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Abstract

Infectious disease forecasting is an emerging field and has the potential to improve public

health through anticipatory resource allocation, situational awareness, and mitigation plan-

ning. By way of exploring and operationalizing disease forecasting, the U.S. Centers for Dis-

ease Control and Prevention (CDC) has hosted FluSight since the 2013/14 flu season, an

annual flu forecasting challenge. Since FluSight’s onset, forecasters have developed and

improved forecasting models in an effort to provide more timely, reliable, and accurate infor-

mation about the likely progression of the outbreak. While improving the predictive perfor-

mance of these forecasting models is often the primary objective, it is also important for a

forecasting model to run quickly, facilitating further model development and improvement

while providing flexibility when deployed in a real-time setting. In this vein I introduce Inferno,

a fast and accurate flu forecasting model inspired by Dante, the top performing model in the

2018/19 FluSight challenge. When pseudoprospectively compared to all models that partici-

pated in FluSight 2018/19, Inferno would have placed 2nd in the national and regional chal-

lenge as well as the state challenge, behind only Dante. Inferno, however, runs in minutes

and is trivially parallelizable, while Dante takes hours to run, representing a significant oper-

ational improvement with minimal impact to performance. Forecasting challenges like Flu-

Sight should continue to monitor and evaluate how they can be modified and expanded to

incentivize the development of forecasting models that benefit public health.

Author summary

Infectious disease forecasting, if accurate, timely, and reliable, can assist decision makers

with resource allocation planning in an attempt to curb the negative impacts of an out-

break. Forecasting challenges, like the U.S. Centers for Disease Control and Prevention’s

flu forecasting challenge, FluSight, provide a space for teams to develop and operationalize

real-time forecasting models that benefit public health, with weekly forecasts made at the

state-level, Health and Human Services region-level, and the United States. The ultimate

goal of these models is to produce accurate forecasts within the constraints of the forecast-

ing challenge. Having a forecasting model that runs quickly is also important for future

scalability, model development, and operational flexibility. In this paper, I present a fast
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and accurate flu forecasting model, Inferno. Through retrospective comparisons with Flu-

Sight-participating models, Inferno was shown to be a leading forecasting model in the

field. Inferno, however, runs in minutes not hours, as other leading forecasting models

do. This reduction in runtime constitutes an advancement in flu forecasting, positioning

Inferno to scale to more granular geographic units, like counties or health care providers.

1 Introduction

Infectious disease outbreaks can be disruptive, deadly, and complex. By the end of July 2021,

COVID-19 had killed more than 4 million people globally and over 600 thousand people in the

United States (U.S.) [1]. Each year in the U.S., seasonal influenza kills tens of thousands of peo-

ple and hospitalizes hundreds of thousands [2]. Life saving resources, such as respirators, antivi-

rals, vaccines, and medical professionals must be allocated to ensure locations are prepared and

ready for the impending outbreak. If infectious disease forecasts can be done accurately and reli-

ably with adequate lead times, they could be used to help inform resource allocation planning.

Infectious disease forecasting is still relatively young, but can no longer claim novelty. There

has been a flurry of infectious disease forecasting challenges/collaborations in the last ten years,

including the Defense Advanced Research Projects Agency’s 2014/15 Chikungunya challenge

[3], a collection of challenges hosted by the U.S. Centers for Disease Control and Prevention

(CDC) related to vector-borne diseases such as dengue (2015) [4] and West Nile virus (2020)

[5], a challenge predicting the presence of mosquito vectors (2019) [6], the U.S. CDC COVID-

19 forecasting collaboration (2020) [7], and the U.S. CDC’s flagship influenza forecasting chal-

lenge, FluSight, held annually since the 2013/14 flu season [8–10]. The FluSight challenge alone

has resulted in a wave of infectious disease forecasting model development, including mecha-

nistic models [11–13], statistical/machine learning models [14–18], fusions of mechanistic and

statistical models [19–21], ensemble models [22], and agent-based models [23].

One necessary ingredient of a forecasting challenge is measured data. As a measure of flu

activity, FluSight uses data on influenza-like illness (ILI). ILI is defined as a temperature

greater than or equal to 100 degrees Fahrenheit, a cough and/or sore throat, and no other

known cause except influenza. Approximately 3,000 outpatient healthcare providers report

two pieces of information to the CDC’s U.S. Outpatient Influenza-like Illness Surveillance Net-

work (ILINet) each week: the number of patients seen for any reason and the number of those

patients that have an influenza-like illness. These data are then aggregated to the levels of

states, Health and Human Services (HHS) regions, and the United States. ILI for a region and

week is computed as the number of patients with ILI divided by the number of patients seen

for any reason, expressed as a percentage (thus, ILI is between 0% and 100%). In addition to

ILI, weighted ILI (wILI) is also computed for HHS regions and the United States. Weighted

ILI is computed as a U.S. Census population-weighted average of state ILI estimates and is also

between 0% and 100%.

The organizing body of a forecasting challenge (in the case of FluSight, the U.S. CDC) pro-

vides immense operational and research value by determining forecasting targets of public

health relevance on behalf of and in collaboration with local, state, and national stakeholders

(often including the organizing body’s own interests), identifying relevant data sources and

making them publicly available to forecasters, and defining the forecast evaluation criteria—a

more challenging task than it may first appear (see [24] and [25]).

For instance, for states, HHS regions, and the United States, the FluSight challenge asks fore-

casters to predict seven targets on a weekly basis throughout the flu season: 1 through 4-week-
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ahead forecasts of ILI for states or wILI for HHS regions and the U.S. (collectively referred to as

(w)ILI), the week of flu season onset, the week the flu season will peak, and the peak value of

(w)ILI for the flu season. FluSight uses a modified log scoring rule to evaluate forecasts [26].

