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In the boreal forest, cyanobacteria can establish associations with feather moss and realize 
the biological nitrogen fixation (BNF) reaction, consisting in the reduction of atmospheric 
dinitrogen into bioavailable ammonium. In this ecosystem, moss-associated cyanobacteria 
are the main contributors to BNF by contributing up to 50% of new N input. Current 
environmental changes driven by anthropogenic activities will likely affect cyanobacteria activity 
(i.e., BNF) and populations inhabiting mosses, leading to potential important consequences 
for the boreal forest. Several methods are available to efficiently measure BNF activity, but 
quantifying cyanobacteria biomass associated with moss is challenging because of the 
difficulty to separate bacteria colonies from the host plant. Attempts to separate cyanobacteria 
by shaking or sonicating in water were shown to be poorly efficient and repeatable.  
The techniques commonly used, microscopic counting and quantitative PCR (qPCR) are 
laborious and time-consuming. In aquatic and marine ecosystems, phycocyanin (PC), a 
photosynthesis pigment produced by cyanobacteria, is commonly used to monitor 
cyanobacteria biomass. In this study, we tested if PC extraction and quantification can be used 
to estimate cyanobacteria quantity inhabiting moss. We report that phycocyanin can be easily 
extracted from moss by freeze/thaw disturbance of cyanobacteria cells and can be quickly 
and efficiently measured by spectrofluorometry. We also report that phycocyanin extraction 
is efficient (high recovery), repeatable (relative SD < 13%) and that no significant matrix effects 
were observed. As for aquatic systems, the main limitation of cyanobacteria quantification 
using phycocyanin is the difference of cellular phycocyanin content between cyanobacteria 
strains, suggesting that quantification can be  impacted by cyanobacteria community 
composition. Nonetheless, we conclude that phycocyanin extraction and quantification is an 
easy, rapid, and efficient tool to estimate moss-associated cyanobacteria number.
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INTRODUCTION

Mosses are cryptogamic plants found in a very large range of terrestrial and aquatic ecosystems 
around the globe (Fogg, 1998). Mosses are particularly abundant in the boreal forest, the largest 
terrestrial biome on Earth (DeLuca and Boisvenue, 2012), where they can cover up to 70–100% 
of the ground (Oechel and Van Cleve, 1986). Mosses affect microbial activity in soil by regulating 
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soil temperature and moisture (Luthin and Guymon, 1974; 
Gornall et al., 2007) and by releasing nutrients, such as dissolved 
organic carbon and potassium (Wilson and Coxson, 1999). In 
the boreal forest, feather mosses also play an important role 
in the carbon (C) and nitrogen (N) cycles, and contribute up 
to a third of the total forest primary productivity (DeLuca 
et  al., 2002; Turetsky, 2003; Turetsky et  al., 2010; Wardle et  al., 
2011; Liu et  al., 2020). In addition, the reaction of biological 
nitrogen fixation (BNF), catalyzed by diazotrophic bacteria 
associated with feather moss, can contribute up to 50% of new 
N inputs (Turetsky et  al., 2012; Rousk and Michelsen, 2017) 
on par with atmospheric deposition. Several cyanobacteria genera 
(e.g., Calothrix, Cylindrospermum, Fischerella, Nostoc, and 
Stigonema) were found living epiphytically on boreal feather 
mosses (DeLuca et  al., 2002; Gentili et  al., 2005; Houle et  al., 
2006; Zackrisson et  al., 2009; Ininbergs et  al., 2011) and are 
considered the main contributors to moss BNF in the boreal 
forest (Leppänen et  al., 2013).

Several studies reported a positive linear relationship between 
cyanobacteria abundance and BNF activity in boreal mosses 
and suggest that moss can regulate cyanobacteria colonization 
according to their N needs (DeLuca et  al., 2007; Gundale 
et  al., 2011; Rousk et  al., 2013, 2017). Beside moss N demand, 
other environmental parameters can affect moss-cyanobacteria 
associations (cyanobacteria abundance and BNF), such as 
moisture, temperature, heavy metal, and phosphorus deposition 
(Gundale et  al., 2012; Rousk et  al., 2017; Jean et  al., 2018; 
Scott et  al., 2018). With global warming and the development 
of human activities at northern latitudes, boreal forests, and 
feather mosses will undergo important changes in climatic 
conditions (i.e., average temperature and water regime) and 
atmospheric deposition (nutrients). Indeed, it has been predicted 
that the average annual temperature in the boreal forest will 
increase by 2°C by 2050 (Price et  al., 2013). This will cause 
the extension of the growth season length (Ouranos, 2015) 
and, combined with CO2 increase, will impact boreal forest 
primary productivity, C cycle, and N demand (Lloyd and Bunn, 
2007; Sigurdsson et al., 2013; Tagesson et al., 2020). Evaluating 
how these environmental changes will affect moss-associated 
nitrogen fixing bacteria is essential to help better predict the 
response of the boreal forest to global change. Thus, consistent 
and rigorous methods to characterize how the moss-associated 
cyanobacteria biomass and BNF are affected by environmental 
factors are needed.

