & Edelman, G.M. (2008). Large-scale model of
mammalian thalamocortical systems. Proceedings of the National
Academy of Sciences, 105(9), 3593–3598. https://doi.org/10.1073/
pnas.0712231105.

Jeffers, J., Reinders, J., Sodani, A. (2016). Intel Xeon Phi processor
high performance programming: knights landing edition. Burling-
ton: Morgan Kaufmann.

Jia, Z., Maggioni, M., Staiger, B., Scarpazza, D.P. (2018). Dissect-
ing the nvidia volta gpu architecture via microbenchmarking.
arXiv:180406826.

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi,
J., Diesmann, M., Kunkel, S. (2018). Extremely scalable spiking
neuronal network simulation code: from laptops to exascale com-
puters. Frontiers in Neuroinformatics, 12, 2. https://doi.org/10.
3389/fninf.2018.00002.

Knight, J.C., & Nowotny, T. (2018). Gpus outperform current
hpc and neuromorphic solutions in terms of speed and energy
when simulating a highly-connected cortical model. Frontiers in
Neuroscience, 12, 941. https://doi.org/10.3389/fnins.2018.00941.

Kozloski, J., & Wagner, J. (2011). An ultrascalable solution to large-
scale neural tissue simulation. Frontiers in Neuroinformatics, 5,
15. https://doi.org/10.3389/fninf.2011.00015.

Kumbhar, P., Hines, M., Ovcharenko, A., Mallon, D.A., King, J.,
Sainz, F., Schürmann, F., Delalondre, F. (2016). Leveraging a
cluster-booster architecture for brain-scale simulations. In Interna-
tional conference on high performance computing (pp. 363–380):
Springer, https://doi.org/10.1007/978-3-319-41321-1 19.

Kumbhar, P.S., Sivagnanam, S., Yoshimoto, K., Hines, M., Carnevale,
T., Majumdar, A. (2018). Performance analysis of computational
neuroscience software neuron on knights corner many core pro-
cessors. In Workshop on software challenges to exascale comput-
ing (pp. 67–76): Springer, https://doi.org/10.1007/978-981-13-
7729-7 5.

426 Neuroinform (2020) 18:407–428

https://doi.org/10.1145/155332.155333
https://doi.org/10.1109/jproc.1999.752522
https://doi.org/10.3389/neuro.11.021.2009
https://doi.org/10.1109/asap.2009.24
https://doi.org/10.1186/1471-2202-16-s1-p67
https://doi.org/10.1186/1471-2202-16-s1-p67
https://doi.org/10.3389/fninf.2018.00092
https://blogs.fau.de/hager/archives/7810
https://blogs.fau.de/hager/archives/7810
https://doi.org/10.1002/cpe.3180
https://doi.org/10.1109/mm.2011.77
https://doi.org/10.3389/fninf.2012.00026
https://doi.org/10.3389/fninf.2012.00026
https://doi.org/10.3389/fncom.2011.00049
https://doi.org/10.1186/1471-2202-8-s2-p6
https://doi.org/10.1186/1471-2202-8-s2-p6
https://doi.org/10.1016/j.simpat.2009.06.007
http://arxiv.org/abs/150903118
https://doi.org/10.1007/978-3-319-58667-0_16
https://doi.org/10.1007/978-3-319-58667-0_16
https://doi.org/10.1007/978-3-319-92040-5_2
http://arxiv.org/abs/190700048
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.3389/fnins.2011.00073
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://doi.org/10.3389/fninf.2017.00030
https://doi.org/10.3389/fninf.2017.00030
https://doi.org/10.1073/pnas.0712231105
https://doi.org/10.1073/pnas.0712231105
http://arxiv.org/abs/180406826
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.3389/fninf.2011.00015
https://doi.org/10.1007/978-3-319-41321-1_19
https://doi.org/10.1007/978-981-13-7729-7_5
https://doi.org/10.1007/978-981-13-7729-7_5


Kumbhar, P., Awile, O., Keegan, L., Alonso, J.B., King, J., Hines,
M., Schürmann, F. (2019a). An optimizing multi-platform source-
to-source compiler framework for the neuron modeling language.
arXiv:190502241.