The modified log scoring rule evaluates probabilistic forecasts, requiring forecasters to not only

provide a prediction of what they think will happen in the future but also quantify how sure

they are of that. The choice made by the U.S. CDC to use a modified log scoring rule makes

clear their position that uncertainty quantification is of value to public health. Given a set of

forecasting targets and an evaluation metric, forecasters participating in FluSight develop mod-

els capable of forecasting those targets within the real-time operational constraints of the chal-

lenge with the goal of maximizing their model’s forecast evaluation score.

Forecasting challenges are powerful incentivization engines. How they are structured

encourage/require models to have certain properties that align with public health needs. For

instance, if public health needs forecasting models capable of short-term and long-term fore-

casting, selecting short-term and long-term/seasonal targets incentives the development of

models that can do both of those things well. If public health needs probabilistic forecasting

models that quantify their uncertainty, selecting a scoring rule that rewards appropriate uncer-

tainties and penalizes overly confident/conservative forecasts incentivizes probabilistic model

development. If public health needs forecasting models to support rapid response decision

making, increasing the forecast submission cadence (e.g., from weekly to daily), reducing the

amount of time between the release of new data and the forecast submission deadline, and/or

augmenting the scope of forecasting geographies (e.g., from HHS regions to states to counties)

incentivizes the development of forecasting models that run quickly.

In this paper, I focus on improving the runtime of flu forecasting models while maintaining

high prediction standards with the presentation of Inferno, a fast and accurate flu forecasting

model. Inferno is a parallelizable, Bayesian forecasting model inspired by Dante, the top per-

forming model in FluSight 2018/19 [14]. The achieved goal of Inferno is to maintain the high

predictive performance of Dante but substantially decrease the runtime. As will be discussed

later, in a pseudoprospective comparison, Inferno would have placed 2nd only to Dante in the

2018/19 FluSight challenge but runs in minutes rather than hours, constituting a significant

speed-up in operational performance.

In the remainder of this paper, I describe the details to Inferno (Section 2) and present

Inferno’s forecasting performance as compared to all participating models in FluSight 2018/19

(Section 3).

2 Methods

2.1 Dante background

Dante is a multiscale, probabilistic, influenza forecasting model. It requires historical data of

past flu seasons to effectively learn patterns and leverage those patterns for forecasting. Dante

has two sub-models: a state forecasting model and an aggregation model which combines state

forecasts to produce forecasts for HHS regions and the United States.

Dante’s state forecasting model is

yrstjyrst; lr � Betaðlryrst; lrð1 � yrstÞÞ ðEq 1 of ½14�Þ

yrst ¼ logit� 1
ðprstÞ ðEq 4 of ½14�Þ

prst ¼ m
all
t þ m

state
rt þ m

season
st þ minteraction

rst ðEq 5 of ½14�Þ;

where yrst is ILI/100 for week t for state r during season s and θrst, the conditional expectation

of yrst given θrst and λr, is modeled as a function of four components: an overall trend
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component (mall
t ), a state-specific deviation component (mstate

rt ), a season-specific deviation com-

ponent (mseason
st ), and a state and season-specific deviation component (minteraction

rst ). These four

components are each modeled as random or reverse-random walks—flexible time series mod-

els that capture temporal correlation (for more details and non-infectious disease applications

of reverse-random walks, see [27] and [28]). By modeling all states and past flu seasons jointly,

Dante is able to borrow information across seasons and space. By modeling the HHS regional

and United States forecasts as U.S. Census population-weighted averages of state forecasts,

Dante ensures self-consistency across geographic scales. For more details on Dante, see [14].

Dante is a fully Bayesian model, capturing uncertainty in all model parameters, latent states,

and forecasts through its posterior (predictive) distribution. The fully Bayesian formulation

and self-consistency of Dante comes at a computational price, however. Dante represents a

large model that will grow each year as more historical data are added and is not well-posi-

tioned to scale with possible future changes/expansions to FluSight (e.g., county-level forecast-

ing). Nothing is precomputed and due to its interconnected model structure, it is not obvious

how to break up Dante to exploit parallelization.

Inferno was developed to addresses these computational shortcomings. Inferno, while

motivated by Dante, deviates from Dante in two main ways. First, Inferno is fit separately to

each geographical unit. This allows Inferno to leverage parallel computing architectures but at

the expense of modeling correlations across states. Second, Inferno precomputes many of its

parameters via a heuristic estimation procedure, reducing the number of parameters and latent

model components that need to be sampled via Markov chain Monte Carlo (MCMC). These

two choices result in significant computational speed ups with only moderate loss in forecast

accuracy. In Section 2.2, I describe the Inferno forecasting model.

2.2 Inferno

Inferno is fit to each geographical unit separately and can be viewed as a simplified version of

Dante, where Dante’s state-specific components (mstate
rt and minteraction

rst ) are removed, certain

parameters are kept fixed at predetermined values, and the random walk model on mseason
st is

replaced with a multivariate normal model. Specifically, let ys,t 2 (0, 1) be ILI/100 for states or

wILI/100 for HHS regions and the United States for season s = 1, 2, . . ., S and week t = 1, 2,

. . ., T = 35, where t = 1 corresponds to Morbidity and Mortality Weekly Report (MMWR)

week 40, roughly the beginning of October, and T = 35 roughly corresponds to the end of

May. Inferno’s generative model is defined as follows, with all parameters which are not

assigned a prior distribution set to fixed values (e.g., γt, s2
S
; see below):

ys;tjys;t; a � Betaðays;t; að1 � ys;tÞÞ ð1Þ

ys;t ¼ logit� 1
ðgt þ ds;tÞ ð2Þ

δsjms;Σ � MVNðms1;ΣÞ ð3Þ

msjs
2

m
� Nð0; s2

m
Þ ð4Þ

Σt;t ¼ s
2

S
ð5Þ

Σt;t0 6¼t ¼ �s
2

S
expð� lðt � t0Þ2Þ; ð6Þ

where
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• ys,t is the noisy, observable measurement of (w)ILI/100 on week t of season s.