Cyanobacterial BNF activity in moss can be  easily assessed, 
indirectly, using the reaction of acetylene reduction into ethylene 
as a proxy (i.e., Acetylene Reduction Assay (ARA) method, 
Hardy et  al., 1968) or directly, by the incorporation of 15N 
tracer (Leppänen et  al., 2013; Jean et  al., 2018). Accurately 
quantifying cyanobacteria quantity, on the other hand, remains 
challenging. Three approaches have been used to estimate 
cyanobacteria quantity associated with moss. In the first approach, 
cyanobacteria are directly counted on whole moss shoots or 
leaves under an epifluorescence microscope (DeLuca et  al., 
2007; Gundale et  al., 2011; Rousk et  al., 2013). This approach 
is laborious, time consuming and, because cyanobacteria are 
often grouped into multilayer colonies located within leaf 

incurves (DeLuca et  al., 2002), accurately counting individual 
cells is complicated. Moreover, counting is only performed on 
a relatively small number of moss shoots and leaves, which 
makes it difficult to extrapolate to a cyanobacteria quantity 
per surface in situ. In the second approach, cyanobacteria 
colonies are extracted from moss prior to being counted under 
a fluorescence microscope, as in the first approach. This technique 
allows estimating cyanobacteria number on a larger amount 
of moss stems with reducing errors due to variation in 
cyanobacteria density between stems. Different cyanobacteria 
separation techniques have been explored. Sonication was used 
to isolate cyanobacteria from the moss (Lindo and Whiteley, 
2011) but it has been reported to lead to bacteria cell lysis 
(Reksten, 2014), whereas shaking or vortexing moss shoots 
immersed in distilled water (Jean et  al., 2012; Rousk et  al., 
2017) result in variable extraction efficiencies that can only 
be  overcome by performing a very large number of replicates. 
Moreover, as for the first approach, counting colonies after 
extraction only provides rough estimates of cyanobacteria 
quantity and is probably biased by differences of extraction 
efficiencies between cyanobacteria genera (Whiteley and Gonzalez, 
2016). The last approach, more rarely used, relies on molecular 
biology techniques, such as quantitative PCR (qPCR), to estimate 
global cyanobacteria quantity or genera/species relative abundance 
(Warshan et  al., 2016). Primers targeting the cyanobacterial 
16S rRNA gene CYA 359F and CYA 781Ra/Rb (Nübel et  al., 
1997) are usually used. The qPCR approach is relatively sensitive 
but time consuming, costly and is based on primers selectivity, 
which can bias cyanobacteria quantification in moss samples. 
Moreover, variation in 16S rRNA gene copy number has been 
demonstrated for several cyanobacteria genera (Engene et  al., 
2010; Engene and Gerwick, 2011) and could affect qPCR results 
when studying mixed-genera cyanobacteria communities present 
in moss. More recently, Arróniz-Crespo et  al. (2014) proposed 
an alternative for the quantification of cyanobacteria number 
living on moss based on the extraction and quantification of 
the echinenone pigment by HPLC separation coupled with a 
photodiode array detector.