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King,
J., Delalondre, F., Schürmann, F. (2019b). Coreneuron: an
optimized compute engine for the neuron simulator. Frontiers in
Neuroinformatics. https://doi.org/10.3389/fninf.2019.00063.

Kunkel, S., Schmidt, M., Eppler, J.M., Plesser, H.E., Masumoto, G.,
Igarashi, J., Ishii, S., Fukai, T., Morrison, A., Diesmann, M., et al.
(2014). Spiking network simulation code for petascale computers.
Frontiers in Neuroinformatics, 8, 78. https://doi.org/10.3389/fninf.
2014.00078.

Levinthal, D. (2014). Cycle accounting analysis on intel core 2
processors. Tech. rep., whitepaper.

Lytton, W.W., & Hines, M.L. (2005). Independent variable time-
step integration of individual neurons for network simulations.
Neural Computation, 17(4), 903–921. https://doi.org/10.1162/
0899766053429453.

Magalhães, B., & Schürmann, F. (2019). Fully-asynchronous
cache-efficient simulation of detailed neural networks.
https://doi.org/10.1007/978-3-030-22744-9 33.

Magalhaes, B., Hines, M., Sterling, T., Schürmann, F. (2019a).
Asynchronous branch-parallel simulation of detailed neu-
ron models (under review). Frontiers in Neuroinformatics.
https://doi.org/10.3389/fninf.2019.00054.

Magalhaes, B., Hines, M., Sterling, T., Schürmann, F. (2019b).
Exploiting Flow graph of system of odes to accelerate the sim-
ulation of biologically-detailed neural networks. In Proceedings
of 2019 IEEE international parallel and distributed processing
symposium (IPDPS), IEEE.

Mamadou, H.N., Nanri, T., Murakami, K. (2006). Collective
communication costs analysis over gigabit ethernet and infiniband.
In International conference on high-performance computing
(pp. 547–559): Springer, https://doi.org/10.1007/11945918 52.

Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdel-
lah, M., Sanchez, C.A., Ailamaki, A., Alonso-Nanclares, L.,
Antille, N., Arsever, S., et al. (2015). Reconstruction and sim-
ulation of neocortical microcircuitry. Cell, 163(2), 456–492.
https://doi.org/10.1016/j.cell.2015.09.029.

McCalpin, J.D. (1995). Memory bandwidth and machine balance
in current high performance computers. IEEE Computer Society
Technical Committee on Computer Architecture (TCCA) Newslet-
ter, 19–25.

Moore, G.E. (1995). Lithography and the future of Moore’s law.
In Integrated circuit metrology, inspection, and process control
IX, International Society for Optics and Photonics, (Vol. 2439
pp. 2–18).

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., Diesmann, M.
(2005). Advancing the boundaries of high-connectivity network
simulation with distributed computing. Neural Computation,
17(8), 1776–1801. https://doi.org/10.1162/0899766054026648.

Navaridas, J., Luj’n, M., Plana, L.A., Miguel-Alonso, J., Furber,
S.B. (2012). Analytical assessment of the suitability of multicast
communications for the spinnaker neuromimetic system. In
2012 IEEE 14th international conference on high performance
computing and communication & 2012 IEEE 9th international
conference on embedded software and systems (pp. 1–8): IEEE,
https://doi.org/10.1109/hpcc.2012.11.

Nolte, M., Reimann, M.W., King, J.G., Markram, M., Muller, E.B.
(2019). Cortical reliability amid noise and chaos. Nat Commun,
10, 3792. https://doi.org/10.1038/s41467-019-11633-8.

Ovcharenko, A., Kumbhar, P.S., Hines, M.L., Cremonesi, F., Ewart,
T., Yates, S., Schürmann, F., Delalondre, F. (2015). Simulating
morphologically detailed neuronal networks at extreme scale. In
PARCO (pp. 787–796).

