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ABSTRACT
◥

Purpose: Tyrosine kinase inhibitors (TKI) have poor efficacy in
patients with glioblastoma (GBM). Here, we studied whether this is
predominantly due to restricted blood–brain barrier penetration or
more to biological characteristics of GBM.

Patients and Methods: Tumor drug concentrations of the TKI
sunitinib after 2 weeks of preoperative treatment was determined in
5 patients with GBM and compared with its in vitro inhibitory
concentration (IC50) in GBM cell lines. In addition, phosphotyr-
osine (pTyr)-directed mass spectrometry (MS)-based proteomics
was performed to evaluate sunitinib-treated versus control GBM
tumors.

Results: Themedian tumor sunitinib concentration of 1.9 mmol/L
(range 1.0–3.4) was 10-fold higher than in concurrent plasma, but
three times lower than sunitinib IC50s in GBM cell lines (median
5.4 mmol/L, 3.0–8.5; P ¼ 0.01). pTyr-phosphoproteomic profiles of

tumor samples from 4 sunitinib-treated versus 7 control patients
revealed 108 significantly up- and 23 downregulated (P < 0.05)
phosphopeptides for sunitinib treatment, resulting in an EGFR-
centered signaling network. Outlier analysis of kinase activities as
a potential strategy to identify drug targets in individual tumors
identified nine kinases, including MAPK10 and INSR/IGF1R.

Conclusions: Achieved tumor sunitinib concentrations in
patients with GBM are higher than in plasma, but lower than
reported for other tumor types and insufficient to significantly
inhibit tumor cell growth in vitro. Therefore, alternative TKI dosing
to increase intratumoral sunitinib concentrations might improve
clinical benefit for patients with GBM. In parallel, a complex profile
of kinase activity in GBM was found, supporting the potential of
(phospho)proteomic analysis for the identification of targets for
(combination) treatment.

Introduction
Despite currently available therapies, the prognosis and outcome of

patients with glioblastoma (GBM) are poor. Clinical trials evaluating
tyrosine kinase inhibitors (TKI) for recurrent GBM, including TKIs

with a broad kinase inhibition profile such as sunitinib and vandetanib,
resulted in minimal improvement in progression-free survival and no
overall survival benefit, despite their significant clinical benefit in other
malignancies (1–4). TKIs inhibit intracellular signaling, that is, tyro-
sine kinases, that exert a variety of biological activities in GBM,
including cell proliferation and migration (5, 6). Whether their
disappointing efficacy in GBM is due to restricted drug delivery of
TKIs or a result of differential biological characteristics compared with
other malignancies is unknown, but local TKI concentration reached
upon treatment in the tumor may be hampered by the blood–brain
barrier (BBB; ref. 7). While TKIs inhibit their target kinases at low
concentrations, multiple other kinases that are involved in (GBM)
tumor growth may be inhibited at higher concentrations (8, 9).

In addition, it is anticipated that the biological activity of specific
kinases driving the growth ofGBM in an individual patient is one of the
factors that will determine response to treatment with TKIs (5).
Analyzing tyrosine-phosphorylated proteins by mass spectrometry
(MS)-based tyrosine-phosphoproteomics can provide insight in the
effect of TKIs on cellular signaling (10–13). Initial promise has been
generated on the identification of ALK-, ROS-, and PDGFRa-medi-
ated non—small cell lung cancer (NSCLC) subtypes by this high-
throughput method (14).

Based on these considerations, we hypothesized that in an individ-
ual patient both the achievable local GBM TKI concentrations and the
specific activity of GBM-related cellular kinases, driving its malignant
behavior, will influence potential treatment benefit.

To address aforementioned issues regarding (in)efficacy of TKI
treatment in GBM, seeking to gain more insight in their activity at the
tumor level in patients, we performed a pilot study of preoperative
treatment with sunitinib in newly-diagnosed patients. Sunitinib tumor
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concentrations and its in vitro efficacy in GBM-cell lines were deter-
mined to study towhat extent clinically achieved tumor concentrations
are sufficient for inhibition of tumor cell proliferation. In addition, the
effects of sunitinib treatment on tyrosine kinase signaling activities
were analyzed.