The aim of this study was to develop and test an easy, 
quick and affordable method based on the extraction and 
quantification of another pigment, the phycocyanin (PC), to 
estimate moss-associated cyanobacteria quantity. This approach 
is inspired by a method commonly used to monitor cyanobacteria 
blooms in lakes for the last 20  years (Seppälä et  al., 2007; 
McQuaid et al., 2011). PC is a photosynthesis pigment produced 
by cyanobacteria and located in phycobilisome structures in 
the thylakoid membrane (MacColl, 1998). This pigment is 
already commonly used to observe and count moss-associated 
cyanobacteria by epifluorescence microscopy (Figure  1). 
Phycocyanin has been reported as the most abundant pigment 
among phycobiliproteins, the major light-harvesting pigments, 
and can account for 20% of the total proteins in the cyanobacteria 
dry mass (de Marsac, 1977; Stanier and Cohen-Bazire, 1977). 
Choosing phycocyanin as a quantitative marker has several 
advantages over other cyanobacterial pigments. First, phycocyanin 
is produced only by cyanobacteria and two groups of algae 
(the cryptophytes and the rhodophytes; Kirk, 1994) and is not 
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found in moss, unlike some chlorophylls and carotenoids (such 
as echinenone, Czygan, 1981). Then, it is water-soluble and 
can be easily measured by fluorimetry. Fluorescence spectroscopy 
is a very sensitive technique and is less laborious than HPLC 
based methods, which require chromatographic separation, that 
are commonly used to quantify other cyanobacteria marker 
pigments like chlorophyll a or echinenone (Schalles and Yacobi, 
2000; Poza-Carrión et  al., 2001; Schlüter et  al., 2004; Seppälä 
et  al., 2007; Arróniz-Crespo et  al., 2014). Phycocyanin 
measurements have been extensively used to quantify 
cyanobacteria in pure cultures (Herrera et  al., 1989; Lee et  al., 
2017; Basheva et al., 2018; Piron et al., 2019) and water samples 
(Izydorczyk et  al., 2005; Cotterill et  al., 2019; Cegłowska et  al., 
2020) but, to our knowledge, it has never been applied to 
moss samples. We  proposed that phycocyanin quantification 
could be  a reliable proxy to estimate moss-associated 
cyanobacteria quantity. To evaluate if this new approach can 
be  extensively used, we  tested four important analytical 
performance parameters. We  first performed the analytical 
calibration of the method by evaluating (i) cellular phycocyanin 
linearity in pure cultures of five cyanobacterial strains, (ii) the 
range of applicability of the method applied to moss samples, 
and (iii) the detection and quantification limits of phycocyanin. 
Then, we studied (iv) the accuracy of the method by measuring 
three performance parameters: phycocyanin apparent recovery 
assessed using both phycocyanin standard and cyanobacteria 
culture spikes on moss, matrix effects and repeatability. Then, 
we  applied the method directly on two feather moss species 
that are dominating in the eastern Canadian boreal forest, 
Pleurozium schreberi (Brid.) Mitt. and Ptilium crista-castrensis 
(Hedw.) De Not. (Harper et  al., 2003). Finally, because the 
quantity of cyanobacteria associated with feather moss has 
been reported to be correlated with BNF activity in P. schreberi, 
using microscopic counting (DeLuca et  al., 2007) and qPCR 

(Warshan et al., 2016), we also assessed the relationship between 
phycocyanin and BNF in moss samples to evaluate if the 
relationship observed with other quantification methods was 
similar when using phycocyanin measurements.

MATERIALS AND METHODS

Cyanobacterial Strains Selection and 
Culture Conditions
To evaluate phycocyanin linearity and phycocyanin apparent 
recovery (see analytical performance parameters assessment section), 
we  cultivated cyanobacteria in defined laboratory conditions.

To test phycocyanin linearity in cyanobacteria cultures, 
we  used five cyanobacterial strains belonging to the Nostoc 
genus, isolated from the feather moss P. crista-castrensis and 
Peltigera cyanolichens collected in Quebec, Canada, and Iceland 
(Table  1). We  selected Nostoc sp. strains because they were 
found to be  commonly associated with boreal feather moss 
(DeLuca et  al., 2002; Ininbergs et  al., 2011). To determine 
phycocyanin apparent recovery in moss samples, we  spiked 
moss with Anabaena variabilis (ATCC 29413) cells. Anabaena 
variabilis is an aquatic cyanobacteria often assessed during 
bloom monitoring (Li et  al., 2016). We  used A. variabilis for 
the phycocyanin apparent recovery experiments because of its 
high phycocyanin cell content (10 times higher than Nostoc 
sp. in average), which allows to having a higher phycocyanin 
signal using less cyanobacteria cells. Moreover, in cultures, 
A. variabilis produced significantly less biofilm than Nostoc sp. 
strains, allowing for a more accurate cell harvesting by pipetting. 
All cyanobacteria strains were grown on a liquid N-free BG110 
medium (Rippka et  al., 1979) at 22°C, under continuous white 
fluorescent light tubes (T8 bulb, Sylvania Gro-Lux) at 30 μmol.
m−2.s−1 and without agitation. Cyanobacteria cells were harvested 
at the beginning of the stationary growth phase (20  days).

Moss Sampling
Feather moss samples were collected for both the evaluation 
of analytical performance parameters (see section below) and 
to test the relationship between BNF and phycocyanin quantity.

Pleurozium schreberi and Ptilium crista-castrensis were collected 
on four boreal forest sites along a 500-km latitudinal transect in 
Quebec, Canada in June and September 2019. All sites are located 

FIGURE 1 | Filamentous cyanobacteria colonies (phycocyanin fluorescence in 
red) within Ptilium crista-castrensis leaves, observed under an epifluorescence 
microscope (Zeiss Axio Observer Z1 equipped with a Zeiss Axiocam 506 
mono, objective 40X/0.95NA). For widefield fluorescence, an excitation filter of 
533–558 nm and an emission filter of 570–640 nm were used.

TABLE 1 | Cyanobacterial strains used in this study.