Painkras, E., Plana, L.A., Garside, J., Temple, S., Galluppi, F.,
Patterson, C., Lester, D.R., Brown, A.D., Furber, S.B. (2013).
Spinnaker: a 1-w 18-core system-on-chip for massively-parallel
neural network simulation. IEEE Journal of Solid-State Circuits,
48(8), 1943–1953. https://doi.org/10.1109/jssc.2013.2259038.

Peyser, A., & Schenck, W. (2015). The nest neuronal network simu-
lator: Performance optimization techniques for high performance
computing platforms. In Society for Neuroscience Annual Meet-
ing, Jülich Supercomputing Center, FZJ-2015-06261.

Potjans, T.C., & Diesmann, M. (2012). The cell-type specific
cortical microcircuit: relating structure and activity in a full-
scale spiking network model. Cerebral Cortex, 24(3), 785–806.
https://doi.org/10.1093/cercor/bhs358.

Pozzorini, C., Mensi, S., Hagens, O., Naud, R., Koch, C., Gerstner,
W. (2015). Automated high-throughput characterization of single
neurons by means of simplified spiking models. PLoS Computa-
tional Biology, 11(6), e1004275. https://doi.org/10.1371/journal.
pcbi.1004275.

Rössert, C., Pozzorini, C., Chindemi, G., Davison, A.P., Eroe, C.,
King, J., Newton, T.H., Nolte, M., Ramaswamy, S., Reimann,
M.W., et al. (2016). Automated point-neuron simplification of
data-driven microcircuit models. arXiv:160400087.

Schenck, W., Adinetz, A., Zaytsev, Y., Pleiter, D., Morrison, A.
(2014). Performance model for large–scale neural simulations
with nest. In Extended poster abstracts of the SC14 conference for
supercomputing.

Simonite, T. (2016). Moore’s law is dead. now what. MIT Technology
review.

Singh, J.P., Hennessy, J.L., Gupta, A. (1993). Scaling parallel pro-
grams for multiprocessors: Methodology and examples. Com-
puter, 26(7), 42–50. https://doi.org/10.1109/MC.1993.274941.

Stengel, H., Treibig, J., Hager, G., Wellein, G. (2015). Quantifying per-
formance bottlenecks of stencil computations using the Execution-
Cache-Memory model. In Proceedings of the 29th ACM interna-
tional conference on supercomputing, ACM, New York, NY, USA,
ICS ’15. https://doi.org/10.1145/2751205.2751240.

Stromatias, E., Galluppi, F., Patterson, C., Furber, S. (2013). Power
analysis of large-scale, real-time neural networks on spinnaker.
In The 2013 international joint conference on neural networks
(IJCNN) (pp. 1–8): IEEE, https://doi.org/10.1109/ijcnn.2013.
6706927.

Thakur, R., Rabenseifner, R., Gropp, W. (2005). Optimization of
collective communication operations in mpich. The International
Journal of High Performance Computing Applications, 19(1),
49–66. https://doi.org/10.1177/1094342005051521.

Treibig, J., & Hager, G. (2010). Introducing a performance
model for bandwidth-limited loop kernels. In Parallel pro-
cessing and applied mathematics (pp. 615–624): Springer,
https://doi.org/10.1007/978-3-642-14390-8 64.

Valiant, L.G. (1990). A bridging model for parallel computation. Com-
munications of the ACM, 33(8), 103–111. https://doi.org/10.1145/
79173.79181.

van Albada, S.J., Rowley, A.G., Senk, J., Hopkins, M., Schmidt,
M., Stokes, A.B., Lester, D.R., Diesmann, M., Furber, S.B.
(2018). Performance comparison of the digital neuromorphic
hardware spinnaker and the neural network simulation soft-
ware nest for a full-scale cortical microcircuit model. Frontiers in
Neuroscience, 12, 291. https://doi.org/10.3389/fnins.2018.00291.