Patients and Methods
Study design

This interventional pilot study was performed in AmsterdamUMC,
location VUmc, Cancer Center Amsterdam (Amsterdam, the Nether-
lands) between January 2015 andOctober 2016, with preoperative, off-
label use of the TKI sunitinib.The primary objective was to determine
sunitinib tumor and cerebrospinal fluid (CSF) concentrations in
patients with newly-diagnosed GBM, who were treated for 10 to
14 days prior to surgical resection (Supplementary Fig. S1). Based on
previous studies reporting tumor concentrations, we aimed to include
5 patients to obtain reliable estimates of sunitinib tumor concentra-
tions (15, 16). Tumor and CSF concentrations were compared with
plasma concentrations in these patients and the in vitro sensitivity of
GBM tumor cell lines. Secondary objectives were to determine the
feasibility of tyrosine phosphoproteomic profiling in these tumors and
to evaluate the effect of sunitinib treatment on tyrosine kinase sig-
naling activity by MS-based tyrosine phosphoproteomics. Phospho-
proteomic profiles of sunitinib-treated patients were compared with
those obtained in resection specimens of a control group of patients
with newly-diagnosed GBM without preoperative treatment.

The study was conducted in accordance with the Declaration
of Helsinki and Good Clinical Practice guidelines and approved
by the Institutional Review Board (medical ethics committee) of
Amsterdam UMC, location VUmc. All treated patients provided
written study-specific informed consent. The patients who partic-
ipated as a control group for the secondary objectives signed a
general informed consent form from the Department of Neuro-
surgery of Amsterdam UMC, location VUmc, for use of their
resected tissue for experimental purposes. This trial is registered
within the Netherlands Trial Register (www.trialregister.nl, NL4609)
and via www.ClinicalTrials.gov, identifier NCT02239952.

Patients
Eligible patients for preoperative treatment were adults (>18 years)

with a newly-diagnosed brain tumor on initial MRI, suggest-
ing resectable GBM according to interpretation of an expert

neuro-radiologist. Main inclusion and exclusion criteria are describ-
ed in Supplementary Methods.

Study treatment and pharmacokinetic sampling
Patients awaiting surgery received 2weeks of treatmentwith the oral

TKI sunitinib (50 mg once daily) prior to the initial resection of the
tumor (Supplementary Fig. S1). The last dose of sunitinib was admin-
istered in the morning on the day of surgery. Venous blood sampling,
for pharmacokinetic measurements of sunitinib (trough levels), was
performed on day 8, the day before surgery, and approximately 5 days
after surgery. Tumor tissue samples (approximately 1 cm3) and at least
30 mL of CSF were obtained during the tumor resection.

Tumor tissue preprocessing
Immediately after tumor resection, tumor tissue was placed in an

aluminium tissue container, snap-frozen in liquid nitrogen, and stored
at�80�C until further processing. Next, multiple 10-mm cryosections
of frozen tissue were made for the lysis procedure as well as for
hematoxylin and eosin (H&E) staining to determine tumor cell
content. In general, approximately 50% of the tumor tissue was used
for determination of tumor drug concentrations. From the remaining
tissue, cryosections were made for MS-based phosphoproteomics as
described before (17) and further detailed in Supplementary Methods.
Minimal protein input was set at 5.0 mg per tumor.

Drug concentration measurements of sunitinib and its active
metabolite

Concentrations of sunitinib in tumor tissue, CSF, and plasma were
determined using LC-MS/MS as described previously (16), with
further details in Supplementary Methods.

In vitro evaluation of sunitinib activity
Four GBM cell lines, U87, U251, T98G, and U138, were used to

determine in vitro cell proliferation and sunitinib IC50 concentrations.
The HT29 colorectal cell line was included as a positive control for
comparison with prior experiments and response to sunitinib was
assessed by MTT assay as described previously (details in Supplemen-
tary Methods; refs. 18, 19).