Species Strain Isolation Country of Origin

Nostoc sp. 210A Peltigera 
membranacea

Iceland

Nostoc sp. 213 Peltigera 
membranacea

Iceland

Nostoc sp. 232 Peltigera 
membranacea

Iceland

Nostoc sp. MR100 Ptilium crista-
castrensis

Canada

Nostoc sp. MR101 Peltigera sp. Canada

Anabaena variabilis ATCC 29413 Freshwater United States
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FIGURE 3 | Phycocyanin mass mean ± SD (n = 3) linearity in cyanobacteria 
Nostoc sp. pure cultures. Straight lines represent the linear regression 
between phycocyanin mass and the number of individual cyanobacteria cell 
per ml of culture, for each cyanobacterial strain. For all strains, R2 > 0.93 and 
p < 0.002.

between N47° and N51°, in the black spruce forest bioclimatic 
zone. As environmental parameters are known for affecting 
cyanobacteria BNF, sampling sites are spread along a latitudinal 
gradient of temperature, moisture, and atmospheric deposition 
to examine the relationship between phycocyanin and BNF for 
moss samples displaying potentially contrasting BNF activities. 
Samples were collected in plastic bags and kept at 4°C in the 
dark until being processed, within 2  weeks after collection.

Phycocyanin Extraction and Quantification 
Procedure
The phycocyanin extraction method is divided in four consecutive 
important steps: (i) sample dilution in sodium phosphate buffer, 
(ii) disruption of cyanobacteria cell membranes, (iii) phycocyanin 
solubilization in sodium phosphate buffer, and (iv) quantification 
by fluorescence of the solubilized phycocyanin. These steps 
are described in detail in the following section and in Figure 2.

For phycocyanin extraction of cyanobacteria in cultures, 
we  performed a series of dilution of cell suspensions for 
each strain. Between 2.5 and 12.5 ml of culture were harvested 
and diluted in sterilized sodium phosphate buffer (0.025  M, 
pH 7) to reach a final volume of 15  ml. Cyanobacteria cell 
concentrations, corresponding to the number of individual 
cells per ml of culture, are presented in Figure  3. For 
phycocyanin extraction of cyanobacteria living on feather 
moss, samples were oven-dried at 35°C for 4  h and milled 
with a blender. Then, 0.15–0.20  g of moss sample were 
placed in 50 ml sterile tubes with 15 ml of sterilized sodium 
phosphate buffer (0.025 M, pH 7; Sarada et al., 1999; Furuki 
et  al., 2003; Horváth et  al., 2013) prepared by mixing 2.99  g 
of Na2HPO4 • 2H2O and 1.91  g of NaH2PO4 • 2H2O in 
1  L of Milli-Q water. Phycocyanin extraction procedure was 
then performed similarly for cyanobacteria cells and moss 
samples. All samples (i.e., cyanobacteria cultures or moss 
in sodium phosphate buffer) were homogenized by vortexing 
and shaking manually for 10  s. To achieve cyanobacteria 
cell membrane disruption, samples were subjected to two 
freeze-thaw cycles (2  h at −20°C followed by 1  h at room 
temperature), mixed by vortexing for 10  s between cycles 
(Lawrenz et  al., 2011; Horváth et  al., 2013) and sonicated 
for 5  min in an ultrasound bath. Then, samples were 
centrifuged at 3,400  ×  g at 8°C for 15  min. Supernatants 
were transferred to 15  ml tubes and stored at −80°C until 
analysis. In these conditions, extracted phycocyanin can 
be stored for up to 6 months without noticeable degradation 
(Lawrenz et  al., 2011). Phycocyanin was quantified by 
spectrofluorometry (excitation at 585  nm and emission at 
643  nm; Seppälä et  al., 2007) on a QuantaMaster 400 
Phosphorimeter (PTI) using a commercial standard 
(C-Phycocyanin, Sigma-Aldrich). All tubes were covered by 
aluminum foil during the entire procedure to limit 
photodegradation. After phycocyanin extraction, moss samples 
were oven-dried at 50°C and weighted. Results were expressed 
in μg of phycocyanin (mass) or in μg of phycocyanin 

A

B

C

FIGURE 2 | Phycocyanin (PC) extraction and quantification procedure for 
cyanobacteria in cultures and moss samples (left) and method validation 
process (right). Capital letters in brackets refer to three analytical performance 
parameters evaluated for the method validation. (A) corresponds to matrix 
effects, (B) corresponds to standard phycocyanin apparent recovery, and 
(C) corresponds to cellular phycocyanin apparent recovery.
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per g of moss (concentration). All phycocyanin concentrations 
measured were above detection and quantification limits.

Analytical Performance Parameters 
Assessment
To assess the reliability of the method and evaluate if it 
can be  applied to moss, we  tested different analytical 
performance parameters.

