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Abstract

Porous titanium fiber mesh (TFM) is considered a suitable scaffold material for bone

reconstruction. Also, TFM can be used to cover the surface of bone-anchored

devices, that is, orthopedic or dental implants. The titanium fiber size has an effect of

the stiffness as well as porosity of the titanium mesh, which can influence the behav-

ior of bone forming cells. Therefore, the aim of this study was to vary TFM composi-

tion, in order to achieve different stiffness, and to assess the effects of such variation

on the behavior of bone marrow-derived stromal cells (BMSCs). With that purpose,

nine types of TFM (porosities 60–87%; fiber size 22–50 μm), were examined for their

mechanical properties as well as their effect on the proliferation and differentiation

of rat bone marrow-derived stromal cells (rBMSCs) up to 21 days. Dynamic mechani-

cal analysis revealed that the stiffness of TFM were lower than of solid titanium and

decreased with larger fiber sizes. The stiffness could effectively be tailored by alter-

ing fiber properties, which altered the pore simultaneously. For the 22 and 35 μm

size fiber meshes with the highest porosity, the stiffness closely matched the value

found in literature for cortical bone. Finally, all tested TFM types supported the

growth and differentiation of rBMSCs. We concluded that TFM material has been

proven cytocompatible. Further preclinical studies are needed to assess which TFM

type is most suitable as clinical use for bone ingrowth and bone regeneration.
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1 | INTRODUCTION

Titanium fiber mesh (TFM) is composed of sintered nonwoven micro-

scale fibers of commercially pure titanium (cpTi) (Jansen, von Recum,

van der Waerden, & de Groot, 1992). Due to its porous structure and

the biocompatibility of titanium, TFM is considered as a suitable scaf-

fold material for bone reconstruction, when used in combination with

bone forming cells and/or signaling molecules (Holtorf, Jansen, &

Mikos, 2005). In vitro, these fiber mesh scaffolds were reported to

support the adhesion and osteogenic differentiation of primary mar-

row stromal cells in both static and flow perfusion culture conditions

(Bancroft et al., 2002; van den Dolder, Bancroft, et al., 2003a; van denEvy Aerts and Jinmeng Li contributed equally to this study.
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Dolder, Spauwen, & Jansen, 2003b). Also in vivo, mesh loaded with

osteoblast precursor cells was shown to enhance bone formation in

both orthotopic (Vandendolder, Farber, Spauwen, & Jansen, 2003) as

well as ectopic (Vehof, Spauwen, & Jansen, 2000) locations. Further, it

was postulated to apply TFM as an outer layer on bone-anchored

devices, that is, orthopedic or dental implants. The application of a

porous material is supposed to enhance the mechanical interlocking

between the device and bone by bone ingrowth into the mesh poros-

ity (Karageorgiou & Kaplan, 2005; Li et al., 2007) resulting in an

increased “osseointegration” compared to a nonporous implant mate-

rial (Bobyn, Stackpool, Hacking, Tanzer, & Krygier, 1999). Further-

more, the porous structure will support the interfacial stress transfer

evoked by the implant loading, and thus may aid in maintaining an

enhanced tissue-to-implant connection over a prolonged period of

time (Henkel et al., 2013).

The above-mentioned is based on the observation that cells are

capable of sensing and responding to mechanical forces, with the help of

intercellular signals transduced by mechanical properties of their sur-

rounding extracellular microenvironment, which controls stem cell lineage

specification (Discher, Janmey, & Wang, 2005; Engler, Sen, Sweeney, &

Discher, 2006). And vice versa, the mechanical properties of materials,

that is, stiffness, can also have an effect on the behavior of cells,

(Huebsch et al., 2010) such as cell growth (Engler et al., 2006), migration

(Janson & Putnam, 2015), and differentiation (Wang & Chen, 2013). As

there are many different processes that occur during bone regeneration,

it is difficult to build a general criterion for a suitable scaffold stiffness that

optimally stimulates this process. Nevertheless, to promote osteoblast

precursor differentiation, current knowledge suggests that the scaffold

stiffness should match the in vivo stiffness of the skeletal tissue under

consideration. The Young's modulus of cortical bone and cancellous bone

is 7–30 GPa and 0.05–0.5 GPa, respectively (Henkel et al., 2013). The

TFM material, as used in our previous studies, had a fiber size of 50 μm

and stiffness of 5 GPa. Currently, thinner titanium fibers (~22 and

~35 μm) can be manufactured. Using stainless steel fibers, it was proven

that a decrease in fiber size could has a very drastic effect on the stiffness

of a fiber mesh (Jansen et al., 1992). However, a change in fiber size can

also has an effect on the fiber mesh porosity resulting in smaller distance

between fiber (Paquay, DeBlieckHogervorst, & Jansen, 1996). Therefore,

the objective of this study was to vary TFM composition, in order to

achieve different stiffness close to cortical bone (7–30 GPa), and to

assess the effects of such variation on the proliferation and differentiation

of bone marrow-derived stromal cells (BMSCs). We hypothesized that

fiber size and porosity influence the stiffness of TFM, and also that such

variation will affect BMSC behavior.