MS-based tyrosine phosphoproteomics
Peptides were separated by an Ultimate 3000 nanoLC-MS/MS

system (Dionex LC-Packings) coupled online to a Q HF Exactive
mass spectrometer (Thermo Fisher Scientific) as previously described
(20, 21). MS/MS spectra were searched against the Uniprot human
reference proteome FASTA file (release March 2017, 42161 entries, no
fragments) using MaxQuant1.5.4.1 (22). Downstream data analysis
and identification of phosphopeptides, phosphosites, and proteins is
further described in Supplementary Methods.

Analysis of kinase activity and enrichment of posttranslational
modification signatures

Ranking of the top 20 activated kinases in samples from control
and sunitinib-treated patients and visualization of kinase-substrate
networks of individual samples was performed using Integrative
Inferred Kinase Activity (INKA) analysis as described before (12).
Differentially activated kinases were identified and significance was
determined with a Mann–Whitney U test. Identification of “outlier
kinases” in individual samples based on INKA scores was done by
application of Tukey rule, i.e., values differ from the median more
than 1.5 times the interquartile range, and further filtering for an
INKA score >10.

Translational Relevance

In GBM, restricted delivery of tyrosine kinase inhibitors (TKI)
through the blood–brain barrier (BBB) to the target sites has been
proposed as a pivotal reason for their limited activity in this disease
thus far. We found that treatment of patients with GBM with the
TKI sunitinib at the standard dose of 50mg every day resulted in an
insufficient drug tumor concentration to exert antitumor activity,
indicating that the BBB indeed plays a clinically significant role in
drug resistance. Alternative, high TKI dosing strategies may be
needed to increase exposure and thereby improve efficacy in these
patients. In addition, the feasibility of phosphoproteomic profiling
of tumors from treated and control patients may lead to target
discovery for (combination) treatment of patients with GBM in
future studies.
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Posttranslational modifications (PTM) signature enrichment anal-
ysis (PTM-SEA) was performed as described elsewhere (ref. 23; for
details, see Supplementary Methods).

Data availability statement
The MS proteomics data are available and were provided to the

ProteomeXchange Consortium via the PRIDE partner repository with
the dataset identifier PXD019038 (24).

Results
Patient accrual and characteristics

Six patients with newly diagnosed GBM signed informed consent
and started preoperative sunitinib treatment, of whom 5 were evaluable
for the primary analysis. One patient was replaced upon withdrawal
of informed consent after 1 week of treatment. Median duration of
preoperative sunitinib treatment was 13 days (range 11–18; Table 1).
Study treatment was well tolerated and no grade 3 to 4 adverse events
were observed. Tumor resection was performed without perioperative
complications in all patients. GBM diagnosis was histopathologically
confirmed for all patients. Nine patients with GBM undergoing surgical
resection were included as a control group (Supplementary Table S1).

Sunitinib concentrations in GBM resection specimens, CSF, and
plasma

Sunitinib concentrations in tumor tissue and plasma were deter-
mined in all 5 patients. CSF could be collected during surgery in 4 of
these patients. Median sunitinib tumor concentration was 1.9 mmol/L
(range 1.0–3.4), 10-fold higher than the median sunitinib plasma
concentration on the day of surgery (0.194 mmol/L, range 0.105–
0.479). In CSF the median concentration was 0.015 mmol/L (range
0.013–0.023; Table 1). No relation between sunitinib tumor accumu-
lation and use of dexamethasone and anticonvulsants was found
(Supplementary Table S1).

