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Abstract: The time-varying reproduction (Rt) provides a real-time estimate of pathogen transmissibil-
ity and may be influenced by exogenous factors such as mobility and mitigation measures which are
not directly related to epidemiology parameters and observations. Meanwhile, evaluating the impacts
of these factors is vital for policy makers to propose and adjust containment strategies. Here, we
developed a Bayesian regression framework, EpiRegress, to provide Rt estimates and assess impacts
of diverse factors on virus transmission, utilising daily case counts, mobility, and policy data. To
demonstrate the method’s utility, we used simulations as well as data in four regions from the Western
Pacific with periods of low COVID-19 incidence, namely: New South Wales, Australia; New Zealand;
Singapore; and Taiwan, China. We found that imported cases had a limited contribution on the
overall epidemic dynamics but may degrade the quality of the Rt estimate if not explicitly accounted
for. We additionally demonstrated EpiRegress’s capability in nowcasting disease transmissibility
before contemporaneous cases diagnosis. The approach was proved flexible enough to respond
to periods of atypical local transmission during epidemic lulls and to periods of mass community
transmission. Furthermore, in epidemics where travel restrictions are present, it is able to distinguish
the influence of imported cases.

Keywords: Bayesian inference; COVID-19; epidemic control; regression; reproduction number

1. Introduction

The combination of non-pharmaceutical interventions (NPIs) such as border controls,
social distancing, and test-trace-isolate-quarantine systems allowed a number of countries
and regions in the Western Pacific to suppress COVID-19 transmission for extended peri-
ods [1]. During periods of low but non-zero community transmission, it can be difficult
for policy makers to make sense of disease transmission potential. Consequentially, it re-
mains difficult to ascertain the excessiveness of contemporaneous control measures, which
are economically and socially costly, and whether outbreaks represent nascent waves or
stochastic flare-ups of disease transmission. These uncertainties are further magnified
when secondary community infectees result from imported, active infectors [2].

A commonly used metric of disease transmissibility is the instantaneous or effective
reproduction number Rt, which is defined as the ratio of the number of new local infections
generated at time t and the total infectiousness of infected individuals at that time [3]. As
an indicator of disease transmissibility, the threshold of unity signals if the epidemic is
growing. Given its utility to policy makers for epidemic assessment, Rt has been used to
understand the impact of public health interventions for outbreaks caused by pathogens
such as smallpox, influenza, severe acute respiratory syndrome coronaviruses 1 and 2 [3,4].
Over the past decade, several approaches have been proposed to estimate Rt that extend
the seminal Wallinga and Teunis method [5], including EpiEstim by Cori et al., EpiFilter by
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Parag and EpiInvert by Alvarez et al. [3,6,7]. Although these methods pool information
across time to improve the precision and hence the utility of Rt estimates, they do not
account for exogenous factors that may substantially affect transmissibility—such as mo-
bility data or characteristics of the NPIs that took place over time. Exogenous factors may
provide additional information on disease transmissibility, especially when the number of
cases is low and uninformative.

Furthermore, despite improvements in EpiEstim and EpiFilter being proposed to
distinguish imported cases from local ones [8,9], when quarantine measures on international
travelers are in place, the risk of secondary transmission from imported cases may differ
substantially from that of the community, and when imported cases constitute a substantial
fraction of the total number being detected, it is important for estimates of Rt to account
for heterogeneous transmissibility between groups.

Therefore, this study outlines a method to combine case time-series, stratified by
importation status, and covariates (vaccination rates, mobility levels, and policy imple-
mentation) to estimate Rt in a regression-style framework. We applied the method to
COVID-19 in four Western Pacific countries and regions that had both extended periods of
low and high community incidence. The method we developed, EpiRegress, is completely
data-driven, assigning little prior information to Rts. It allows changes in historical Rt to be
explained through relevant, exogenous covariates, and thereby provides reliable nowcasts
of the current Rt despite the possible absence of case counts contemporaneously. The
approach therefore can provide policy makers real-time estimates of disease transmission
potential to guide decisions on containment measures.

2. Methods

In brief, the EpiRegress framework assumes a negative binomial relationship between
daily case counts and Rt, where the number of cases on a certain day had an expected value
equal to the sum of local and imported infectiousness. We estimated Rt over time by fitting
case counts in a model akin to a generalised linear regression where dependent variables
were taken to be mobility, epidemiological, and policy data. The Metropolis–Hastings
algorithm was then used to derive the joint posterior distribution of the parameters before
predictions on case count were made based on parameter estimates. We exemplified the
utility of our approach through application to four Western Pacific countries or regions
(henceforth denoted regions)—New South Wales, Australia; New Zealand; Taiwan, China;
and the city state of Singapore—over the period from January to September 2021. These
four regions and this epoch were selected as they had periods of low incidence, making
estimation of Rt harder due to uninformative case data. The datasets utilised and methods
developed are discussed below.