2 | MATERIALS AND METHODS

2.1 | TFM characterization

Nine types of TFM sheets were fabricated by and obtained from

Bekaert B.V. (Zwevegem, Belgium). The meshes were fabricated by

compression and then sintered randomly to bond the fibers at their

points of contact. The fibers had a thin rectangular cross-section, like

a ribbon or linguini. TFM types varied in fiber size (22, 35, or 50 μm)

and volumetric porosity (60, 70, 75, 80, or 87%) were named accord-

ingly, for example, 22–60 represents the TFM type with a 22 μm fiber

size and porosity of 60% (Table 1). To prevent misunderstanding, the

fiber size present throughout the manuscript means the length of the

longest side of the rectangular cross-section.

2.1.1 | TFM surface imaging and validation of
titanium purity

TFM structure and morphology were validated with scanning electron

microscopy (SEM, Sigma 300, Breda, the Netherlands). The surface of

the mesh sheets was imaged at ×250 magnification to obtain an over-

view of TFM architecture. Energy-Dispersive X-ray Spectroscopy

(EDS, Quantax EDS for SEM, Bruker Elemental GmbH, Kalkar,

Germany) was used to assess the composition of the titanium. Using

the same settings as described above, a region of superficial fibers

was selected and the atomic composition was determined.

2.1.2 | Analysis of TFM porosity and pore size

Cross-sections of TFM were made to examine the distribution of

fibers and to assess the total porosity of the mesh. The distance

between the fibers, which refers to mesh pore size throughout the

manuscript, was also determined via cross-sections. TFM samples

were embedded in methylmethacrylate (MMA) and after polymeriza-

tion sectioned perpendicularly to the sheet surface using a modified

sawing microtome technique (van der Lubbe, Klein, & de Groot,

1988). Samples coated with chromium were visualized with SEM as

described above. Using ImageJ (1.48v for Microsoft, National Insti-

tutes of Health, MD), a region of interest (ROI) was drawn within the

sample and a global color threshold was used to distinguish between

fibers and surrounding MMA. Total porosity was calculated as the

percentage of MMA within the ROI. Subsequently, to determine the

TABLE 1 Abbreviations and characteristics of the various TFM
types

TFM type

Sheet thickness

(mm)

Fiber diameter

(mm)

Volumetric

porosity (%)

22–60 0.3 22 60

22–70 0.3 22 70

22–80 0.3 22 80

35–60 0.3 35 60

35–70 0.3 35 70

35–80 0.3 35 80

50–70 0.5 50 70

50–75 0.5 50 75

50–87 1 50 87

Abbreviation: TFM, titanium fiber mesh.
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mesh pore size, 15 rods (cut cross-sections of the fibers in the MMA

matrix) from the ROI of each cross-section sample were selected and

the distance between the rod and the ambient fibers were measured

by ImageJ. The mean and SD of these measurements was calculated

and considered as the mesh pore size.

Additionally, theoretical porosity was computed based on the TFM

and bulk titanium densities. Area density (g/m2) of all sheets was deter-

mined and multiplied by sheet thickness to obtain the density of TFM

(ρTFM), which was divided by the density of solid titanium

(ρTi = 4.51 × 103 kg/m3) to calculate the theoretical porosity of the TFM.

Theoretical porosity %ð Þ= 1−
ρTFM
ρTi

� �
×100%

The theoretical porosity of TFM is the percentage void space calcu-

lated by matrix density, whereas the total porosity determined here is

the fraction of the surface area between fibers from the cross-section.

2.1.3 | Dynamic mechanical analysis

Mechanical properties of the meshes were tested with dynamic

mechanical analysis (DMA). In triplicate, strips of 6 × 1.3 cm were cut

from TFM sheets and analyzed with DMA Q800 (TA Instruments,

New Castle, DW). Using dual cantilever measurements, the strips

were subjected to a controlled, cyclic stress/strain, which deforms the

mesh to a certain amount. The deformation is related to the stiffness

of the mesh material. Frequency and strain sweeps were first per-

formed to optimize conditions. All reported measurements were

thereafter performed at room temperature (RT) with a frequency of

1 Hz and an amplitude of 1 μm. The stiffness was calculated from

stress, strain and phase lag using TA Software (Advantage™ Software

for Windows, Universal Analysis, v5.5.22).

2.2 | TFM scaffold production

Scaffolds with a diameter of 4 mm were punched out from TFM

sheets using a metal socket punch, cleaned ultrasonically in iso-

propanol for 10 min and dried to air. Prior to cell culture experiments,

scaffolds were sterilized by autoclavation at 121�C, transferred to

24-wells plates, and treated with radiofrequency glow discharge treat-

ment for 5 min (RFGD; Plasma cleaner/sterilizer, Harrick Scientific,

Pleasantville, NJ) to increase wettability.