Analytical Calibration of the Method
We first tested if phycocyanin mass was linear within a large 
range of cyanobacteria cell quantity by measuring phycocyanin 
in cyanobacteria pure cultures. For each cyanobacteria strain, 
cultivated cells were harvested and diluted in triplicates with 
sodium phosphate buffer, prior to phycocyanin extraction. 
Both procedures are described in the section above. The 
number of vegetative cells in cyanobacteria cultures was 
measured using a counting chamber (Petroff-Hausser counting 
chamber, Hausser Scientific). Briefly, 2  μl of each culture 
were placed in the counting chamber and individual cells 
were counted using a bright field microscope (Motic BA210). 
The counting procedure was repeated five times per strain. 
Cell number per ml of culture was calculated according to 
the formula provided by the manufacturer and final 
cyanobacteria cell concentrations were attributed to each 
culture dilution. All the following analytical performance 
parameters were measured for both moss species P.-castrensis 
and P. schreberi.

We determined the range of applicability of the method 
(i.e., the range of mass of moss within which phycocyanin 
quantity is linear) by extracting phycocyanin from six different 
mass of moss, comprised between 0.25 and 1.25  g. The exact 
same moss sample was used for this experiment and three 
technical replicates per mass of moss were performed.

Limit of detection (LOD) and limit of quantification 
(LOQ) of phycocyanin were respectively calculated by adding 
3  ×  SD and 10  ×  SD to the average signal measured in 
analytical blanks.

Accuracy of the Method
Then, we determined the accuracy of the method (i.e., estimation 
of the total error impacting the method; Raposo and Ibelli-
Bianco, 2020) composed of two elements, the trueness (i.e., 
evaluation of the systematic error), and the precision 
(i.e., evaluation of the random error). Trueness was examined 
by measuring phycocyanin apparent recovery and matrix effects. 
Precision was evaluated through testing the repeatability. 
Phycocyanin apparent recovery is defined as the ratio between 
observed values (i.e., measured phycocyanin) and reference 
values (i.e., estimated added phycocyanin). We  determined (i) 
the standard phycocyanin apparent recovery by adding a 
C-phycocyanin commercial standard (Sigma-Aldrich) on moss 
and (ii) the cyanobacteria cellular phycocyanin apparent recovery 
by adding A. variabilis cells on moss. Cellular phycocyanin 
linearity in A. variabilis culture was checked prior to this 
experiment (Supplementary Figure S1) and both standard and 

cellular phycocyanin apparent recoveries were determined using 
four replicates of the same moss sample. Standard phycocyanin 
(Figure  2B) and cellular phycocyanin apparent recoveries 
(Figure 2C) were respectively determined by spiking phycocyanin 
standard at 0.5×, 2×, and 15× the average phycocyanin content 
in moss and by spiking between 2 and 12 ± 1.5 × 106 A. variabilis 
cells, which corresponds to additions of 14–84 μg of phycocyanin 
(Supplementary Figure S1), on 0.60  ±  0.1  g of moss.

Matrix effects (i.e., components present in samples potentially 
affecting phycocyanin quantification; Raposo and Barceló, 2020) 
were evaluated by adding a C-phycocyanin commercial standard 
to samples of phycocyanin extracted from moss (Figure  2A). 
Standard additions were performed on five replicates at 0.5×, 
2×, and 15× the average phycocyanin content in moss.

Finally, the repeatability of the method (i.e., the closeness 
of phycocyanin results obtained by analyzing the same sample 
using the same procedure and under similar conditions; 
Thompson and Wood, 1993) was assessed by extracting 
phycocyanin from six replicates of the same moss sample for 
3 consecutive days. Analytical blanks were performed and 
analyzed for each set of experiment.

Nitrogen Fixation Measurements
Green parts (i.e., photosynthetic parts of the moss shoots 
containing the cyanobacteria colonies) of P. schreberi and 
P.-castrensis shoots were hydrated with deionized water to 
homogenize their hydration state and placed into 250  ml glass 
jars. This experiment was performed in four replicates for all 
moss species, site, and date of collection. Samples were acclimated 
for 5  days in a growth chamber (18°C; 16  h light, 8  h dark) 
and moss-associated bacteria BNF was assessed using ARA 
(Hardy et  al., 1968). Acetylene gas was produced by adding 
25  ml of H2O to 5  g of CaC2 (Acros Organics) in Tedlar® 
gas sampling bags (Sigma-Aldrich). Moss samples were incubated 
with 20% of acetylene for 24  h at 18°C under continuous 
light. Ethylene production was measured on a gas chromatograph 
(Shimadzu 8A with an FID detector and a Supelco column 
01282011). Following ARA, moss samples were processed for 
phycocyanin extraction, therefore moss dry mass could not 
be  directly determined to standardize ARA. Moss dry mass 
was calculated by measuring the average moss water content 
by surface unit on four replicates per species and per sampling 
site. The estimated moss dry mass used for the ARA was 
comprised between 1.8 and 3  g per replicate.