2.1. COVID-19 Data

Reported COVID-19 case counts in New South Wales, New Zealand, Singapore, and
Taiwan were collected from the government health websites of these four regions respec-
tively [10–13]. They were extracted from 12 November 2020 (50 days prior to year 2021) to
30 September 2021, for the four regions. Local cases and imported cases were separated for
the regions New South Wales, New Zealand, and Taiwan while for Singapore, we excluded
cases reported in foreign worker dormitories for both local and imported cases as they had
a distinct disease epidemiology due to localized movement restrictions and denser living
conditions compared to the community populace (Figure S2) [14,15]. In the Supplementary
Information, we demonstrate that these exclusions do not significantly affect Rt estimates
(Figure S9).

The serial interval distribution was derived based on the time between notification
events of 157 pairs of primary and secondary household cases in Singapore in 2021 [16].
We approximated the empirical serial interval distribution with a discrete, truncated log
normal distribution using a mean of 4.1 days and standard deviation of 3.5 days (Figure S3).
We used these data to estimate the infection potential assuming that the majority of the
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local cases were constituted of the B.1.617.2 variant (henceforth denoted Delta variant) [17],
and similar nonpharmaceutical interventions had the intended effects of facilitating early
detection, isolation of new cases, and limiting spread [18].

We also included the time-varying proportion of cases of the Delta variant as a can-
didate factor to explain changes in Rt using data from GISAID; for New South Wales,
the Australian proportion was used as no state-level proportion was available [19]. This
inclusion was to account for the variant having a significantly higher basic reproductive
number than the original virus [20]. For all the regions but Taiwan, the proportion rose
gradually from 0 in mid-March to nearly 100%, while for Taiwan it rapidly grew from
0 to 100% in mid-June. The proportion was 100% for all the four regions from mid-July to
the end of September 2021 (Figure S1). The time window predated the emergence of the
Omicron variant of SARS-CoV-2.

2.2. Policy Data

Policies introduced in the four regions were extracted from the Oxford COVID-19
Government Response Tracker (OxCGRT) [21], which has provided information of govern-
ment responses to COVID-19 around the globe since 1 January 2020. The dataset consists of
16 different indicators grouped into categories of closures and containment (c), economic
response (e), and health systems (h), together with four indices calculated as functions of
individual indicators from 1 January 2020. Detailed descriptions of these indicators and
indices were listed in the Supplementary Information (Table S1). We extracted data until
30 September 2021 and imputed each of the missing values (0.3%) with the last available
value in that column. For Singapore, we introduced six more variables representing discrete
intervention phases in place from November 2020, to September 2021, including Phase 2,
Phase 3, Phase 2 (Heightened Alert), Phase 3 (Heightened Alert), Preparatory Stage, and
Stabilization Phase (taken as a reference variable) [22], during which the government
adopted distinctive containment strategies on workplaces, social gatherings, dining, and
entertainment facilities.

Variations in stringency, government response and containment health index values
were almost the same for each specific region while for economic support index, only
New South Wales and Taiwan recorded a sudden change by the end of March and May
respectively. The greatest change in the first three index values took place in mid-August for
New Zealand, and in mid-May for Taiwan. Changes in these indices tended to be milder for
New South Wales and Singapore. Variations in the policy indicators, by comparison, were
not so large and many remained constant throughout the nine-month period. Generally,
indicators belonging to the same category had similar changes and the trends were mostly
reflected in the corresponding indices (Figure S1).

2.3. Google Mobility Data

Mobility data (Figure S1) for the four regions were obtained from Google’s Community
Mobility Reports from 12 November 2020 to 30 September 2021 [23]. The data reflect relative
changes in time from a pre-COVID-19 outbreak baseline that visitors spend in six different
types of places: residential, workplace, retail and recreation, grocery and pharmacy, parks,
and transit stations. Generally, the time people spent in the last five types of places were
strongly and positively correlated with each other and negatively correlated with the time
people spent in residential areas, though the trend between parks and other types of places
for New South Wales and New Zealand were not so obvious (even converse). Variation in
time spent in workplaces was the largest for all the four regions and a prominent weekly
circle was observed while substantial changes in the variables were seen in May to August
(Figure S1).

2.4. Vaccination Data

The vaccination doses administered per 100 people in New Zealand, Singapore, and
Taiwan were collected from covidvax.live [24], an online platform that provides real-time
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statistics on vaccine doses registered worldwide. We obtained daily doses administered for
New South Wales from COVID LIVE [25], an Australian website whose data sources are
media releases and state health departments, and took the population of the region to be
8.2 million. The time range for vaccination data was from 1 January to 30 September 2021.
For simplicity, we calculated the ‘vaccination rate’ as half of the average vaccination doses
administered per person, i.e., 0.5 Dti, where Dti is the mean vaccination doses administered
per person by time t in region i. Vaccination started the earliest in Singapore, rose at almost
a constant speed from March to July and slowed down from August as the vaccinated
reached around 80% of the population. For both New South Wales and New Zealand, the
rate started to rise from late March and accelerated significantly from mid-July. Taiwan,
however, is the region with lowest vaccination rate among the four, where few people were
vaccinated by mid-June and, by the end of September, only around 40% of the population
had been vaccinated (Figure S1).