2.3 | Cell viability

Mouse osteoblast precursor cells MC3T3-E1 (ATCC®, LGC Standards

GmbH, Wesel, Germany) were seeded onto TFM scaffolds to deter-

mine cell viability. Cells were cultured in complete medium

(α-minimum essential medium [α-MEM, Gibco®, Life Technologies

B.V., Breda, the Netherlands] supplemented with 10% Fetal Bovine

Serum [FBS, Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany]) at

37�C and 5% CO2, and were transferred twice a week at 80–90%

confluency. Prior to seeding, cells were enzymatically dissociated and

re-suspended in complete medium diluted to 200,000 cells/ml.

Four scaffolds of each TFM type were transferred to one well of a

24-wells suspension plate (Costar® 24 well plate, Corning Incorporated,

Kennebunk, ME) containing 200,000 MC3T3 cells in 1 ml complete

medium (50,000 cells/scaffold). This plate was incubated at 37�C and

5% CO2 for 3 hr on a rotating device at 2 Hz while tilted at an angle of

50� (dynamic seeding). Two scaffolds of each type were imaged imme-

diately, while two others were cultured up to 24 hr before imaging.

Prior to imaging, the scaffolds were gently washed in PBS and

placed on glass microscopy slides. A Live/Dead assay was performed

according to the manufacturer's protocol (Live/Dead® Viability/cyto-

toxicity kit for mammalian cells, Molecular Probes™, ThermoFisher Sci-

entific, Inc., Waltham, MA). In short, at least 50 μl dye solution (2 μM

Calcein AM and 4 μM Ethidium homodimer-1 [EthD-1]) was added to

scaffolds and incubated at RT in the dark for 30 min. Scaffolds were

imaged at ×100 magnification with extended focus using an automated

Axio Imager.Z1 (Zeiss) with excitation and emission wavelengths of

either 488 and 517 nm (Alexa Fluor) for Calcein AM or 528 and

617 nm (Propidium Iodide) for EthD-1, respectively. The ratio of live

and dead cells was determined in triplicate with ImageJ.

2.4 | Primary cell proliferation and differentiation

2.4.1 | Culture conditions of rBMSC

To identify differences in proliferation and differentiation between

TFM types, primary rBMSCs isolated from femurs of a 9 week old male

Wistar rat (local approval number RU-DEC 2014007, Radboudumc Nij-

megen, The Netherlands) were seeded onto TFM scaffolds according to

standard protocol (Walboomers, Elder, Bumgardner, & Jansen, 2006).

Rat femurs were carefully excised, wiped down, and thoroughly washed

three times in washing medium (α-MEM supplemented with 0.5 mg/ml

gentamicin (Gibco) and 2.5 μg/ml fungizone (Amphotericin B, Gibco).

The epiphyses were cut off, and contents of the diaphyses were flushed

out with α-MEM. The cell suspension was thoroughly resuspended,

divided over three 75 cm3 culturing flasks, and pre-cultured in complete

medium at 37�C and 5% CO2 for 7 days to allow for proliferation. On

Day 2, medium was changed to remove dead and non-adherent cells.

Following proliferation, cells were enzymatically dissociated from cul-

ture flasks, taken up in 9 ml complete medium, centrifuged at 250 rcf

for 5 min and resuspended in differentiation medium (complete medium

supplemented with 10 nM dexamethasone, 28 mM L-ascorbic acid and

10 mM β-glycerolphosphate [all: Sigma]). A total of 1.5 × 106 cells were

seeded onto the TFM scaffolds relative to the TFM volume (Table 2),

using the method described in Section 2.3. An equal seeding density

was used for all TFM types to ensure fair comparison of results. Follow-

ing seeding, scaffolds were transferred to individual wells of regular

24-wells plates containing 1 ml differentiation medium, and cultured for

3, 7, 14, or 21 days. Medium was refreshed twice a week.
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2.4.2 | SEM

After 3, 7, 14, and 21 days of culture, samples were transferred to

new 24-wells plates, washed in PBS and fixed in 2% glutaraldehyde

(Merck KGaA, Darmstadt, Germany) in 100 mM cacodylic acid buffer

(pH 7.4, Serva Electrophoresis GmbH, Heidelberg, Germany) for

10 min. Samples were rinsed with PBS and dehydrated in a graded

series of ethanol (70–100%) before drying in tetramethylsilane (TMS,

Sigma-Aldrich Chemie GmbH, Steinheim, Germany). Afterward sam-

ples were coated with 10 nm chromium, and SEM imaging was done

as described in Section 2.1.1.