Sunitinib sensitivity of GBM cell lines
Sensitivity of GBM cell lines U87, U251, T98G, and U138, and the

colorectal cell line HT29 as a positive control was tested for a
concentration range from 0 to 20 mmol/L of sunitinib incubated for
72 hours. Exposure to sunitinib resulted in a heterogeneous response in
the GBM cell lines, with amedian IC50 value of 5.4 mmol/L (range 3.0–
8.5mmol/L), shown inFig. 1. The IC50 concentrations for theGBMcell
lines were significantly higher (2.8-fold) than the detected intratu-
moral sunitinib concentrations in patients as described above (P ¼

Table 1. Sunitinib concentrations in tumor tissue, CSF, and plasma.

Patient ID
Treatment duration
(days)

Tumor weight
(mg)

Tumor tissue
(mmol/L)

CSF
(mmol/L)

Plasma
(mmol/L)

SUN-01 14 16.7 3.0 0.013 0.105
SUN-02 11 7.9 1.5 0.014 0.111
SUN-03 18 16.0 3.4 0.015 0.194
SUN-04 A 13 24.8 1.9 0.023 0.479
SUN-04 B 12.5 1.0
SUN-04 C 18.6 2.2
SUN-05 12 17.0 1.4 NA 0.255
Median 13 16.7 1.9 0.015 0.194

Note: Sunitinib concentrations in micromoles per liter in tumor tissue, CSF, and plasma in 5 patients with GBM after a median of 13 days of preoperative study
treatment. SUN-04 A, B, and C are different parts (biological replicates) of the same tumor.

Tumor type Cell line IC50 (µmol/L) 
GBM U-87 MG 8.5

U-251 MG 4.7
U-138 MG 6.0

T98G 3.0
CRC HT-29 2.4
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Figure 1.

Sunitinib effect in vitro. Proliferation (MTT) assay of GBM and colorectal cancer cell lines incubated with increasing sunitinib concentrations, showing the percentage
of proliferation compared with untreated controls (left) and calculated IC50 in micromoles per liter (right). Sunitinib inhibited proliferation of GBM tumor cells in vitro
at concentrations 2.8 times higher than achieved intratumorally in patients (Table 1). GBM, glioblastoma; CRC, colorectal cancer.
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0.01). As a positive control, the colorectal cancer cell line was most
sensitive with an IC50 similar to prior experiments and other cell lines
previously tested (25).

Tyrosine phosphoproteomics of GBM resection specimens
Phosphotyrosine (pTyr)-phosphoproteomics was successfully per-

formed in 12 of 15 tumor samples, of which 11 were suitable for
comparative analyses between sunitinib-pretreated and control sam-
ples. Three samples (2 control and 1 sunitinib-treated patient) were
excluded for downstream (comparative) analysis because of much
lower protein input and significantly less phosphopeptide identifica-
tions (P ¼ 0.03; Supplementary Table S1A). One patient (SUN-wk1)
who withdrew consent after 1 week of sunitinib treatment was
analyzed for potential drug targets only. For the 12 tumor samples
with 5-mg protein input 1,557� 329 (SD) phoshopeptides per sample
were identified out of 6,767� 837 of the total number of peptides per
sample (23% phosphopeptide enrichment). A median of 1,411 phos-
phosites were identified per sample with 91% phosphorylation on
tyrosine residues, indicating succesful pTyr enrichment (Supplemen-
tary Table S1B). All identified and quantified phosphopeptides and
sites can be found in Supplementary Tables S2 and S3. Unsupervised
hierarchical clustering of identified phosphopeptides did not differ-
entiate between tumor samples from treated versus untreated samples
(Supplementary Fig. S2). Supervised clustering of the differentially
detected tyrosine-phosphopeptides (cut-off P < 0.05 without addi-
tional filtering) revealed a clear separation between sunitinib-treated

and control tissues (Fig. 2). Between the four sunitinib-treated and
seven control tissues, 108 phosphopeptides were up- and 23 signifi-
cantly downregulated (cut-off P < 0.05). Figure 3 shows a protein
interaction network of these differentially regulated phosphopeptides
(listed in Supplementary Table S4) mapped to proteins, showing an
EGFR-centered signaling network with upregulation of multiple other
kinases.