2.5. Modelling Daily Number of Cases and Time-Varying Reproduction Number

Using the serial interval probability mass at s days, ws, and the number of reported
cases before day t, I1:t−1, the number of local cases on day t, Ilocal

t , is assumed to follow a
negative binomial distribution with mean

µt =
t−1

∑
u=t−∆t

Ilocal
u wt−uRu + φ

t−1

∑
u=t−∆t

Iimported
u wt−u (1)

and variance
σ2

t = τµt, (2)

where φ is assumed to be the constant risk of transmission per imported case into the
community, τ is the inflation factor for the variance, ∆t is the length of the time window
[t− ∆t, t− 1] when a primary case is likely to cause a secondary case and for each day u,
Iu = Ilocal

u + Iimported
u and Ru is the instantaneous reproduction number aforementioned.

Allowing for enough time between neighboring generations of infections [26], we truncated
the serial interval at ∆t = 50 for computational purposes by setting

50

∑
t=1

wt = 1

and discretized the serial interval distribution by letting

wt = f (t)/
50

∑
s=1

f (s),

where f (·) is the probability density function of the log normal distribution with mean
4.1 days and standard deviation 3.5, which is the aforementioned approximation of the
empirical serial interval distribution (Figure S3).

2.6. Augmenting Rt Inference with Exogenous Factors

We assume that Rt can be explained by a series of exogenous factors at time t, thus:

log R = Xβ + α,

where Xt×p is a matrix with p exogenous factors measured across time points 1, 2, 3, · · · , t,
β =

(
β1, β2, · · · , βp

)T a vector of time-invariant coefficients, α a constant intercept, and
R = (R1, R2, · · · , Rt)

T a vector of time-varying reproduction numbers. Covariates with
constant values were excluded.
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Since there are a large number of covariates β that may potentially affect or be corre-
lated with Rt, we make use of the Bayesian Lasso [27] for parameter selection by assigning
a Laplace prior distribution with mean 0 and variance 2λ−2 for each entry of β, i.e.,

βi ∼ Laplace
(
λ−1

)
, i = 1, 2, · · · , p,

where λ ≥ 0 is the penalty in the L1-penalized least square error function

(
R̃−Xβ− α

)T(
R̃−Xβ− α

)
+ λ

p

∑
i=1
|βi|, R̃ = log R− log R1n,

which the Lasso estimates minimize.
We set λ = 5 (see Table S3 for more details). We then used an auto-regressive

Metropolis–Hastings algorithm to estimate the joint posterior distribution of the parameters
Θ = (α, β, φ, τ) and thus those of Rts with a Gaussian proposal distribution

Θnew ∼ Np

(
Θold, VΘ

)
,

and each new draw of parameters Θnew was accepted with probability

min

(
1, ∏t P(It|I1:t−1, Θnew, λ, X)P(Θnew)

∏t P
(

It
∣∣I1:t−1, Θold, λ, X

)
P
(
Θold

) ),

where P(It|I1:t−1, Θ, λ, X) = fµt ,τ(It) is the conditional likelihood and
P(Θ) = h(α)1{τ>0}1{φ>0}∏i gλ(βi) the prior distribution of the parameters. In these,
fµt , τ(·) is the probability mass function for negative binomial distribution with mean
µt and variance τµt, gλ(·) is the density function for Laplace distribution with location
parameter 0 and scale parameter λ, h(·) is the density function for the non-informative
normal prior N

(
0, 1002) which we assigned to the intercept α, while 1{τ>0} and 1{φ>0}

are the positive constraints (indicator function taking 1 if and only if the argument of the
function is positive) we set for τ and φ respectively.

We standardized the X matrix before doing regression and excluded covariates which
remained constant throughout the inference window to allow for the comparison of differ-
ent entries of β.

To examine the roles of different factors in accounting for changes in Rts, three model
variants with different factors included in the covariate matrix X were considered: (i) a
full model that included all available factors (Table S2), (ii) a model excluding policies
that included only mobility and epidemiological factors, (iii) a hybrid model that included
‘retail and recreation’ and ‘residential’ from google mobility data, vaccination rate and
all indicator covariates in the Oxford policy data except ‘testing policy’ and ‘vaccination
policy’. The second model variant was chosen to see if mobility and epidemiology variables
could fully reflect changes in policy-related variables, making the latter redundant in Rt
estimation. Variables in the last model variant were selected based on the correlation
matrixes of Xs in the full model, i.e., some of the variables with correlation coefficients
close to 1 were excluded in the hybrid model.