2.4.3 | DNA quantification

DNA quantifications were performed after 3, 7, 14, or 21 days of cul-

ture. Scaffolds were washed twice with PBS, transferred to 2 ml

Eppendorf tubes containing 1 ml MilliQ, and stored at −20�C. Upon

analysis, cells were lysed with three cycles of freeze-thawing, after

which the scaffolds were sonicated for 10 min, resuspended and cen-

trifuged for 5 min at 10,000 rcf to eliminate large cell fragments. DNA

quantifications were performed on the supernatant with a Quan-

tiFluor® dsDNA System kit (Promega Corporation, Madison, WI)

according to manufacturer's protocol. In short, 100 μl sample was

added to 100 μl DNA dye reagent in clear 96-wells plates and incu-

bated at RT in the dark for 5 min. Fluorescence intensity was mea-

sured at excitation and emission wavelengths of 490 and 535 nm,

respectively. Λ phage dsDNA was used to prepare a standard curve.

2.4.4 | Alkaline phosphatase assay

Expression of alkaline phosphatase (ALP) was measured using the

supernatant prepared for DNA quantification. In triplicate, 80 μl sam-

ple was added to 20 μl 0.5 M 2-amino-2-methylpropanol buffer solu-

tion (Sigma) in a 96-wells plate. Upon addition of 100 μl of 5 mM ALP

substrate p-nitrophenyl phosphate (PNP, Sigma), plates were incu-

bated at 37�C for 1 hr, and 100 μl 3 M NaOH (Merck) was added to

TABLE 2 The number of cells seeded onto TFM scaffolds

TFM type Cells/scaffold ×103
Seeding density

(×103 cells/mm3)

22–60 6.3 1.5

22–70 6.3 1.5

22–80 6.3 1.5

35–60 6.3 1.5

35–70 6.3 1.5

35–80 6.3 1.5

50–70 9.4 1.5

50–75 9.4 1.5

50–87 18.8 1.5

Abbreviation: TFM, titanium fiber mesh.
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stop the reaction. Turnover of PNP to 4-nitrophenol was determined

by measuring absorbance at a wavelength of 405 nm, and normalized

to the amount of DNA.

2.4.5 | Quantification of calcium in extracellular
matrix

Scaffolds were transferred to new 2 ml Eppendorf tubes containing

1 ml 0.5 M acetic acid (Scharlau, Scharlab S.L., Sentmenat, Spain), left

at RT overnight, and resuspended. Ten microliters of sample was

added to 300 μl working reagent (o-cresolphtalein complexone

(50 μg/ml, Sigma), 8-hydroxyquinoline (1 mg/ml, Sigma), ethanol-

amine-boric acid buffer (14.8 M, pH 11, Merck and Scharlau), and

MilliQ in a 5:2:5:88 ratio) in 96-wells plates. Plates were incubated for

5 min at RT and calcium concentration was measured at 560 nm.

CaCl2 was used to prepare a standard curve.

2.5 | Statistical analyses

Data are presented as mean with SD. Data for DMA and seeding effi-

ciency were analyzed using One-Way ANOVA's with Tukey's multiple

comparison test. Data for DNA, ALP activity, and Ca quantifications

were analyzed using Two-Way ANOVA's with Bonferroni's posttest.

Results were considered statistically significant when p values lower

than .05 (p < .05). All statistical analyses were performed with Gra-

phpad Prism 5 (Graphpad Software, Inc., San Diego, CA).

3 | RESULTS

3.1 | TFM characterization

Characteristics of nine types of TFM are summarized in Table 3. The

TFM sheets varied in fiber size and porosity were obtained and studied

F IGURE 1 Overview of SEM images of TFM
sheet surfaces. Images were made at ×250
magnification. Scale bars represent 100 μm. The
TFM types with 22 μm fibers appear almost
molten and show a smooth fiber surface. Fibers
are densely packed. Types with 35 μm fibers show
this molten look as well. Note the presence of
fibers that have fused, most clearly seen in TFM
type 35–80. Fibers of TFM types 50–70 and
50–75 appear flattened, with both smooth and
rough sides. TFM type 50–87 shows these rough
and smooth sides as well, but fibers are more
cubic. TFM, titanium fiber mesh

F IGURE 2 Porosity of TFM. TFM was
embedded in methylmethacrylate (MMA). Cross-
sections were made and were visualized with
SEM imaging at ×200 magnification. Scale bars
represent 100 μm. Note that the thickness of the
sheets is clearly visible, with type 50–87 even
exceeding the image boundaries. TFM, titanium
fiber mesh

2184 AERTS ET AL.



F IGURE 3 Flexibility of TFM as measured with stiffness and pore size as measured with the cross-sections. Stress was applied to TFM strips
with dynamic mechanical analysis (DMA), with an amplitude of 1 μm and a frequency of 1 Hz. The pore size was also determined via cross-
sections. Up left: Stiffness of the TFM types. Dotted lines indicate a range of Young's moduli for cortical and trabecular bone samples of 2 mm
thickness. Down left: pore sizes of the TFM types. Right: significant differences between TFM types: *p < .05; **p < .01; ***p < .001. Apart from
TFM type 22–80, the TFM types with 50 μm fibers have significantly lower stiffness than all other types (thus are more flexible). TFM type
35–60 had a significantly higher stiffness than all other types, except type 22–60. TFM type 50–87 had a significantly higher pore size (~150 μm)
than all other types. TFM, titanium fiber mesh