• θs,t models the true but unobservable value of (w)ILI/100 on week t of season s.

• The scalar hyperparameter α> 0 helps characterize the variance of ys,t|θs,t, α.

• γt models the typical (w)ILI/100 value on week t on the logit scale.

• δs = (δs,1, δs,2, . . ., δs,T)0 is a T × 1 vector, where δs,t models the deviation from the typical (w)

ILI/100 value γt on the logit scale on week t of season s.

• δs is modeled with a multivariate normal (MVN) distribution with mean μs1 (a scalar μs
times a T × 1 vector of ones) and covariance matrix S.

• μs is the average deviation of δs from γ = (γ1, γ2, . . ., γT)0, where s2
m
> 0 characterizes the sea-

son-to-season variability in μs.

• Σt;t ¼ s
2
S

is the variance of δs,t.

• Σt;t0 6¼t ¼ �s
2
S
expð� lðt � t0Þ2Þ is the covariance between δs,t and δs,t0. The covariance between

δs,t and δs,t0 gets closer to zero as |t − t0| gets larger.

• The correlation between δs,t and δs,t+1 is ϕexp(-λ). The hyperparameters λ> 0 and ϕ 2 [0, 1]

control the correlation structure, where the correlation between δs,t and δs,t+1 tends towards

ϕ as λ approaches 0 and ϕ is the upper bound on the correlation (i.e., ϕexp(-λ) < ϕ for all

λ> 0).

In this paper, bold quantities represent vectors or matrices, while non-bold quantities rep-

resent scalars. Because Inferno is applied to each geographical unit r separately, the subscript r
is suppressed throughout. The Beta distribution of Eq 1 requires ys,t 2 (0, 1). There is no guar-

antee (w)ILI/100 is not equal to 0 or 1. Thus, all ys,t below a low threshold l are set equal to l
and all ys,t above 1 − l are set to 1 − l. For this work, l = 0.0005 and ys,t is thresholded by l for all

observations before the modeling begins.

The parameters kept fixed in the above generative model (α, γ = (γ1, γ2, . . ., γT)0, s2
m
, s2

S
, λ,

and ϕ) are estimated from past season’s (w)ILI data with a heuristic estimation procedure (at

least two past seasons are required to heuristically estimate all Inferno parameters). As will be

shown, this heuristic estimation procedure works well in practice to produce forecasts—Infer-

no’s primary goal—as Inferno’s forecast performance is competitive with Dante. While param-

eter estimates from the heuristic estimation procedure are presented, inference is not the focus

of this work and using the heuristic parameter estimation procedure for inference is not

advised. Parameter estimates are presented to support the intuition motivating the modeling

choices and provide relative comparisons of parameter estimates across states. The S1 Appen-

dix provides a simulation study and discussion on the inferential limits of the heuristic param-

eter estimation procedure. Alternative heuristic estimation choices could be made and will be

pointed out throughout the paper.

In this paper, s� will denote the flu season being forecasted. The past flu seasons (flu seasons

occurring before season s�) used to estimate the parameters will be denoted with a subscript s.
In practice and in this paper, when forecasting season s�, parameters are estimated from sea-

sons s� − 1 and earlier. In what follows, I outline a six step procedure to estimate the unknown

parameters α, γ, s2
m
, s2

S
, λ, and ϕ and describe how to sample and forecast from Inferno’s poste-

rior predictive distribution via MCMC.

2.2.1 Step 1: Estimate θs,t. The purpose of Step 1 is to estimate θs,t. Estimating θs,t is not of

value by itself, but is important as it facilitates the estimation of Inferno’s hyperparameters.
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The estimate of θs,t, namely ŷs;t , is itself computed as a combination of two other quantities: b̂s;t

and t̂t. All computed quantities in Step 1 are based on training seasons only.

For a given geographic unit (e.g., state, HHS region, or the U.S.) and forecast season s�, let

ys,t be (w)ILI/100 for training season s 2 1, 2, . . ., S = s� − 1 and week of season t. First, com-

pute b̂s;t as a 3-week moving average:

b̂s;t¼1 ¼
1

2
ðys;1 þ ys;2Þ ð7Þ

b̂s;1<t<T ¼
1

3
ðys;t� 1 þ ys;t þ ys;tþ1Þ ð8Þ

b̂s;t¼T ¼
1

2
ðys;T� 1 þ ys;TÞ: ð9Þ

Fig 1 shows the moving average fit to ILI/100 in Illinois. The purpose of b̂s;t is to capture the

time series trend in season s with a smooth, simple function that can be used to separate trend

from noise in ys,t. By construction, the moving average captures the shape of the ILI/100 curve.

Alternative smoothing functions, like smoothing splines [29], generalized ridge regression

[30], or, with additional model assumptions, Kalman filtering [31] could also be used. The

degree of smoothness in these alternative methods is controlled by a tuning parameter(s) and

can be learned through cross-validation. I found a 3-week moving average worked well and,

due to its simplicity, was appealing. The moving average, however, can miss sharp changes in

ys,t caused by differences in reporting practices over holidays. For instance, we see that the

moving average most often underestimates ys,t the week of Christmas (t = 13, or MMWR

week 52).