427Neuroinform (2020) 18:407–428

http://arxiv.org/abs/190502241
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1162/0899766053429453
https://doi.org/10.1162/0899766053429453
https://doi.org/10.1007/978-3-030-22744-9_33
https://doi.org/10.3389/fninf.2019.00054
https://doi.org/10.1007/11945918_52
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1162/0899766054026648
https://doi.org/10.1109/hpcc.2012.11
https://doi.org/10.1038/s41467-019-11633-8
https://doi.org/10.1109/jssc.2013.2259038
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1371/journal.pcbi.1004275
https://doi.org/10.1371/journal.pcbi.1004275
http://arxiv.org/abs/160400087
https://doi.org/10.1109/MC.1993.274941
https://doi.org/10.1145/2751205.2751240
https://doi.org/10.1109/ijcnn.2013.6706927
https://doi.org/10.1109/ijcnn.2013.6706927
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1007/978-3-642-14390-8_64
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.3389/fnins.2018.00291


Williams, S., Waterman, A., Patterson, D. (2009). Roofline: an
insightful visual performance model for multicore architec-
tures. Commun ACM, 52(4), 65–76. http://doi.acm.org/10.1145/
1498765.1498785.

Wunderlich, T., Kungl, A.F., Hartel, A., Stradmann, Y., Aamir, S.A.,
Grübl, A., Heimbrecht, A., Schreiber, K., Stöckel, D., Pehle, C.,
et al. (2018). Demonstrating advantages of neuromorphic com-
putation: a pilot study. arXiv:181103618. https://doi.org/10.3389/
fnins.2019.00260.

Yavuz, E., Turner, J., Nowotny, T. (2016). Genn: a code generation
framework for accelerated brain simulations. Scientific Reports, 6,
18854. https://doi.org/10.1038/srep18854.

Zenke, F., & Gerstner, W. (2014). Limits to high-speed simulations
of spiking neural networks using general-purpose computers.
Frontiers in Neuroinformatics, 8, 76. https://doi.org/10.3389/fninf.
2014.00076.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

428 Neuroinform (2020) 18:407–428

http://doi.acm.org/10.1145/1498765.1498785
http://doi.acm.org/10.1145/1498765.1498785
http://arxiv.org/abs/181103618
https://doi.org/10.3389/fnins.2019.00260
https://doi.org/10.3389/fnins.2019.00260
https://doi.org/10.1038/srep18854
https://doi.org/10.3389/fninf.2014.00076
https://doi.org/10.3389/fninf.2014.00076

	Understanding Computational Costs of Cellular-Level Brain Tissue Simulations Through Analytical Performance Models
	Abstract
	Introduction
	Related Work

	Materials and Methods
	In Silico Models and Experiments
	Simulation Algorithm
	Hardware-Agnostic Metrics to Describe in silico Models and Experiments


	Analytical Performance Modeling of Brain Tissue Simulations
	Single-Node Performance Model
	Spike Delivery Kernel
	Spike Exchange in Brain Tissue Simulations
	The LogGP Model for Interprocess Communication


	Hardware Models

	Results
	Serial Performance Profile
	Memory Bandwidth Saturation in Shared-Memory Execution
	Memory Bandwidth Limits Shared-Memory Parallelism
	State-of-the-Art HPC Memory Chips Can Sustain Fast Simulations of the Brunel and Simplified Models at Full Saturation
	Ordering of Loops to Avoid Memory Bandwidth Saturation


	High Speed Single-Node Simulations
	Memory Bandwidth Dominates the Shared-Memory Strong Scaling of Brunel and Simplified Models, while a Mix of Hardware Features Influences the Performance of the Reconstructed Model

	Distributed Simulations
	Performance Predictions of Distributed Brain Tissue Simulations
	Network Latency and Memory Bandwidth are the Main Bottlenecks in Strong Scaling


	Strawman Architectures and Hardware Design Decisions
	Effect of Model Parameters
	Synaptic Plasticity


	Discussion
	General Purpose Computing has Sustained a Diverse Performance Landscape up to Now
	Memory Bandwidth and Network Latency Severely Limit Maximum Filling and Real Time Strong Scaling
	Model-Specific Features have a Significant Impact on Shared-Memory Performance
	Static and Dynamic Model Parameters Affect Performance in Significant but Subtle Ways
	Limits and Future Improvements
	Performance Modeling is Required to Enable Next-Generation High Performance Brain Tissue Simulations



	Conclusions
	Resource Sharing Statement
	References