Analysis of active kinases and biological pathways and
processes

In general the top 20 active kinases that were identified by INKA
analysis of individual GBM samples were mostly comparable between
different GBM samples, including GSK3A and 3B, MAPK10, YES,
FYN, and SRC (Fig. 4). In three treated and one untreated tumor
sample MAPK10 and in one treated tumor sample EGFR stood out as
the highest active kinase. For this tumor sample (SUN 04-B), an EGFR
mutation was detected [EGFR (c.865G>A; p.A289T)] and potential
EGFR amplification (Fig. 4). Comparative analysis of the kinase
activities identified in both groups showed differential and upregulated
activity of FGFR3 (P ¼ 0.036) and EGFR (P ¼ 0.047) in sunitinib-
treated samples (Supplementary Fig. S3A). Activity of the known
sunitinib targets KDR (VEGFR2), PDGFRA, and PDGFRB was low
and not significantly different between the groups. Outlier analysis of
kinase activity scores, as a potential strategy to identify drug targets in
individual tumors, revealed nine outlier kinases in four tumors. These
wereMAPK10 (INKA score> 250 inCON-08 vs.median score< 50 for

(C) GBM-CON-07

(F) GBM-CON-05

(M) GBM-CON-08

(K) GBM-CON-06

(H) GBM-CON-09

(A) GBM-CON-01
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(L) GBM-SUN-04B

(R) GBM-SUN-03

(B) GBM-SUN-01

Color key
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−2           −1            0             1             2

Figure 2.

Supervised clustering analysis of the tyrosine phosphoproteome. Supervised hierarchical clustering of differential phosphopeptides (P<0.05) identifiedby tyrosine-
phosphoproteomics shows separation of sunitinib-treated and control tumor tissues from 11 patients with glioblastoma. The heatmap shows the relative
phosphopeptide intensities (z-score) in these samples based on log10-transformed values (orange, high abundance; blue, low abundance). SUN, sunitinib-treated;
CON, control.
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other 10 samples), PRKCB, NTRK2 and NTRK3, INSR and IGF1R,
PDGFRA and FGFR1, and EPHB2 (Supplementary Fig. S3B).

Based on PTM-SEA analysis involving 558 PTM signatures, three
strongly significantly enriched phosphosite signatures were identified
in sunitinib-treated compared to control samples (23). Two of these
were based on Phosphosite-Plus (PSP) EGFR and SRC kinase activity
signatures and one was a PSP-derived EGF perturbation signature.
Twomoderately significant NetPath derived signatures corresponding
to EGFR andNotch signalingwere also found (Supplementary Fig. S4).

Discussion
Failure to achieve therapeutic TKI drug levels in brain tumors may

be an underlying reason for their relatively poor efficacy. We found
that treatment of patients with GBM with the TKI sunitinib at the
standard dose of 50 mg every day resulted in a significantly lower
median tumor concentration (1.9 mmol/L) than needed for antitumor
activity in vitro as determined by proliferation assays with four GBM
cell lines and also lower compared with previously reported drug
concentrations in other tumors (Supplementary Table S5; refs. 16, 19).
These findings are in accordance with the publicly available data on
sunitinib sensitivity of the Sanger Institute (Hinxton, England). In
their experimental design of studying cancer cell line sensitivity
to sunitinib, it was found that the geometric mean of the IC50 for
sunitinib was 11.6 mmol/L for 398 cancer cell lines, while for the

11 GBM cell lines a higher geometric mean of the IC50 of 18.7 mmol/L
was detected (https://www.cancerrxgene.org/compound/Sunitinib/5/
overview/ic50), supporting ourfinding thatGBMcells are less sensitive
to sunitinib than other tumor cells in general.