Fig 1. ys,t (grey points) and b̂s;t (black line) for the historical seasons for Illinois. ys,t for the week of Thanksgiving (t = 8) and Christmas (t = 13) are

highlighted in brown and green, respectively. b̂s;t typically underestimates the sharp uptick in ys,t observed on Christmas and to a lesser extent

Thanksgiving, which is likely a result of changes in reporting and care-seeking behavior over the holidays.

https://doi.org/10.1371/journal.pcbi.1008651.g001

PLOS COMPUTATIONAL BIOLOGY Inferno: Fast and accurate flu forecasting

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008651 January 31, 2022 6 / 22

https://doi.org/10.1371/journal.pcbi.1008651.g001
https://doi.org/10.1371/journal.pcbi.1008651


To capture the systematic sharp changes in ys,t that are common across training seasons,

Inferno estimates the quantity τt:

t̂t ¼
1

S

XS

s¼1

ðys;t � b̂s;tÞ: ð10Þ

Fig 2 plots t̂t for all states. t̂t captures the holiday effects in ys,t, with a small but consistent posi-

tive t̂t on the week of Thanksgiving (t = 8, or MMWR week 47) and a larger positive effect the

week of Christmas.

Finally, the quantity ŷs;t captures both the trend in ys,t (b̂s;t) and the holiday effects (t̂t):

ŷs;t ¼

l if b̂s;t þ t̂t < l

1 � l if b̂s;t þ t̂t > 1 � l

b̂s;t þ t̂t otherwise:

8
>>>><

>>>>:

ð11Þ

where, again, l is a small number (in this paper, l = 0.0005) to ensure 0 < ŷs;t < 1.

Fig 3 shows how ŷs;t tracks the profile of ys,t by season, like b̂s;t , but better tracks ys,t on the

holidays, especially Christmas.

2.2.2 Step 2: Estimate α. Inferno computes ŷs;t in order to facilitate the estimation of the

other unknown quantities of Inferno’s generative model. The expectation and the variance of

Inferno’s data model (Eq 1) are,

Eðys;tjys;t; aÞ ¼ ys;t ð12Þ

Varðys;tjys;t; aÞ ¼
ys;tð1 � ys;tÞ

1þ a
: ð13Þ

The parameter α controls the variance of the data model, capturing the week-to-week variabil-

ity in the ILI data. The larger α is, the smaller the variance, reflecting less week-to-week noise

in the ILI data. The smaller α is, the larger the variance, reflecting more week-to-week noise in

the ILI data. α> 0 is estimated by maximizing the likelihood of Inferno’s data model (or,

Fig 2. Each boxplot summarizes the quantity t̂ t across all states for each week t. t̂ t the week of Thanksgiving (brown) and Christmas (green) are

systematically positive, likely as a result of systematic changes to reporting and care-seeking behavior over the holidays.

https://doi.org/10.1371/journal.pcbi.1008651.g002
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equivalently, minimizing the negative log likelihood):

â ¼ argmin
a

XS

s¼1

XT

t¼1

� logðBetaðys;tjŷs;t; aÞÞ; ð14Þ

where log(x) is the natural log of x,

Betaðys;tjŷs;t; aÞ ¼
ya� 1
s;t ð1 � ys;tÞ

b� 1

Bða; bÞ
ð15Þ

Bða; bÞ ¼
GðaÞGðbÞ
Gðaþ bÞ

ð16Þ

a ¼ aŷs;t ð17Þ

b ¼ að1 � ŷs;tÞ; ð18Þ

and Γ() is the gamma function.

Fig 4 shows â for all states, territories, and cities (collectively referred to as states). States

like the U.S. Virgin Islands, North Dakota, and Puerto Rico have the smallest âs, reflecting

they have the largest week-to-week noise in their ILI data, while states like California, Illinois,

and New York City have the largest âs, reflecting they have the smallest week-to-week noise in

their ILI data.

Fig 5 shows summaries of the data model Betaðâŷs;t; âð1 � ŷs;tÞÞ for North Dakota, Nevada,

and Illinois, illustrating the different levels of week-to-week noise in ILI data across states.

2.2.3 Step 3: Estimate γt. Seasonal flu has a typical shape to it in the United States. ILI

starts at low levels early in the season, rises to a peak between December and March, and

Fig 3. ys,t (grey points) and ŷs;t (black line) for the historical seasons for Illinois. ys,t for the week of Thanksgiving (t = 8) and Christmas (t = 13) are

highlighted in brown and green, respectively. ŷs;t better matches ys,t data on the holidays than b̂s;t (Fig 1) by accounting for the systematic reporting and

care-seeking changes over the holidays, as captured by t̂ t .

https://doi.org/10.1371/journal.pcbi.1008651.g003
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reverts to low levels by the end of May. The role of γ is to capture this typical seasonal flu pro-

file. Inferno computes γt as follows:

ĝt ¼
1

S

XS

s¼1

logitðŷs;tÞ; ð19Þ

where logit(p) = log(p/(1 − p)).

Fig 6 shows γ̂ for North Dakota, Nevada, and Illinois. We see for all states, γ̂ captures the

typical profile of seasonal flu on the logit scale, with low levels at the beginning of the flu sea-

son, ramping up to a peak in the middle, then reverting back to low levels by the end.

2.2.4 Step 4: Estimate s2
m
. Eq 2 is the mean of Inferno’s data model. While γ captures the

typical profile of seasonal flu, δs captures season-specific deviations from γ. Inferno models δs

Fig 4. â for all states based on training data from 2010/2011 through 2017/18. â captures the week-to-week noise in ILI data that systematically

varies from state-to-state, where North Dakota has more week-to-week noise than Illinois.

https://doi.org/10.1371/journal.pcbi.1008651.g004

Fig 5. ys,t (grey points), ŷs;t (black line) and the 2.5 and 97.5 percentiles for the data model Betaðâŷs;t ; âð1 � ŷs;tÞÞ (ribbon) for North Dakota,

Nevada, and Illinois in 2016/17. â captures the week-to-week noise in ILI data that systematically varies from state-to-state, where North Dakota has

more week-to-week noise than Illinois.

https://doi.org/10.1371/journal.pcbi.1008651.g005
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with a multivariate normal distribution (MVN):

MVNðδsjms;ΣÞ ¼ ð2pÞ
� T=2
jΣj� 1=2exp �

1

2
ðδs � ms1Þ

0Σ� 1ðδs � ms1Þ
� �

; ð20Þ

where 1 is a T × 1 vector of ones, S is a T × T positive semi-definite matrix, |S| is the determi-

nant of S, and S−1 is the inverse of S. The model for the mean of the multivariate normal dis-

tribution, μs, is

ms � Nð0; s2

m
Þ: ð21Þ

Step 4 describes how to estimate s2
m
.