To compare the fits of different model variants, we used the Deviance Information
Criterion (DIC), which measures the deviance while penalizing model complexity. The
formula for calculating the DIC is

DIC = D(Θ)− 1
2

Var(D(Θ)),

where D(Θ) = −2 log(∏t P(It|I1:t−1, Θ, λ, X)) + C, Θ = (α, β, φ, τ) is the collection of the
parameters to be estimated and C is some constant.
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2.7. Simulation for Validation of the Method

Since the true Rt values are not observable in the case studies, we used simulations to
validate the proposed approach. We considered two different X covariate matrices over a
window of 230 days (henceforth, Scenario 1 and Scenario 2): one taken directly from the
mobility, epidemiological, and policy data of New Zealand between 1 January and 28 June
2021, and the other with 20 randomly generated covariates, among which 6 are continuous
variables and the rest 14 are ordinal (range for each variable: 0–4). Similar to inference
performed in case studies, we standardized the X matrices and excluded the covariates
with constant values, after which the first X covariate matrix was left with 21 variables.

We randomly generated 4 different sets of β coefficients for each scenario, calculated
the corresponding Rts and further simulated local case counts for 230 days from the neg-
ative binomial distribution with mean and variance specified in Equations (1) and (2) in
Section 2.5 previously. Imported case counts were obtained from a discrete uniform distri-
bution with left end as 0 and right end as a number in the set {10, 15, 20, 30}. The constant
risk of transmission per imported case into the community φ was set to be a fixed value of
0.01 and the inflation factor for the variance, τ, was taken in the range 3–6. Utilising the
simulated incidence curves, we estimated Rts with EpiRegress over a window of n = 180
days (i.e., the likelihood function for estimating Rts was P(I51:230|I1:229, X, β, α, φ, τ, λ))
and compared them with the ‘real’ values by calculating the mean absolute errors (MAE)
and mean absolute percentage errors (MAPE) as follows:

MAE =
1
n ∑ n

t=1

∣∣∣R̂t − Rsim
t

∣∣∣
and

MAPE =
1
n ∑ n

t=1

∣∣R̂t − Rsim
t
∣∣

Rsim
t

,

where R̂t is the posterior median and Rsim
t is the simulated Rt for day (t + 49) in the original

dataset. We also calculated the successful coverage rates (SCR) for the proportion of the
time in the 180 days where the simulated Rt values, Rsim

t , fell within the 95% CrIs of the
estimated Rts.

Using the same incidence curves, we additionally performed Rt estimations with
EpiEstim, EpiFilter, and EpiInvert for comparison purposes, but we only calculated MAEs
and MAPEs for point estimates by EpiInvert as the relationship between Rt and It which it
uses in the renewal equation is the same as the that for simulating the case counts.

2.8. Prediction of Case Counts

If values of the covariates on day t, Xt =
(
Xt1, Xt2, · · · , Xtp

)
, are available, EpiRegress

enables us to estimate the number of local cases on day (t + 1), Ilocal
t+1 . This is done in

two steps. First, we obtain the posterior predictive distribution of log Rt = Xtβ + α by
doing MCMC simulations with a shifting window of 90 days, i.e., using data over the time
interval [t− 89− ∆t, t] to calculate the likelihoods for the case counts from day (t− 89)
to day t, where ∆t = 50 is the maximum length of serial interval aforementioned. Since
Ilocal
t+1 follows a negative binomial distribution with mean and variance as in (1) and (2), we

obtain the posterior predictive distribution of Ilocal
t+1 by performing Monte Carlo sampling.

Note that past data are used to generate these samples, rather than past simulations, so the
results presented represent nowcasting accuracy rather than long-term predictions, which
would in any case require future covariates to be predicted.

Analyses were conducted in R [28] and C++.

3. Results
3.1. Validation of Rt Estimation through Simulation

We simulated four incidence curves from each of the two covariate matrices, estimated
the Rts with EpiRegress, EpiEstim, EpiFilter, and EpiInvert and compared the estimates
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with the simulated ‘true’ values (Figures S4 and S5, Table 1). All but EpiInvert successfully
produced Rt estimates for all scenarios; EpiInvert failed for the third simulated time series
of case counts in Scenario 1 when the maximum number of local cases reported in a day was
below 100. The same method also failed or gave negative Rt estimates when the number of
local cases remained low and imported cases were excluded in inference for Rt.

Table 1. Comparison of mean absolute error (MAE) and mean absolute percentage error (MAPE) of
Rt point estimates by EpiRegress, EpiEstim, EpiFilter, and EpiInvert with imported cases included
(‘import’) or excluded (‘local’) in the total case counts, as well as the successful coverage rate (SCR) of
the estimated 95% CrIs by EpiRegress.