Statistical Analysis
The test of Kruskal and Wallis (1952) followed by the 
Dunn’s (1965) post hoc test  were used to examine the effects 
of moss species and month of collection on phycocyanin 
concentrations. Normality was tested with the Shapiro-Wilk 
test (Royston, 1995) and linear regression outliers were checked 
using the test of Grubbs (1969). Linear regressions and statistical 
tests were respectively performed using GraphPad Prism 
(version 8.0.2) and R (version 3.4.3, R Core Team, 2017) with 
the Stats package. Statistically significant differences were accepted 
for value of p  <  0.05.
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RESULTS AND DISCUSSION

Phycocyanin Extraction Method 
Characterization and Validation
All the analytical performance parameters measured in this study 
and used to validate the method are presented in Table  2. 
We  first tested phycocyanin linearity for a wide range of 
cyanobacteria cell densities in pure liquid cultures of five strains 
of Nostoc sp. extracted from the boreal moss species P.-castrensis, 
and Peltigera cyanolichens (Table 1). For all strains, phycocyanin 
mass was strongly correlated with cell density (R2 > 0.93, Figure 3), 
showing that phycocyanin is a reliable proxy for quantifying 
cyanobacteria cells, even over a large range of cell counts. However, 
significant differences in phycocyanin cellular concentration were 
observed between strains. Using data from Figure 3, we calculated 
phycocyanin cellular concentration for each cyanobacteria strain. 
Nostoc 232 achieved the highest phycocyanin cellular concentration 
with an average of 1.18  ±  0.39  ×  10−6  μg.cell−1, followed by 
Nostoc 213 (9.24  ±  1.1  ×  10−7  μg.cell−1), Nostoc MR101 
(3.58 ± 1.6 × 10−7 μg.cell−1), Nostoc MR100 (8.4 ± 1.5 × 10−8 μg.
cell−1), and Nostoc 210A (6.73  ±  9.6  ×  10−9  μg.cell−1). Then, 
we  tested the range of applicability of the method for moss 
samples by examining phycocyanin linearity for a large range 
of moss masses. For both moss species, phycocyanin and moss 
masses were strongly correlated (R2  =  0.97 for P. crista-castrensis 
and R2  =  0.98 for P. schreberi, Figure  4). This shows that 
phycocyanin extraction efficiency is not dependent of moss mass 
in the tested range of 0.25–1.50  g.

Using analytical blanks, we  found that phycocyanin LOD 
and LOQ were 3.1 and 4.3  μg.L−1 respectively.

We also determined standard phycocyanin and cellular 
phycocyanin apparent recoveries by spiking a commercial 
standard and A. variabilis cells on moss. The average standard 
apparent recoveries were 45  ±  7.6% for P. crista-castrensis and 
69 ± 16.8% for P. schreberi. Average cellular apparent recoveries 
were lower for both moss species, we  found 39  ±  3.4% for 
P. crista-castrensis and 50.8 ± 4.2% for P. schreberi. No significant 
matrix effects were observed with an average recovery of spiked 
C-phycocyanin standard in moss extract of 105.8  ±  10.6% for 
P. crista-castrensis and 100.7 ± 4.5% for P. schreberi. Phycocyanin 
recoveries were similar for the three spike concentrations tested. 
The repeatability (i.e., inter-day precision) was satisfactory with 
average relative standard deviations (RSD) of 12.4 and 11.6% 
for P. schreberi and P. crista-castrensis, respectively.

Kissoudi et al. (2018) quantified phycocyanin extracted from 
a cyanobacteria culture by HPLC and found greatly higher 
LOD and LOQ (670 and 2000  μg.L−1 respectively), showing 
that spectrofluorometry is a more suitable quantification 
technique for phycocyanin. In this study, all samples 
(cyanobacteria cultures and mosses) had phycocyanin 
concentration above those limits. Phycocyanin apparent recoveries 
in moss found in this study are close to the average apparent 
recovery reported in pure cultures (50–60%, Tavanandi et  al., 
2018) but optimized methods can reach 90–92% (Kissoudi 
et al., 2018; Prates et al., 2018; Tavanandi et al., 2018). Phycocyanin 
concentration measured in cyanobacteria cultures depends 
greatly on the extraction process (e.g., solvent, extraction time, 
cell wall disruption technique; Abalde et  al., 1998; Reis et  al., 
1998). A critical step for phycocyanin extraction is the cell 
membrane disruption step, which, when incomplete, can affect 
phycocyanin recovery (Stewart and Farmer, 1984). The thermal 
insulation properties of the moss (Bakatovich and Gaspar, 
2019), for example, could prevent an efficient cyanobacteria 
cell wall disruption. Moreover, we  found significantly lower 
apparent recoveries for cyanobacteria cells addition compared 
to phycocyanin standard addition (Table  2) suggesting that 
cyanobacteria cellular structures can impact phycocyanin 
extraction. Cyanobacteria cellular lyse efficiency (cellular apparent 
recovery/standard apparent recovery, C/B, Figure  2) achieved 
86.7% for P. crista-castrensis and 73.6% for P. schreberi, which 
confirms that cell wall breaking was not optimal after the 
phycocyanin extraction procedure. Chittapun et  al. (2020) also 
showed that several species of cyanobacteria had specific cell 
wall structures which necessitated to using different disruption 
techniques for each species to obtain an optimal phycocyanin 
efficiency. Besides the cell wall disruption efficiency, the lower 
apparent recoveries of cellular phycocyanin could also 
be explained by the presence of biofilm in cyanobacteria culture, 
preventing accurate cell counting and pipetting. In addition, 
apparent recovery might be  affected by possible mechanisms 
of phycocyanin adsorption on moss cell walls after release 
from cyanobacteria cells. Phycocyanin degradation by 
temperature (Antelo et  al., 2008) and light (Jespersen et  al., 
2005) over time are potential causes of extraction efficiency 
loss that we  considered minimal in our experiments because 
moss samples were always kept at cool temperature and in 
the dark during the extraction. Repeatability reported here are 
also similar to values reported in literature for pure culture 