The 10-fold higher sunitinib concentrations in GBM tumor tissue
compared with plasma in these patients are a result of cellular
accumulation of sunitinib due to its physico-chemical characteris-
tics (19, 26). The lower sunitinib concentration in CSF compared with
tumor tissue and plasma is most likely due to a significantly lower
protein concentration in CSF, which we did not measure and should
therefore be interpreted with caution. Protein binding of drugs includ-
ing sunitinib affects the free drug concentration and therefore the free
drug concentration is assumed to be a more accurate measure of the
potentially available active drug. However, one should realize that it is
the intratumoral intracellular unbounddrug that needs to interact with
the target for its efficacy. Unfortunately, it is yet not possible to
quantify intracellular free drug concentrations without interfering
with intracellular drug distribution. Our data on drug distribution in
patients with GBM provide additional insight into the currently
scarcely available data, while being aware of the fact that the translation
from preclinical in vitro and clinical plasma concentrations to intra-
tumor concentrations should be taken with caution (27).

While it is known that the BBB is being disrupted by GBM
tumor growth, it presumably still forms a barrier for adequate drug
delivery. Brain tumor capillaries are composed of continuous and

Figure 3.

Protein interaction network. Protein interaction network of differential phosphopeptides (P < 0.05) between sunitinib-treated and control samples. Regulated
phosphopeptides are mapped to proteins and visualized as protein interaction network. Green, Down- and Red, Upregulated in sunitinib-treated patients. Colored
subdivisions indicate identification of multiple upregulated phosphopeptides mapping to the same protein. Note EGFR was identified with three upregulated
phosphopeptides in the sunitinib-treated group.
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nonfenestrated capillaries and have high expression of drug efflux
transporters, resulting in a hurdle for optimal drug delivery (28).
Several TKIs have been shown to be both substrates as well as
inhibitors (at higher concentrations) of these drug efflux transpor-
ters (29). A clear difference between drug availability of TKIs was
shown between flank and orthotopic GBM models explaining the
difference in response to treatment for several targeted agents
(30–32). The GBM sunitinib concentrations we found here are
nearly five times lower than the recently reported tumor concen-
trations in tumor biopsies of patients with other solid malignancies
(9.0–9.5 mmol/L) indicative for hampered tissue penetration
through the BBB (Supplementary Table S5; refs. 16, 19). Limited
data are available on GBM TKI concentrations in patients, but
Plotkin and colleagues reported comparable sunitinib concentra-
tions (converted from ng/g to mmol/L) of 0.45 mmol/L (range 0.14–
2.28) in tumor tissue and 0.15 mmol/L (range 0.0825–0.24) in the
paired blood samples from these patients with GBM (33). The lack
of clinical activity of sunitinib in GBM was shown by Neijns and
colleagues in which sunitinib-treated patients with a recurrent GBM
had no tumor response nor clinical benefit (2). In addition, com-
pared with its concentration in other malignancies, the relatively
low sunitinib concentrations in GBM (we found here) provide
clinical evidence of prior preclinical findings that the BBB plays
a significant role in the resistance of GBM to TKIs (28, 30–32).
Taken together, these preclinical and clinical data indicate that
GBM is difficult to treat with sunitinib, not only due to BBB-
mediated reduced drug penetration but also due to a lower intrinsic
sensitivity of GBM (28). Alternative treatment schedules or dosing
to reach higher tumor concentrations have not been considered
although several clinically approved TKIs have been evaluated for
their potential benefit in GBM (34). Based on the above-mentioned
findings one may hypothesize that higher dosing of TKIs will lead to
increased exposure and thereby may improve antitumor activity,
but at the same time such an approach is difficult to implement in
the clinic due to increased toxicity (35). Still, some examples of
alternative high dosing TKI strategies with manageable toxicity and

promising antitumor activity have been reported (36–38). Based on
these findings, a phase II/III clinical trial to evaluate this strategy in
patients with recurrent GBM (NCT03025893) is ongoing with suni-
tinib dosing of 700 mg once every 2 weeks. Alternative approaches
such as intrathecal TKI injection may also be considered to optimize
local exposure, but this has been studied only in a preclinical model
with nano-particulated, water-soluble erlotinib (39).