Scenario 1 Scenario 2

Simulation 1 2 3 4 1 2 3 4

MAE

EpiRegress 0.19 0.25 0.24 0.09 0.33 0.43 0.35 0.29

EpiEstim 0.92 0.60 0.85 0.41 0.80 0.95 0.90 0.75

EpiFilter 0.88 0.59 0.84 0.38 0.79 0.93 0.92 0.73

EpiInvert (Local) 0.24 0.33 NA 0.24 0.42 20 0.67 0.88

EpiInvert (Import) 0.62 0.39 NA 0.25 0.62 0.45 0.66 0.59

MAPE

EpiRegress 0.15 0.18 0.22 166 0.25 0.26 0.27 0.26

EpiEstim 0.81 0.63 0.69 2596 0.75 0.61 0.66 0.64

EpiFilter 0.75 0.57 0.63 2699 0.69 0.59 0.68 0.56

EpiInvert (Local) 2.07 0.29 NA 2608 0.77 25 0.87 1.1

EpiInvert (Import) 1.78 1.16 NA 2595 0.83 0.64 0.83 0.68

SCR (%)

EpiRegress 91 98 94 99 97 97 97 96

EpiEstim 21 38 18 35 29 23 34 49

EpiFilter 18 20 12 34 14 12 14 22

Generally speaking, compared with EpiEstim and EpiFilter, estimates by EpiRegress
only had significantly larger credible intervals when there were zero or single-digit case
counts for many consecutive days (e.g., Figures S4g,h and S5f,h), but the uncertainties
allowed for rises and falls in the simulated ‘true’ Rts to be better captured by EpiRegress,
even in the absence of incidence data. This is demonstrated by the significantly larger SCRs
for the estimates by EpiRegress, which were all around 95%, the percentage where true
values are expected falls within the estimated intervals.

Additionally, the deviation of EpiRegress’s point estimates from the ‘true’ values, in
terms of MAE and MAPE, were also the smallest among the diverse methods for all four
simulations in both scenarios (Table 1). For EpiRegress, MAEs for Scenario 1 were generally
no larger than 0.25 and for Scenario 2, they were all around 0.35. MAPEs were smaller
than 0.30 for all but one simulation but that ‘outlier’ was caused by an extremely small
simulated Rt (< 0.001) and if we excluded the corresponding time point by averaging the
absolute percentage errors over the rest of the time points, the MAPE for that simulation
decreased to 0.007.

3.2. Estimation of Rt for Four Regions in the Western Pacific

We estimated the time-varying effective reproduction number from 1 January to
30 September 2021 on a daily basis for New South Wales, New Zealand, Singapore, and
Taiwan. On average, the time-varying effective reproduction number Rt is centred around
1 with fluctuations at different times (Figure 1).
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Figure 1. Estimates of time-varying effective reproduction number, Rt, across time (red), together
with reported numbers of autochthonous (blue) and imported (orange) new cases, in (a) New South
Wales; (b) New Zealand; (c) Singapore; (d) Taiwan by EpiRegress using all the covariates available
(i.e., the full model). Reported cases residing in foreign worker dormitories were excluded for both
local and imported cases in Singapore.

The estimates of Rt were responsive to regional outbreaks despite the restrictions
imposed by the regression structure. In New South Wales, the low and sub-critical trans-
missibility during the first six months of 2021 were punctuated by short periods of elevated
Rt corresponding to the occasional emergence of local cases. This period gave way starting
from July 2021, when a large community wave of the Delta variant emerged with Rt averag-
ing around 1.16 (IQR: 0.98–1.37). New Zealand and Taiwan both also experienced a lengthy
period of low community incidence during which Rt hovered at 1 for New Zealand and
above 1 for Taiwan. In Taiwan, the Rt fell greatly by over 5 in four days after the epidemic
wave emerged and peaked in mid- and late-May, and then fell further to lower levels
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than the pre-wave era with posterior medians concentrated around 1. The Rt in Singapore
largely remained below 1 at a median of 0.76 (Interquartile Range [IQR]: 0.66–0.88) before
24 April 2021. In the three subsequent epidemic waves, the posterior medians of Rt in
Singapore rose sharply to over 1 and in the large Delta wave that started in August, Rt
estimates remained around 1.3 (IQR: 1.08–1.45).