TABLE 2 | Analytical performance parameters tested in this study.

Apparent 
recovery ± SE (%)

Matrix effects ± SE 
(%)

Repeatability RSD 
(%)

Limit of detection 
(μg.L−1)

Limit of 
quantification 

(μg.L−1)

Range of 
applicability 
(g of moss)

Ptilium 
crista-castrensis

45a ± 7.6

39b ± 3.4
105.8 ± 10.6 11.6

3.1 4.3 0.25–1.50

Pleurozium schreberi
69a ± 16.8

50.8b ± 4.2
100.7 ± 4.5 12.4

aThe apparent recovery after C-phycocyanin standard spikes.
bThe apparent recovery after Anabaena variabilis cells spikes on moss.
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(Kissoudi et  al., 2018; Prates et  al., 2018). Thus, our results 
show that the efficiency of cyanobacteria cell wall disruption 
is the principal factor that could affect the quality of phycocyanin 
measurements but that, overall, phycocyanin can be  accurately 
and reliably quantified for large cyanobacterial cell density and 
moss mass ranges.

Advantages and Limits of the Method
Phycocyanin extraction is a quick, simple, and affordable 
method to assess cyanobacteria quantity living on moss. This 
method allows estimating cyanobacteria abundance on a great 
number of samples in limited time and effort (approximately, 
the extraction procedure takes 6  h30 and the quantification 
takes 2  h30 for 50 samples). Because of the heterogeneity 
in cyanobacteria density within and between moss shoots, 
many leaves and/or shoots need to be  processed to achieve 
a reasonable estimate of cyanobacteria number per shoots 
using microscopic counting. With phycocyanin extraction, 
cyanobacteria quantity can be  estimated using many moss 
shoots (or subsamples of large amounts of homogenized 
shoots), allowing for an efficient integration of heterogeneity 
and thus for more reliable estimates of the average number 
of cyanobacteria. Lastly, phycocyanin extraction is also more 
environmentally friendly than other pigment extraction 
techniques because it does not require harmful organic solvents 
like acetone or hexane (Papadaki et  al., 2017). Phycocyanin 
extraction in a water-based solvent also has the advantage 
to limit the co-extraction of other pigments poorly soluble 
in water, such as chlorophylls, that could interfere with 
phycocyanin quantification.

However, phycocyanin extraction also has some limitations. 
Differences in cellular phycocyanin concentration between 
cyanobacteria strains have been reported in pure cultures 
(this study, Rippka et  al., 1979; Santiago-Santos et  al., 2004; 
Chittapun et  al., 2020). This can be  explained by variable 

phycocyanin production per cell, as well as differences in 
extraction efficiencies due to cell wall thickness and biofilm 
production, differing among cyanobacteria strains (Chittapun 
et  al., 2020). The composition of cyanobacteria communities 
colonizing moss can vary with environmental conditions, moss 
species and time of sampling during the growth season 
(Ininbergs et  al., 2011; Rousk et  al., 2013; Warshan et  al., 
2016). In addition to the inherent variation of phycocyanin 
quantity among cyanobacteria species, growth phase (McQuaid 
et  al., 2011; Chang et  al., 2012) and growth conditions (e.g., 
culture medium, light, temperature, and nutrient stress) has 
been shown to affect phycocyanin production (De Morais 
et  al., 2018). For example, N limited availability or high 
photoperiod can decrease phycocyanin concentration in 
cyanobacteria cultures (Sloth et  al., 2006; Ürek and Tarhan, 
2012; Prates et  al., 2018). Thus, comparison of phycocyanin 
data, used as cyanobacteria cell number estimates, from sites 
characterized by contrasted environmental conditions and 
from moss samples with different cyanobacteria communities 
should be made with caution. These limitations, due to species-
specific phycocyanin cell content varying with environmental 
conditions, were also reported to impact the quantification 
of cyanobacteria using phycocyanin in aquatic ecosystems 
(Seppälä et  al., 2007). Calibration of the method (e.g., 
phycocyanin linearity and apparent recovery) using strains 
isolated from moss species and sampling sites of interest 
could alleviate this potential bias.