Besides achieved drug concentrations at the target site, the signaling
context or network in tumors is essential for TKI efficacy as
well (40, 41). In this study, a comparable number of phosphopeptides
as were previously reported by Johnson and colleagues from 7 untreat-
ed patients with GBM identified including similar phospopeptide-
related pathways as Src and Yes (42). Despite the small number
of patients, supervised clustering of the GBM tissue tyrosine-
phosphoproteome profiles revealed a clear separation between 4
sunitinib-treated versus 7 untreated patients. This was based on a
relatively high number of upregulated phosphopeptides in the suni-
tinib-treated group (108 vs. 23 downregulated phosphopeptides; cut-
off P< 0.05), resulting in an EGFR-centered signaling network (Fig. 3).
These included phosphopeptides mapped to proteins which may
potentially serve as targets for (combination) therapy, such as EGFR
and FGFR, but we stress that the small sample size of the 2 groups calls
for cautious interpretation of this comparative analysis.

In this small group of patients no relation between tumor concen-
tration and phosphopeptide regulation was found. Several preclinical
studies showed differential effects of TKI treatment on orthotopic
versus flank implanted tumors and suggested a relation with achieved
intratumor drug concentrations (32, 43). Single-cell phosphoproteo-
mics revealed alteration of protein signaling without genetic changes
may cause resistance as early as 2.5 days after start of treatment with an
mTOR-inhibitor in a patient-derived in vivo GBM model (44).

In the per sample analysis, MAPK10 was identified as the highest
ranking kinase in four tumors using INKA analysis (12). This included
sample CON-08 with, compared with the other 10 samples, outlier
kinase activity of MAPK10 with a very high INKA score suggestive of
amplification (Fig. 4). However, no normal DNA was available for
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Figure 4.

Ranking of top 20 active kinases in tumors from 11 patientswith glioblastoma. Ranked kinase activities in 7 control and 4 sunitinib-treated tumors. For each tumor, bar
graphs depict kinase ranking based on combined INKA scores of kinase- and substrate-centric analysis of tyrosine-phoshoproteomics (12). For patient SUN-04, three
biological replicates have been analyzed. Top bars of potential hyperactive kinases are highlighted by dark coloring (MAPK10 blue, EGFR red). Note the very high
INKA score for MAPK10 in patient CON-08. Light blue and red colored bars indicate lower ranked MAPK10 and EGFR kinase activities, respectively. Green colors
highlight kinases with “outlier activity”, i.e., higher activity in one versus the remaining 10 tumors (see Supplementary Fig. S3). SUN, sunitinib-treated; CON, control.

van Linde et al.

Clin Cancer Res; 28(8) April 15, 2022 CLINICAL CANCER RESEARCH1600



validation by whole-exome sequencing. MAPK10, also known as
JNK3, regulates several physiologic neuronal functions including
apoptosis (45, 46). Moreover, JNK kinases are known to be expressed
and activated in themajority ofGBMs and their activation is associated
with promotion of GBM tumor growth (47, 48). Several selective
small-molecule JNK3 inhibitors have been reported (49), but to the
best of our knowledge, no studies currently evaluate their activity in
GBM. Notable kinase activity of INSR/IGF1R was found in another
individual sample. Dual inhibition of these kinases has shown pre-
clinical activity in GBM (50). Taken together, these data show a
complex profile of kinase activity in GBM, supporting the potential
of (phospho)proteomic analysis for a better understanding of tumor-
biology as well as for the identification of targets for (combination)
treatment.

In conclusion, we found in patients with GBM clinical evidence for
insufficient intratumoral concentrations of sunitinib to exert its anti-
tumor activity, which may partly explain its intrinsic BBB-mediated
resistance and may be overcome by high-dosed, alternatively sched-
uled administration. In parallel, a complex profile of kinase activity in
GBM was found, supporting the potential of (phospho)proteomic
analysis for the identification of targets for (combination) treatment.
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