First compute the following quantities:

d̂s;t ¼ logitðŷs;tÞ � ĝt ð22Þ

m̂s ¼
1

T

XT

t¼1

d̂s;t: ð23Þ

By construction,
PS

s¼1
d̂s;t ¼ 0 for each t. Fig 7 shows δ̂ s and m̂s for North Dakota, Nevada and

Illinois. The quantity m̂s captures how far, on average, δ̂ s deviates from 0.

The quantity ŝ2
m

is computed as the unbiased sample variance:

ŝ2

m
¼

1

S � 1

XS

s¼1

m̂s �
1

S

XS

s0¼1

m̂s0

 !2

: ð24Þ

Fig 8 shows ŝ2
m

for all states. Some states, like North Dakota, have appreciable average season-

to-season variation while other states, like Illinois, have smaller average season-to-season devi-

ations from their typical seasonal flu profiles.

2.2.5 Step 5: Estimate s2
S

, λ, ϕ. Step 5 estimates the covariance parameters in S. The

covariance matrix captures different characteristics of δs. Recall Eqs 5 and 6:

Σt;t ¼ s
2
Σ

St;t0 6¼t ¼ �s
2
S
expð� lðt � t0Þ2Þ:

Fig 6. ĝ t (colored line) and logitðŷs;tÞ (grey lines) for North Dakota, Nevada, and Illinois. ĝ t captures the typical profile of seasonal flu specific to

each state on the logit scale.

https://doi.org/10.1371/journal.pcbi.1008651.g006
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Recall that ϕ 2 [0, 1] and note that s2
S

can be written as �s2
S
þ ð1 � �Þs2

S
. By setting s0

S
2 ¼

�s2
S

and s0
�

2
¼ ð1 � �Þs2

S
, Eqs 5 and 6 can be rewritten as:

Σt;t ¼ s
0

S

2
þ s0

�

2
ð25Þ

Σt;t0 6¼t ¼ s
0

S

2expð� lðt � t0Þ2Þ; ð26Þ

which is the standard parameterization of the squared exponential covariance function, where

• 1/λ is the correlation length scale parameter that determines the length of the wiggles of δs
(the larger 1/λ is, the longer the wiggles)

• s0
S

2
is the output variance that determines the amplitude of δs (the larger s0

S

2
is, the larger the

amplitude)

Fig 7. δ̂ s (colored lines) and μ̂ s (grey tick marks) for North Dakota, Nevada, and Illinois. North Dakota exhibits more season-to-season variability in

m̂ s than Illinois, as can be seen in the spread of m̂ s.

https://doi.org/10.1371/journal.pcbi.1008651.g007

Fig 8. ŝ2
m

for all states. Considerable variation in ŝ2
m

across states is observed.

https://doi.org/10.1371/journal.pcbi.1008651.g008
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• s0
�

2
is an overdispersion parameter accounting for extra independent and identically distrib-

uted Gaussian noise added to the output variance (the smaller
s0�

2

s0
S

2 ¼
ð1� �Þs2

S

�s2
S

¼ 1� �

�
is, the

smoother δs is)

The marginal variance of δs is s2
S
¼ s0

S

2
þ s0

�

2
, the sum of the output variance and the

overdispersion parameter. While the standard squared exponential parameterization of

Eqs 25 and 26 are arguably more intuitive than the parameterization of Eqs 5 and 6, I

found parameterizing s0
S

2
and s0

�

2
as �s2

S
and ð1 � �Þs2

S
, respectively, offered more numeri-

cal stability to the optimization described below as a result of ϕ being bounded between 0

and 1.

The left column of Fig 9 plots δ̂ s � m̂s1 for North Dakota, Nevada, and Illinois. North

Dakota exhibits more variability than Illinois as can be seen with its wider range of values.

Fig 9. (Left column) The quantities δ̂ s � m̂ s1 estimated from training data. Each line corresponds to a season s. The ribbon is the 95% confidence band

from the fitted multivariate normal model. (Right column) The lines are realizations drawn from MVNð0; Σ̂Þ. The ribbon is the same 95% confidence

band as in the left column for ease of comparison. Good visual agreement is seen between the simulated δs − μs1 and δ̂ s � m̂s1 calculated from training

data, suggesting the multivariate normal distribution is able to capture heterogenous discrepancy characteristics across states.

https://doi.org/10.1371/journal.pcbi.1008651.g009
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Inferno estimates s2
S
, a measure of how far δs − μs1 typically deviates from 0, as

ŝ2

S
¼

1

ST � 1

XS

s¼1

XT

t¼1

ðd̂s;t � m̂sÞ
2
: ð27Þ

The remaining parameters of S are ϕ and λ. They collectively capture two different charac-

teristics of δs. The parameter ϕ 2 [0, 1] captures the roughness of δs. The larger (1 − ϕ)/ϕ is,

the rougher δs is. For instance, δ̂ s for North Dakota in Fig 7 are much rougher than δ̂ s for Illi-

nois. The second characteristic of δs captured by ϕ and λ is the correlation between entries of