F IGURE 4 Cell viability after dynamic seeding
on TFM. MC3T3 cells were dynamically seeded
for 3 hr under rotation, at 2 Hz and tilted at 50�.
Cell viability was measured with Live/Dead
staining of cells. (a) Cell viability for all TFM types
after 3 and 24 hr of seeding/culture. Cell viability
was found adequate for ensuing experiments. (b
+ c) Typical image of Live/Dead staining after 3 or
24 hr, at ×100 magnification. Scale bar represents
50 μm. Green, viable cells; red, dead cells. TFM,

titanium fiber mesh

AERTS ET AL. 2185



for area density, porosity (theoretical and total porosity), pore sizes,

fiber dimensions and stiffness. Porosity, pore sizes, and fiber dimensions

were measured from SEM images of the cross-section.

3.1.1 | TFM morphology

SEM images of the surface of the TFM sheets revealed randomly ori-

ented interwoven fibers for all nine mesh types (Figure 1). The fibers in

all TFM types had a rectangular shape, but this shape was more pro-

nounced for the 50 μm fibers. Also, for all fiber sizes, one side of the fiber

had a rough surface, while the other side showed a smooth appearance.

Again, this was more pronounced for the 50 μm fibers. Further, in the

TFM 35 type, fusion of titanium fibers was observed. SEM pictures dem-

onstrated that mesh porosity decreased with the reduction of the fiber

size, that is, porosity decreased as follows TFM22 < TFM35 < TFM50.

Finally, SEM-EDS confirmed that all materials were pure titanium with-

out other compositions (Supporting Information).

3.1.2 | TFM porosity

The porosity of the TFM was measured with SEM (Figure 2).

Cross-sections showed a clear contrast between the electron-

conducting fibers and surrounding MMA. Note the differences in

the thickness of the several types of TFM sheets. As is shown in

Table 3, total porosity measured from SEM images was not always

according porosity as specified by the manufacturer; whereas the

theoretical porosity calculated from the (area) density was much

more similar.

3.1.3 | TFM pore size

The distance between fibers in each TFM samples was also measured

in the SEM cross-sections (Figure 3). TFM 50–87 had the largest pore

size of 159.20 ± 28.17 μm, while TFM 22–60 had the smallest pore

size of 25.83 ± 9.23 μm. For the meshes of the same fiber size, the

F IGURE 5 Overview of proliferation of
rBMSCs on all types of TFM. After 3, 7, 14, and
21 days of culture, scaffolds were visualized with
SEM imaging at ×250 magnification and 10 kV.
Scale bars represent 100 μm. Over time, cells
proliferate and form a layer over the TFM surface.
rNMSCs, rat bone marrow-derived stromal cells;
TFM, titanium fiber mesh
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pore size increased along with the volumetric porosity. Besides, for

the TFM types with the same volumetric porosity, the sample with

thicker fiber size had a larger pore size.

3.1.4 | TFM flexibility

The stiffness, an indicator of the flexibility of TFM, was measured

with DMA at a standardized amplitude of 1 μm and a frequency of

1 Hz (Figure 3). TFM types with 50 μm fibers had significantly lower

stiffness than most other types, whereas the stiffness of type 35–60

was significantly higher. No significant differences were found within

groups of TFM scaffolds with 22 or 50 μm fiber size. Evidently, the

stiffness for TFM are lower than the stiffness for solid cpTi (105 GPa)

(Abdel-Hady Gepreel & Niinomi, 2013). As a reference, a range of

Young's moduli (10–30 GPa) for cortical and trabecular bone of 2 mm

thickness is included in the graph (Rho, Tsui, & Pharr, 1997).

3.2 | Proliferation on TFM scaffolds

3.2.1 | Cell viability

Cell viability was assessed with a Live/Dead staining of MC3T3 cells

after 3 hr of dynamic seeding onto TFM scaffolds and after 21 hr of

incubation (i.e., total of 24 hr, Figure 4). Images showed an abun-

dance of viable cells (green) and a few dead cells (red) that had

adhered to the TFM fibers. Quantification of red and green cells rev-

ealed that cell viability ranged from 74.4% ± 5.8% to 89.8% ± 2.4%

or from 75.3% ± 5.7% to 93.1% ± 3.4% after 3 or 24 hr,

respectively.