3.3. Importation Effect

Imported cases in all four regions made limited direct contributions to the number
of cases with the average imported case resulting in 0.04 (95%CrI 0.02–0.07) local cases
in New South Wales, 0.02 (0.01–0.04) in New Zealand, 0.03 (0.01–0.06) in Singapore, and
0.10 (0.03–0.22) in Taiwan. Despite the small impact on transmission, accounting for im-
ported cases was important to estimate the local effective reproduction number, as can be
seen in the comparison of our method with EpiEstim, EpiFilter, and EpiInvert—none of
which treats effects of imported and local cases on local transmission differently (Figure 2).
To estimate Rt using either EpiEstim or EpiFilter, we conducted two analyses wherein we
either removed imported cases from the analysis entirely or assumed equal transmissibility
of imported cases as local ones. The choice of whether to count imported cases towards the
denominator for the effective reproduction number had a substantial impact on estimates
when imported cases constituted a sizable proportion of the total caseload. In such time pe-
riods, treating the impact of imported cases the same as that of local cases in both EpiEstim
and EpiFilter led to estimates of Rt below the critical threshold of unity (Figure 2e–h,m–p),
whereas excluding them from the analysis led to estimates above unity (Figure 2a–d,i–l).
While the inclusion of the imported cases generates smaller credible intervals with less
uncertainty for both EpiEstim and EpiFilter, the intervals obtained when excluding these
cases are more likely to cover estimates by our method, which explicitly accounts for
differences in effects on local case counts between the two case types, when those of local
cases were over ten times more substantial than those of imported ones according to our
estimation. In all of the comparisons, estimates were comparable for the three models when
local case counts were over 30 and imported cases only accounted for fewer than 20% of
total case counts. In addition, for EpiInvert, two similar analyses were also performed
(Figure 2q–x) with the only difference being that when imported cases were included, they
were simply counted as part of the daily cases, i.e., It = Ilocal

t + Iimported
t , as the approach

does not distinguish these two case types or consider the fact that imported cases cannot
be infected by past local cases. EpiInvert however failed to generate Rt estimates for New
Zealand where continuous zero local case counts were recorded for a continuous period
of 148 days and for the remaining regions. It also failed to produce positive Rt estimates
for all the time points when imported cases were not included as part of the cases. We
therefore did not compare estimates by EpiInvert with those by EpiRegress, though we still
visualized the differences in Figure 2.

3.4. Validation of Coverage

Using the posterior distributions of the parameters, we derived the posterior predictive
distribution of the mean and variance for each day’s local cases, based on which we
estimated the 50% and 95% credible intervals for the case counts. The percentages of
covering of the true values for both two types of intervals by which all exceeded the
expected values, were 50% and 95%, respectively (Figure S6, Table S4)
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To evaluate the nowcasting function of EpiRegress, we further forecasted local case
counts over a window of 240 days, from 3 February to 30 September 2021, when the
observed local case count for at least one region was greater than 0 per week. A 90-day
inference window was utilized to simulate the posterior draws of the parameters involved,
which were then used to derive the posterior predictive distributions of the following 7 day
local cases. While the proportion of the actual case counts falling within the 95% posterior
predictive distribution interval might slightly decrease as the time between the forecasting
day and the end of the inference window increased from one to seven days, all were close
to the expected coverage rate of 95% (Figure 3, Table S5), indicating good adherence to
advertised coverage.

3.5. Robustness of EpiRegress to Covariate Choice

We compared Rt estimates given by different selections of covariates with the three
model variants: (i) using all covariates, (ii) excluding policy factors, and (iii) using ‘retail
and recreation’ and ‘residential’ from google mobility data, vaccination rate, and all the
indicators but ‘testing policy’ and ‘vaccination policy’ in the Oxford policy data (Table S2).
To assess the fits of the models, we calculated DICs for each set of results and found smaller
models usually had greater DICs, meaning a larger model with more covariates would
produce better estimates of Rt despite the additional complexity (Table S6). However,
comparing posterior medians (Figure S7, Table S7) shows that Rts were mostly determined
by mobility and epidemiological covariates (Table S1) and were robust to the changes in the
model variants in New South Wales, Singapore, and Taiwan within the period from July to
September when local case counts were relatively high. The introduction of more factors in
the full model, despite possible high correlations, appeared to cause EpiRegress’ Rt point
estimates to lower by around 1 and become more sensitive to variations in the local case
counts when there were few local cases reported. For New Zealand, in particular, which
had the longest duration of low numbers of local cases, the differences of Rt estimates
between the three versions were more substantial. Otherwise, the measure of smoothness
(Table S8) suggested that the different choices of covariates had limited effect.