δs. The correlation between δs,t and δs,t+1 is

Corðds;t; ds;tþ1Þ ¼
Covðds;t; ds;tþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðds;tÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðds;tþ1Þ

q ¼
�s2

S
expð� lðt � ðt þ 1ÞÞ

2
Þ

s2
S

¼ �expð� lÞ: ð28Þ

Inferno estimates ϕ and λ by minimizing the negative log likelihood:

l̂; �̂ ¼ argmin
l;�

XS

s¼1

� logðMVNðδ̂ sjm̂s; ŝ
2

S
; l; �ÞÞ: ð29Þ

Fig 10 plots functions of covariance parameter estimates for all states. Relative to Illinois,

North Dakota has a larger amplitude (larger �̂ŝ2
S
), is rougher (larger ð1 � �̂Þ=�̂), has a similar

correlation length (similar 1=l̂Þ and has a lower 1-week correlation (�̂expð� l̂Þ closer to 0).

The right column of Fig 9 shows realizations drawn from MVNð0; Σ̂Þ. The fitted multivari-

ate normal distribution appears to do a good job capturing the different characteristics of the

Fig 10. Functions of covariance parameter estimates for all states are presented for North Dakota, Nevada, and Illinois are highlighted in red,

orange, and yellow, respectively. North Dakota has larger amplitude (larger �̂ŝ2
S

), is rougher (larger ð1 � �̂Þ=�̂), has a similar correlation length scale

parameter estimate (similar 1=l̂) and lower 1-week correlation (�̂expð � l̂Þ closer to 0) than Illinois.

https://doi.org/10.1371/journal.pcbi.1008651.g010
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empirical quantities δ̂ s � m̂s1, suggesting the multivariate normal distribution is a defensible

generative model for δs.
2.2.6 Step 6: Sample forecasts from Inferno. The sixth and final step of Inferno is to

replace parameters with their estimates and sample from the posterior predictive distribution.

Recall s� is the forecast season and all parameters were estimated with data from seasons s� − 1

and earlier. Then, the generative model with parameters replaced by their estimates is

ys� ;tjys� ;t; â � Betaðâys� ;t; âð1 � ys� ;tÞÞ ð30Þ

ys� ;t ¼ logit� 1
ðĝt þ ds� ;tÞ ð31Þ

δs� jms� ; Σ̂ � MVNðms�1; Σ̂Þ ð32Þ

ms� jŝ
2

m
� Nð0; ŝ2

m
Þ ð33Þ

Σ̂t;t ¼ ŝ
2

S
ð34Þ

Σ̂t;t0 6¼t ¼ �̂ŝ
2

S
expð� l̂ðt � t0Þ2Þ: ð35Þ

Given (w)ILI/100 observations for the first t weeks of flu season s� (i.e., given ys�,1:t), Inferno

forecasts the remainder of the flu season (weeks (t + 1) through T) by sampling from the poste-

rior predictive distribution:

½~ys� ;ðtþ1Þ:T jys� ;1:t;ω� ¼
Z

½~ys� ;ðtþ1Þ:T ;ψjys� ;1:t;ω�dψ ¼
Z

½~y s� ;ðtþ1Þ:T jψ;ω�½ψjys� ;1:t;ω�dψ; ð36Þ

where [X|Y] is the conditional distribution of X given Y and ~ys� ;ðtþ1Þ:T is assumed to be indepen-

dent of ys�,1:t, given ψ and ω, where ψ = {θs� ,1:T, δs�,1:T, μs�} and ω = {â, ĝ, ŝ2
m
, ŝ2

S
, l̂, �̂}. The pos-

terior predictive distribution of Eq 36 is not known in closed form. Markov chain Monte

Carlo (MCMC) sampling is used to draw from the posterior predictive distribution. The prob-

abilistic programming language JAGS (Just Another Gibbs Sampler) [32] is used to execute

the MCMC sampling. JAGS is called with functions from the rjags package [33] in the pro-

gramming language R [34]. The results are J draws from the posterior predictive distribution

of Eq 36. For this paper, forecasts are based on J = 25, 000 samples, discarding the first 12,500

samples as burn-in and thinning the remaining 12,500 samples by two, resulting in forecasts

based on 6,250 MCMC samples. A Markov chain should draw enough samples to achieve ade-

quate estimation of the distribution(s) of interest. In general, when estimating quantiles of dis-

tributions, more samples are needed as the quantile of interest moves out into the tails of the

distribution (i.e., it takes more samples to estimate the 99th percentile of a distribution well

than it does to estimate the median of a distribution well). With more samples, however,

comes increased runtime. I selected 25,000 samples as a practical balance between runtime

and tail estimation quality. In practice, the amount of time available to run the MCMC will

impact the number of samples a user selects. The JAGS code that implements Inferno can be

found in the S1 Appendix.

Fig 11 shows the forecasts for North Dakota, Nevada, and Illinois throughout the 2018/19

flu season. The presented summaries of the forecasts are the posterior predictive means and

the 95% posterior prediction intervals.
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3 Results

To evaluate Inferno’s forecasting performance, Inferno is pseudoprospectively compared to all

models that participated in the U.S. CDC’s 2018/19 National and Regional FluSight challenge

as well as the State challenge. Forecasting follows the guidelines outlined by the CDC FluSight

challenge; see [26] for details. The forecasts and the evaluation procedure is briefly described

below.