3.2.2 | Proliferation, qualitative

Scaffolds of all nine TFM types were seeded with rBMSCs and cultured

for 3, 7, 14, or 21 days. SEM images at Days 3, 7, 14, and 21 showed

the formation of a layer composed of both cells and some extracellular

matrix covering the surface (Figure 5). At Day 3, cells were found to be

stretched out between fibers and bridged the mesh pores (Figure 6a).

At Day 7, cells started to form a layer that covered the fiber surface

and mesh porosity (Figure 6b). From Day 14 on, a multilayer of cells

was observed over the surface of the scaffolds. Some cells had a

rounded morphology, which indicates osteoblastic differentiation

(Figure 6d). At Day 14, small globular calcium phosphate mineral depo-

sitions were seen (Figure 6c,e) (Matsuzaka, Walboomers, Yoshinari,

Inoue, & Jansen, 2003). At locations, where fibers protruded out of the

TFM, a clear view was obtained of the guidance of the cells over the

mesh fibers and into the mesh porosity (Figure 6f).

3.2.3 | Proliferation, quantitative

Total DNA quantifications were performed after 3, 7, 14, and

21 days of culture. The amount of DNA increased in all TFM types

over time (Figure 7). Particularly with regard to TFM 50 types, the

amount of DNA decreased at Day 21. For TFM 50 types, amount of

DNA was significantly higher at Days 3, 7, and 14 compared with

F IGURE 6 Details during proliferation of rBMSCs on TFM. SEM images were made at 1000x magnification at 10 kV. Scale bars represent
10 μm. (a) TFM type 35–70 at Day 3. Cells bridge the gaps between the fibers, or appear as dark spots on the fibers. (b) TFM type 35–70 at Day
7. Cells grow over the fiber surface. (c) TFM type 22–60 at Day 14. Depositions of mineralization appear. (d) TFM type 22–70 at Day 14. Cells
appear rounder, characteristic of osteoblasts. (e) TFM type 22–70 at Day 21. Depositions of mineralization on a closed layer of cells. (f) TFM type
35–60 at Day 21. A layer of cells covers an extruding fiber. rNMSCs, rat bone marrow-derived stromal cells; TFM, titanium fiber mesh
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the TFM 22 and 35 type, but at Day 21 DNA amount of TFM

50 decreased.

3.3 | Osteogenic differentiation on TFM scaffolds

3.3.1 | ALP activity

ALP activity was used as a marker for osteoblastic differentiation.

Figure 7 shows the characteristic increase in ALP activity over time

for all TFM types, with the peak of activity at Day 14. Specifically, at

Day 14, ALP activity of TFM with 50 μm fibers was significantly lower

than ALP activity of TFM with 22 or 35 μm fibers. There were no sig-

nificant differences between 22 and 35 μm TFM's at any time point.

3.4 | Mineralization on TFM scaffolds

As an evaluation of the capacity to form a mineralized extracellular

matrix, the amount of calcium on TFM samples was measured. All

TFM types contained increasing quantities of Ca (Figure 7), indicating

that the cells were actively depositing mineralized matrix over time.

Spontaneous mineralization did not occur, as TFM incubated without

cells in the same media and at the same frequent medium change, did

F IGURE 7 Behavior of rBMSCs during culture on TFM. TFM was cultured for 3, 7, 14, or 21 days. DNA quantity, alkaline phosphatase (ALP)
activity and calcium deposition were measured in triplicate. Due to the large amount of data in each graph, significant differences are shown in
tables. The numbers indicate the time point at which a combination of TFM types showed a significant difference: p < .05. Proliferation:
Proliferation measured by DNA quantification. TFM types with 50 μm fibers often contained significantly more DNA compared to other types,

mainly at Day 14. Differentiation: Differentiation measured by ALP activity. TFM types with 50 μm fibers often showed significantly lower ALP
activity, mainly at Days 14 and 21. Mineralization: Mineralization measured with calcium quantification. Calcium contents showed significant
differences only at day 21. TFM type 35–70 remained significantly lower in calcium, whereas TFM type 50–87 was significantly higher than all
other types. TFM, titanium fiber mesh
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not show Ca deposition (data not shown). At Day 21, calcium deposi-

tion on TFM 50–87 was significantly higher compared to all other

TFM types. Mineralization on TFM 35–70 was significantly less pro-

nounced compared to TFM with 22 or 50 μm fibers.

4 | DISCUSSION

The aim of this study was to evaluate the stiffness and in vitro cell

response to TFM scaffolds with different network architecture. Nine

constitutions of TFM with unique fiber thickness (22, 35, and 50 μm)

and porosity (60, 70, 75, 80, 87%) were examined. The results indeed

confirmed that the tailoring of fiber size and porosity was an effective

means to reach stiffness from 4.3 ± 0.73 GPa to 46.41 ± 8.67 GPa.

Also, TFM scaffolds of all types were able to support cell growth and

differentiation, as shown by SEM imaging and by the increase in DNA

contents, ALP activity, and matrix mineralization over time.