3.6. Impact of Distinct Covariates

We assessed the effects of different factors on transmission potential based on the full
model (Figure 4). From the point estimates of the contributions, an increase in the time
people spent at retail and recreation or grocery and pharmacy was generally associated
with a higher Rt whilst a rise in time spent in parks or residential places was correlated with
a drop in Rt. On average, a 0.7% decrease in Rt came with every 1% increase in vaccination
rate in New South Wales, which was not observed for the other three regions. The Delta
variant proportion was closely related to an increase in Rt with the most significant effect
appearing in Singapore where a 1% increase in the proportion raised Rt by 1.1% (0.1–2.5%).
Though its influence in Taiwan appeared to be negative at −0.2% (−0.5% to +0.1%), this
unexpected observation could be accounted for by the fact that the epidemic wave in
Taiwan had almost come to an end with the arrival of the Delta variant cases in the area.
For policy-related factors however, the effects on transmission potential varied from region
to region, mostly centered around 1 with large 95% credible intervals due to the high
aforementioned correlations. Nonetheless, there were still some noticeable effects. For
instance, in New Zealand, each level’s increase in the intensity of measures regarding facial
covering brought down Rt by 78% (64–87%) whilst the per level’s increase in intensity of
measures related to school closing in Taiwan saw a 28% (−5% to +54%) decrease in Rt.
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Figure 2. Comparison of EpiRegress against alternative Rt estimation methods (a–d) EpiEstim with
imported cases excluded, (e–h) EpiEstim with imported cases included, (i–l) EpiFilter with imported
cases excluded, (m–p) EpiFilter with imported cases included, (q–t) EpiInvert with imported cases
excluded and (u–x) EpiInvert with imported cases included for New South Wales (column 1), New
Zealand (column 2), Singapore (column 3), and Taiwan (column 4). EpiInvert failed to perform
Rt estimation for New Zealand when imported cases were either included or excluded in the total
case counts.
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ahead) with the posterior predictive distribution of time-varying effective reproduction number, Rt,
in: (a) New South Wales; (b) New Zealand; (c) Singapore; (d) Taiwan, estimated by EpiRegress using
all the covariates available (i.e., the full model).
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Figure 4. Impacts of different factors on Rt (posterior medians, 50% and 95% credible intervals) for
the four different regions in the full model with all the covariates available. Mobility factors were
measured as percentage changes compared to a pre-COVID-19 outbreak baseline for each region;
Vaccination rate refers to the proportion of the vaccinated population and policy indicators were
ordinal variables indicating intensity levels, each ranging from zero (the least severe) to a maximum
of five (the most severe). Factors related to different phases in Singapore were excluded from the
model in this comparison of different factors’ effects on Rt (Figure S8).
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4. Discussion

Over the course of the COVID-19 pandemic, the time varying reproduction number, Rt,
has received considerable public attention as a metric of the waxing and waning of epidemic
trajectory. Examples include Wuhan, China [4] and diverse European countries [29]. When
daily case counts are large, standard methods to estimate Rt are successful, though they
may face data challenges with complications such as day of the week effects [30]. This
problem is mitigated by EpiInvert with its signal processing approach [7]. However, in
places and times where disease transmission is low, having small numbers of cases either
makes the methods fail (for example, EpiInvert might even give negative Rt estimates
on some occasions), or makes Rt hard to estimate with high precision, making it difficult
to assess whether intervention measures in place in the community to mitigate disease
spread are unduly strict. Many of the countries and territories with long periods of
successful mitigation, particularly in Asia [31,32], faced this issue during the first year and
a half of the pandemic, complicating decision making. A fundamental issue is the inverse
correlation between the reproduction number in successive time points—future cases being
explainable if Rt is high and Rt+1 low, or vice versa, or anywhere in between—and the
target of inference being the marginal distribution for these quantities. Other approaches
have tackled this using smoothing approaches to share information between nearby time
points, such as EpiFilter [6,9] which utilises Bayesian recursive filters to good effect by
introducing a Gaussian relationship between neighbouring Rts.

This study proposes an alternative means of pooling information across time, by
linking the estimation of the ensemble {Rt} to time-varying covariates whose effect may
potentially be preserved across prolonged periods of the epidemic, and with a feasible
relationship—at least correlative—with transmission rates. This approach performed no
worse than three other, prominent methods, EpiEstim [3,8], EpiFilter [6,9], and EpiInvert [7],
and in some situations compared favourably, particularly when incidence was dominated
by imported cases and quarantine measures for returnees had taken effect. Furthermore, the
smoothing techniques in the existed methods, though successfully reducing uncertainty in
low incidence scenarios, tend to keep the estimates far below unity and make it impossible
to respond to sudden changes in the transmissibility, which might not be reflected in the
number of reported cases, especially if daily case counts are too small. Therefore, the
relatively large uncertainty in Rt estimates by EpiRegress compared to that by EpiEstim
or EpiFilter, might not necessarily be a drawback, as was demonstrated in the simulation
results. The approach additionally lends itself well to nowcasting the effective reproduction
rate when future cases due to the current cases are yet to emerge but the time-varying
covariates can be measured in near real-time. This is not the case for some important
variables we considered, such as mobility data which were made public only after a
lag [33], but other data streams without this restriction may be possible for governments
with modern surveillance systems, such as the Republic of Korea which deployed big
data capture to good effect from an early stage of the COVID-19 pandemic [32,34]. Such
nowcasting of Rt would help policy makers respond rapidly to any upsurge in risks.