Forecasts are made for four short-term targets (1, 2, 3, and 4-week-ahead) and three sea-

sonal targets (the peak week, the peak percentage, and the onset week—onset is not forecasted

for the State challenge). All forecast targets are binned and a probability is assigned to each bin

such that the sum of all probabilities over all bins for a target equals 1. The bins for the onset

Fig 11. Inferno forecasts for the 2018/19 flu season for North Dakota, Nevada, and Illinois (columns) made t = 5, 10, 15, 20, 25, 30 weeks into the

flu season based on summaries of draws from the posterior predictive distribution ½~ys� ;1:T jys� ;1:t � of Eq 36 (rows). Posterior mean (black line) and

95% prediction intervals (ribbons) are displayed, along with ys� ,1:t (grey points) and ys� ,(t+1):T, the future (w)ILI/100 values being forecasted (black

points). The ribbon for times 1 to t is a summary of the fit to data ys� ,1:t, while the ribbon for times t + 1 to T is a summary of the forecast for season s�.

https://doi.org/10.1371/journal.pcbi.1008651.g011
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week and the peak week are bins of one week; the bins for the short-term targets and the peak

percentage are tenths of a percent (e.g., a bin from 2.0% (included) to 2.1% (excluded)) from 0

to 13%, with one large bin from 13% to 100%.

Define bin b as the bin containing the correct target, B as the set of all bins that will be

scored (where b 2 B), and pB 2 [0, 1] as the sum of the probabilities assigned to all the bins in

B. The modified log score used by FluSight is computed as max(−10, log(pB)). When B = b, the

modified log score is called the single-bin log score and is the scoring criteria used starting with

the 2019/20 FluSight challenge. When b 2 B but b 6¼ B, the log score is called the multi-bin log
score and was the scoring criteria used in the 2018/19 FluSight challenge. The multi-bin log

score essentially scores the forecast probability assigned to not only the correct target bin, but

also all target bins that are “close” to the correct target bin. The change from multi-bin log

score to single-bin log score is motivated by the topic of proper/improper scoring rules [35].

For a recent, detailed discussion on this, the interested reader is directed to [24] and [25].

Finally, multi-bin skill and single-bin skill are derived by exponentiating the multi-bin and sin-

gle-bin log scores, respectively. Single- and multi-bin skill are 2 (0, 1], with larger skills being

better.

The (w)ILI data are subject to weekly revisions. As a result, it is important to use the (w)ILI

estimates that were available at the time to make faithful comparisons to models that partici-

pated in the real-time FluSight challenges. Data available on historical dates are made available

by the Carnegie Mellon University Delphi group’s API [36] and were used to produce the

results of the pseudoprospective comparison to real-time FluSight participating models.

Fig 12 and Table 1 show the multi- and single-bin skills for Inferno and all models that par-

ticipated in the 2018/19 FluSight challenges. Inferno would have placed 2nd only to Dante in

the 2018/19 FluSight National and Regional as well as State challenges. FluSight 2018/19 used

Fig 12. Results for the 2018/19 FluSight National and Regional challenge (top row) and State challenge (bottom row) for Inferno (red point), Dante

(blue point) and all other models that participated in the 2018/19 FluSight challenges (grey points). The 2018/19 FluSight challenge evaluated models

using multi-bin skill (x-axis), but starting with the FluSight 2019/20 challenge, will be using single-bin skill (y-axis). Skill scores are presented overall

(left column), but also by seasonal targets (middle column) and short-term targets (right column). Inferno is a leading forecasting model overall,

excelling in short-term forecasting, with good but not leading seasonal forecasting performance.

https://doi.org/10.1371/journal.pcbi.1008651.g012
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multi-bin skill as the forecast evaluation metric. Starting with FluSight 2019/20, single-bin skill

will be used. While single-bin and multi-bin skills are correlated, as can be seen in Fig 12, the

relationship is not perfect. Models can rise or fall in the relative ranking depending on which

evaluation metric is used for scoring, highlighting that the evaluation metric the forecasting

challenge organizing body selects is of consequence. Inferno and Dante both perform better

under the multi-bin skill evaluation than single-bin skill, but are both top 4 models by either

evaluation metric. Most importantly, the drop in predictive performance from Dante to

Inferno is small.

The small drop in performance from Dante to Inferno in 2018/19 is largely consistent with

other seasons. Fig 13 shows Inferno’s skill relative to Dante’s skill when retrospectively com-

pared for seasons 2013/14 through 2017/18 (using data from MMWR week 40 of 2010 through

the forecast data for training/fitting). For the majority of seasons and targets, Inferno’s perfor-

mance is worse than Dante’s by a small margin. From Fig 13, we can see that, relative to

Dante, Inferno performed better than expected in 2018/19 for short-term targets at the state

level. For all other regions and targets, however, Inferno’s drop in performance relative to

Dante in 2018/19 is consistent with the drop in performance seen in other seasons, suggesting

the relatively small drop in performance for Inferno is typical. For context, Inferno’s average

overall multi-bin skill was 94% of Dante’s overall multi-bin skill for the National and Regional

challenge. If each model that participated in the 2016/17, 2017/18, or 2018/19 National and

Regional FluSight challenge had its overall multi-bin skill reduced by 6%, the average drop in

rank was just over 1 position (i.e., if a model finished in Xth place in the challenge, a 6% reduc-

tion in its skill would, on average, result in that same model finishing in (X+1)th place). The

drop in rank increases from 1 position to almost 3 positions if you focus only on the models

that finished in the top 10, indicating that a 6% drop in skill has a greater impact on a model’s

relative rank for better performing models than worse performing models. The retrospective

comparison shown in Fig 13 ignores revisions made to data in real-time (i.e., the validation

data is used for forecasting as the data that would have been available in real-time is not

Table 1. The rank by challenge and target for Inferno and Dante as measured by single-bin and multi-bin skill. Inferno would have placed 2nd in both the National

and Regional and the State challenges as measured by multi-bin skill, only finishing behind Dante. Inferno would have placed 4th (National and Regional) and 3rd (State)

were the forecasts evaluated with single-bin skill. For both challenges and both evaluation metrics, Inferno achieved better short-term than seasonal performance.