To characterize the TFM types, the volumetric porosity and the

pore size were validated on cross-sections of TFM as described

above. Compared to porous scaffolds with regular pore shapes and

inerratic structures, TFM has the connective space in between the

intricately distributed fibers, providing considerable space for cell

migration and tissue ingrowth, but also make it difficult to accurately

assess the pore distribution. Mercury intrusion porosimetry (MIP) and

microcomputed tomography (μCT) are both widely used techniques

for characterizing the distribution of porosity for scaffold materials

(Lodoso-Torrecilla et al., 2018). Unfortunately, they cannot provide

convincing results for TFM. MIP has limitations when applied to mate-

rials that have irregular pore geometry (Abell, Willis, & Lange, 1999),

and for TFM types with over 80% porosity, the flow of the mercury

would occur without additional pressure, which results in the inaccu-

racy of the MIP analysis. Micro-CT, as a nondestructive characteriza-

tion technique, is also not applicable, due to the scattering arising

from the titanium (Moore et al., 2004). Therefore, cross-sections of

the different TFM types were made to measure their porosity and

pore size. The measured porosity (total porosity) was clearly lower

than the porosity, as specified by the manufacturer. This discrepancy

can be explained by our measuring method. Cross-sections are sub-

jected to the complications of longitudinally cut fibers: not all fibers

are cut perfectly perpendicularly, which results in an overestimation

of fiber area. For density measurement of porous materials, Archime-

des' principle is a reliable method. However, because the narrow pore

shape and distribution among the fibers of the TFM may create some

amount of closed porosity, not accessible by fluids, Archimedes' prin-

ciple may not be completely accurate. Therefore, the porosity was

also calculated based on the density of the TFM sheets and was found

similar to the specified porosity.

Porosity, as well as the pore size, has a strong influence on the

mechanical properties of biomaterials; for instance, higher porosity

always leads to lower stiffness (Karageorgiou & Kaplan, 2005). TFM

types with 50 μm fibers had significantly lower stiffness than types

with smaller fibers. In theory, if the porosity stays the same, a reduc-

tion in fiber size would increase the number of fibers: lumen and

fibers would then be more finely distributed inside the TFM. This

increase in the number of fibers will lead to a stiffer TFM with an

increased stiffness, as was indeed the case for TFM types with fibers

of 22 or 35 μm. Independent of these individual differences, all types

of TFM show a markedly decreased stiffness compared to solid tita-

nium (~105 GPa) (Abdel-Hady Gepreel & Niinomi, 2013). For the

22 and 35 size fibers with the highest porosity, the stiffness approxi-

mate the values found in the literature for cortical bone (~30 GPa for

samples of 2 mm thickness) (Rho et al., 1997). Of course, fiber orienta-

tion also has an effect on stiffness. Although the fibers we obtained in

random directions, we cannot totally exclude the directional effects of

the subsequent compaction and sintering process. Previously, other

attempts have been made to lower stiffness of solid titanium implants

by incorporating other metals (vanadium, aluminum, cobalt, molybde-

num, or niobium). These methods can bring Young's modulus down to

55 GPa, yet it remains much higher than cortical bone (Abdel-Hady

Gepreel & Niinomi, 2013). Additionally, the incorporation of other

metals gives rise to unfavorable changes in biocompatibility and resis-

tance against corrosion, fatigue, and wear (Long & Rack, 1998). The

use of TFM would thus be a better option. According to the diversity

of stiffness, different types of TFM might be favorable for clinical use,

or individual types of bone. TFM alone maybe not durable as a load-

bearing implant due to its strength, but still previous studies have

already indicated that a so-called mesh porous coated system used on

orthopedic devices was indeed robust enough for clinical application

(Jasty, Bragdon, Haire, & Harris, 1993; Stilling et al., 2011). Admit-

tedly, the application of TFM used as a surface layer on orthopedic

and dental implants has the potential risk that coated implants fail pri-

marily from the layers shearing off the implant. Therefore, follow up

investigation on optimization for implant and TFM design is required

in preclinical implantation studies.

The flexible porous structure should be manufactured by

balancing pore size and porosity to maintain mechanical properties,

that is, stiffness, as well as achieve appropriate bone ingrowth. The

pore size of TFM will decrease when the fiber size is reduced and vol-

umetric porosity is maintained simultaneously or of the volumetric

porosity is reduced and fiber size is maintained simultaneously

(Figure 3). Still, the pore sizes from all TFM types correspond to pore

sizes that are generally considered optimal to support the growth of

bone forming cells (50–500 μm) (Tadic, Beckmann, Donath, & Epple,

2004). A constant increase in the number of cells was seen in all sam-

ples quantified by DNA and confirmed by SEM images. Notably, TFM

with 50 μm fibers showed at Days 3, 7, and 21 significantly higher

DNA contents compared to other TFM types. It can be assumed that

a higher fiber size results in increased cellular adhesion, which results

in an enhanced cellular growth. However, it was also observed that at

Day 3, DNA content at TFM 50–87 was significantly higher than

DNA content at TFM 50–75 and 50–70. This suggests that although

there can be an initial boost in cell numbers, this does not cause the

higher DNA amounts at later time points. Thus, a better explanation

would be the effect of larger pore size (from 84.85 ± 26.79 μm to

159.20 ± 28.17 μm) of TFM with 50 μm fiber, which facilitated trans-

port of oxygen and nutrients (Takahashi & Tabata, 2004). Further, a
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decrease in DNA amount on TFM 50-types occurred at Day 21. This