Naively, we might hope that the inclusion of covariates that are related to Rt , through a
regression framework, would permit inferences on the key factors associated with growing
transmissibility, as Beest et al., did when they estimated impacts of several influenza-
related factors [35]. Such inference is, unfortunately, prevented by the high collinearity
between various mobility, epidemiological, and policy covariates involved in EpiRegress,
which frequently move in tandem as multiple policy changes or behavioural changes
conterminously vary. As a result, it is unlikely that the impact of specific policies can be
obtained through our approach (though an approach akin to a meta-analysis over many
countries might permit such associations to be derived [36]). While this may be seen as a
weakness, it also points to the robustness of the methodology to model misspecification,
for even if more distal covariates are included instead of those more proximately related to
transmission, the inferred Rt, the key estimand of interest, is little changed.
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Another advantage of our approach is that it explicitly distinguishes imported cases
from autochthonous ones. The effect of the COVID-19 pandemic on international, and in
some cases intranational, travel has been unprecedented [37,38]. Differences in quarantine
policies in different polities has led to marked variability in the importance of imported
cases to the local epidemic, with countries such as China, New Zealand, and Singapore
operating very successful quarantine systems [2,39]. With little local infection and a
quarantine system that leads to little leakage, imported cases contribute little to secondary
spread, but counts of imported cases are often not differentiated from autochthonous ones
in international databases. As a result, estimates of Rt that do not distinguish these case
types give a misleading depiction of the effectiveness of control in the country receiving
infected international travellers. Future efforts to standardise data reporting should seek
to explicitly distinguish these two groups for this reason. In our analysis, we found that
assuming the same transmission potential of imported and local cases, or excluding the
former altogether, led to noticeable differences in the estimates using existing methods;
neither approach was necessary in our framework, however.

Limitations of this study include the assumption that all serial intervals are constant for
all the regions explored. Differences in reporting times between linked cases in Singaporean
households may be shorter than those between linked cases not sharing the same living
space, causing an underestimate of Rt. The diverse nonpharmaceutical interventions taken
by different regions or by one region at different time periods may also cause fluctuations in
the serial interval distribution [40]. The Rt estimates under EpiRegress displayed a weekly
cycle which we attribute to the inclusion of Google mobility data, which is an important
factor in the estimates, but these weekend dips may not truly reflect changes in risk [41].
Furthermore, to get better estimate of Rts for each region, we preferred not to exclude
any of the variables listed in either mobility data or policy data, despite the existence of
collinearities [42]. As aforementioned, this did not deleteriously affect estimates of Rt but
did prohibit us from assessing their individual impacts on Rt. Lastly, we also assumed a
constant under-reporting rate which may be dependent on testing practices [3] and that
the lag between daily case counts and response to interventions was negligible, but we
explored the latter in the Supplementary Information which suggests that the estimates of
Rt were robust to this in all four regions (Table S9).

Despite these limitations, we believe that the extension of methods to estimate the
effective reproduction number that account for time-varying covariates that are plausibly
linked to transmission potential using our framework provides a useful addition to our
analytic armamentarium for future outbreaks. It will be particularly valuable for places
and times when outbreaks are smaller, in small countries or subnational regions, or when
mitigation measures remain effective. Although we applied it to COVID-19, it will be
applicable to other infectious diseases causing explosive outbreaks, when data on both
cases and exogeneous factors are available.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14071576/s1, Table S1: Descriptions and interpretations of
different scores for different indicators in OxCGRT. Table S2: List of factors included in the full and
hybrid (subset) models. Table S3: Squared root of the mean of squared distance from real case counts
in the testing sets to the corresponding mean and boundaries of the 50% and 95% credible intervals
of the posterior distributions of the number of reported local case counts. Table S4: Fit of the model:
Percentage of the estimated 50% and 95% credible intervals (CrI) for local cases that successfully
covered the observations. Table S5: Forecasting accuracy for different number of days after the end of
the inference window. Table S6: Deviance Information Criterion (DIC) of models. Table S7: Mean
absolute difference between posterior median of Rt estimates given by the model including all the
available factors. Table S8: Smoothness (average absolute difference between neighbouring values) of
posterior median of Rt estimates given by the model. Table S9: Forecasting accuracy when allowing
different times of delays in report for the four regions. Figure S1: Visualization of Google mobility
data. Figure S2: Numbers of daily COVID-19 imported and local (community) cases from 1 January to
30 September 2021. Figure S3: Log-normal approximation of the empirical serial interval distribution
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from 157 pairs of household infections in Singapore. Figure S4: Comparison of Rt estimates by
EpiRegress, EpiEstim, EpiFilter and EpiInvert against the true values for the four different incidence
curves in scenario 1. Figure S5: Comparison of Rt estimates by EpiRegress, EpiEstim, EpiFilter
and EpiInvert against the true values for the four different incidence curves in scenario 1. Figure
S6: Comparison of the reported and estimated local case counts. Figure S7: Comparison of point
estimates of Rt based on three different regression models. Figure S8: Comparison of estimates in
scenarios when phase factors were or were not considered as part of the X covariates for Singapore.
Figure S9: comparison of Rt estimates in scenarios when dormitory cases were or were not regarded
as part of the imported case counts for Singapore.
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