Phycocyanin Concentration and Nitrogen 
Fixation in Boreal Feather Moss
Direct comparison of phycocyanin extraction with other 
cyanobacteria quantification methods is delicate and would 
be  poorly informative since each method (e.g., microscope 
counting, qPCR, and echinenone extraction) has its own flaws. 
Thus, we  decided to evaluate how phycocyanin extraction 
compares to other methods using an independent measurable: 
the BNF. Several studies suggested that in low N deposition 
areas, mosses control the colonization of cyanobacteria based 
on their N demand for growth (DeLuca et  al., 2007; Gundale 
et  al., 2011; Rousk et  al., 2013). For Pleurozium schreberi 
collected in Scandinavia, BNF activity was showed to be closely 
related to cyanobacteria quantity measured by microscopic 
counting (DeLuca et  al., 2007; Rousk et  al., 2013; Warshan 
et  al., 2016). Another study from Chile reported a similar 
linear relationship between BNF and moss-associated 
cyanobacteria quantity using echinenone, a pigment produced 
by cyanobacteria (Arróniz-Crespo et al., 2014). Thus, assuming 
that phycocyanin is a reliable proxy for quantifying cyanobacteria, 
phycocyanin, and BNF should be  correlated in moss samples 
collected in low N deposition (< 3  kg.ha−1.yr.−1) forest sites 
in Eastern Canada. We  measured phycocyanin and BNF of P. 
schreberi and P. crista-castrensis from four sites at the beginning 
(June) and the end (September) of the growth season. 
Phycocyanin concentrations varied between 0.45–1.26  μg.g−1 
in June and 0.56–0.96 μg.g−1 in September for P. crista-castrensis 
and 0.42–0.48 μg.g−1 in June and 0.61–0.88 μg.g−1 in September 

FIGURE 4 | Phycocyanin mass mean ± SD (n = 3) linearity in 
P. crista-castrensis (gray squares) and Pleurozium schreberi (black circles) 
feather moss. Straight lines represent the linear regression between 
phycocyanin and moss masses, for each moss species. All replicates are 
from a same moss sample of each species, that were acclimated for 5 days 
in a growth chamber (30°C, 16 h light, 8 h dark) before being processed.
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for P. schreberi (Supplementary Table S1). We  found no 
significant effect of the sampling month on phycocyanin 
concentration (value of p  =  0.075) but we  report a significant 
effect of the moss species on phycocyanin content (value of 
p  =  3.3  ×  10−4) confirming the need for testing and calibrating 
the phycocyanin extraction method on the chosen moss species, 
as discussed earlier. Phycocyanin concentrations of both moss 
species collected in June and September were positively correlated 
with BNF activity (R2 = 0.30, Figure 5). We found a correlation 
coefficient relatively similar to those reported by Arróniz-Crespo 
et  al. (2014) using echinenone quantification (R2  =  0.44) and 
DeLuca et  al. (2007) using microscopic counting (R2  =  0.58).

This result suggests that phycocyanin extraction is a valuable 
semi-quantitative method, allowing for the rapid assessment 
of cyanobacteria abundance living on moss. Using phycocyanin 
for the quantification of cyanobacteria in moss suffers from 
the same major limitation as the quantification of cyanobacteria 
in aquatic ecosystems: cellular phycocyanin concentrations vary 
among species and strains. For moss, as in aquatic systems, 
evaluating the effects of environmental factors on the number 
of cyanobacteria requires the rapid analysis of large numbers 
of samples. Phycocyanin extraction allows such rapid and high 
throughput analysis in aquatic systems. While further studies 
on other moss species, sites, and environmental conditions, 
are required to validate the potential of phycocyanin quantification 

as a proxy of cyanobacteria quantity, our results strongly suggest 
that phycocyanin also represents an easy, rapid, and affordable 
way to evaluate moss-associated cyanobacteria quantity. 
Phycocyanin quantification can guide the use of more costly 
and time-consuming complementary methods to estimate 
cyanobacteria abundance (e.g., qPCR). Further work should 
be  done on better characterizing cyanobacteria communities 
associated with feather moss to improve our understanding 
of its impact on cyanobacteria quantification estimated with 
phycocyanin measurements.
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