effect was seen in earlier studies with TFM and is due to the

increased mineralization, which does not allow a complete retrieval of

all DNA out of the specimens (van den Dolder, Bancroft, et al., 2003a)

Differentiation was studied by quantifying the ALP as an early

marker for osteogenicity. Although more cells adhered to the TFM

types with 50 μm fibers, after correction for cell number these fibers

generally showed least ALP activity. The decrease in ALP activity can

be explained by the promoted proliferation and also the bigger pore

size in TFM types with 50 μm fibers. The combination of relatively

high porosities (87, 70, and 75%) with bigger fibers will result in larger

spaces in between the fibers, which leads to more distance between

individual cells and thus less cell–cell contact. Cell–cell interaction has

proven to play an important role in osteodifferentiation: bone

marrow-derived stem cells express a range of cadherins (integral

transmembrane proteins that facilitate cell–cell adhesion and interac-

tion), that change upon differentiation to the osteogenic lineage

(Stains & Civitelli, 2005). In vitro, disruption of cadherin functioning

impaired the osteoblastic differentiation (Cheng, Shin, Towler, & Civi-

telli, 2000; Ferrari et al., 2000), and in mice, the transgenic expression

of a dominant negative N-cadherin mutant (which impedes cell–cell

adhesion normally facilitated by cadherins) caused the peak bone

mass to occur later in life, suggesting problems in osteogenic differen-

tiation (Castro et al., 2004). Therefore, decreasing cell–cell contact

may decrease cadherin-mediated interactions, and in turn delay osteo-

blastic differentiation.

Differentiation was also studied by quantifying matrix mineraliza-

tion, assessed by Ca deposition of cells. All samples showed evident

matrix mineralization. Although individual differences exist, these

seem rather small and are deemed not relevant. It seemed that 50 and

22 fibers exhibited more mineralization than 35 fibers, indicating that

appropriate pore size and porosity are required for homogenous cell

distribution, fluid flow, and diffusion of nutrients and oxygen, and thus

may impact the way rBMSCs deposit mineralization (Bencherif,

Braschler, & Renaud, 2013). In addition, cellular behavior is undoubt-

edly affected by the applied strain (Diederichs, Freiberger, & van

Griensven, 2009), which would be influenced by different stiffness of

diverse TFM types under loading condition. Further research should

be undertaken to investigate the stiffness and loading combined

effect on the cellular behavior on meshes. It should be noted that the

minimum porosity or pore size necessary for osteogenesis in vivo will

be different and that in vivo osteogenesis is also depending on other

processes, for example, vascularization (Karageorgiou & Kaplan,

2005). This underlines again that follow up investigation in preclinical

implantation studies is required to make definitive conclusions.

Before concluding, it should be noted that some confounding

effects can never be excluded. Alterations to the TFM in terms of

fiber dimensions and porosity will inevitably impact other morphologi-

cal parameters. SEM images showed that besides fiber size and poros-

ity, the surface roughness and density of the TFM varied between

types, which should be taken in consideration when assigning the

results to specific parameters such as fiber size or porosity. As shown

in SEM images, TFM types with 35 μm fibers showed more fusion of

fibers than other TFM types, and TFM types with 50 μm fibers dis-

played rough sides, whereas the other types appeared somewhat

smoother. These effects are the consequence of different settings

(e.g., sintering) during the manufacturing process of the various TFM

types. It is already known that cells react to such micro- and nanoscale

structures. Increasing roughness (e.g., by sandblasting, acid etching,

and nanotube formation) of titanium surfaces is known to result in

increased initial adhesion of cells (Dhaliwal et al., 2017; Huang et al.,

2017; Mustafa et al., 2001)

5 | CONCLUSIONS

The current study evaluated stiffness and in vitro cell response to

TFM scaffolds with different network architecture. An overview of

characteristics of each TFM type was provided so that choices can be

made on their inclusion in future studies, based on the specific desired

application. Changes in stiffness could effectively be achieved by tai-

loring fiber size or porosity, which will alter the pore size simulta-

neously. Regarding cellular behavior, it has become clear that all TFM

types support growth and differentiation of bone cells. Further pre-

clinical (in vivo) studies are needed to assess which TFM types are

most suitable as clinical use for bone ingrowth and bone regeneration.
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