2018/19 FluSight Challenge Target Multi-bin Rank Single-bin Rank

Inferno Dante Inferno Dante

National and Regional

(34 models)

Overall 2 1 4 1

1 wk ahead 1 2 1 2

2 wk ahead 1 2 2 1

3 wk ahead 1 2 2 1

4 wk ahead 2 1 2 1

Season peak percentage 5 1 5 3

Season peak week 11 8 11 8

Season onset 5 1 7 1

State

(15 models)

Overall 2 1 3 2

1 wk ahead 3 1 3 1

2 wk ahead 2 1 2 1

3 wk ahead 1 2 2 1

4 wk ahead 1 2 1 2

Season peak percentage 3 2 5 2

Season peak week 3 1 3 1

https://doi.org/10.1371/journal.pcbi.1008651.t001
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available back to 2013/14). As a result, Inferno’s and Dante’s forecasts are comparable to each

other but not real-time forecasts.

The small drop in predictive performance from Dante to Inferno is offset by Inferno’s sig-

nificant improvement in runtime for real-time forecasting and preparation for future scalabil-

ity to more granular forecasting geographies (e.g., county-level). Fig 14 shows the runtime

comparison between Dante and Inferno at different stages of the flu season and number of

cores to draw 25,000 MCMC samples for all 64 geographies (53 states, 10 HHS regions, and

the United States). Dante takes between 110 and 120 minutes, while Inferno takes between 20

and 70 minutes (if run serially on one core). Inferno, however, can be trivially parallelized for

real-time forecasting. As a result, Inferno can draw the same 25,000 MCMC samples for all

geographies in 30 seconds to 2 minutes when fully parallelized (running one geography per

Fig 13. Retrospective comparison of Dante’s and Inferno’s single-bin (top) and multi-bin (bottom) skills for the 2013/14 through 2017/18 flu seasons

(grey points) and the pseudoprospective comparison of the 2018/19 season (purple points). Skill ratios less than one (Inferno/Dante) indicates better

performance by Dante. For most season/targets, Dante had a higher skill than Inferno. Inferno’s relative performance to Dante in 2018/19 was largely

consistent with past season comparisons, with Inferno’s short-term forecasts for states performing better than usual in 2018/19 relative to Dante than in

past years.

https://doi.org/10.1371/journal.pcbi.1008651.g013
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core). Fig 14 shows that Inferno improves runtime relative to Dante in two ways: by being a

simpler model with fewer parameters and latent quantities to sample (comparing Dante to 1

core Inferno runtimes) and by being parallelizable (comparing Dante to 8, 32, and 64 core

runtimes).

4 Discussion

In this paper, I argued that while predictive performance is the most important measure of a

forecasting model, other factors like runtime are important for model development, scalability,

and meeting real-time, operational timelines. Developing a model with leading predictive per-

formance but drastically improved runtime was the motivation behind Inferno. I laid out a six

step procedure to heuristically estimate the parameters of Inferno from historical (w)ILI data,

greatly reducing the MCMC computations as executed by the probabilistic programming lan-

guage JAGS. Furthermore, by forecasting each geography separately, Inferno can take advan-

tage of parallelization, both improving forecast runtimes in the present while being scalable

and well-positioned for the more spatially granular future of flu forecasting (e.g., county-level

forecasting).

Fig 14. The wall-clock runtime of Inferno (red) and Dante (blue) to draw 25,000 MCMC samples for all 64 geographies. The red lines correspond

to the runtime of Inferno based on 1, 8, 32, or 64 computing cores. Total runtime decreases as the number of cores increases. Total runtime increases as

the size of the conditioning data increases for both Dante and Inferno. Dante draws 25,000 MCMC samples for all 64 geographies in 110 to 120

minutes. Dante’s reported runtimes are not monotonically increasing due to noise, as only one run was performed at each t. With 64 cores, it takes

Inferno between 30 seconds and 2 minutes to draw 25,000 MCMC samples for all 64 geographies. When all 64 geographies of Inferno are run serially (1

core), Inferno takes between 20 and 70 minutes.

https://doi.org/10.1371/journal.pcbi.1008651.g014
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Inferno’s predictive performance was comparable to but worse than Dante’s. This may be

for a couple different reasons, both of which are addressable. Firstly, Dante explicitly models

revisions; previous work has shown that accounting for and modeling revisions can result in

improved predictive performance [16, 20]. Similar modeling can be incorporated into Inferno

at little additional computational cost. Secondly, Dante models correlation across states within

a season by coupling states within a hierarchical framework. This coupling comes at a compu-

tational cost. The price Inferno pays to achieve significant computational speed-ups is the loss

of coupling. There has been some recent work that takes independently generated probabilistic

forecasts and, using principles of coherence, produces self-consistent forecasts that have

improved predictive performance [37–39]. The goal of this two staged approach is to achieve

the computational speed ups parallelization offers to independently generated forecasts and

then, through post-hoc coupling (i.e., coherence), recover some of the lost forecast perfor-

mance. The combination of revision modeling and coherence exploitation may result in equal

or even better predictive performance at minimal computational cost.

In this paper, I discussed the importance of forecasting challenges to help direct forecasting

model development. Forecasting models are tools to help us answer questions. Forecasting

challenges articulate what questions we want to answer and help define what properties we

want our forecasting tools to have. They do this by selecting data sources, targets, scoring

rules, geographic scope, and timelines that incentivize the development of models to optimize

a forecast score while meeting these operational constraints. With the recently announced U.S.

CDC Center for Forecasting and Outbreak Analytics [40], there are exciting opportunities for

the growth and influence of forecasting challenges to flourish.

Supporting information

S1 Appendix. The JAGS code implementing Inferno’s MCMC sampling routine is found in

Section 1. A simulation study illustrating the inferential limits of Inferno’s heuristic parameter

estimation procedure is found in Section 2.
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