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Selinexor inhibits growth of
patient derived chordomas
in vivo as a single agent and in
combination with abemaciclib
through diverse mechanisms
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Trinayan Kashyap1, Sharon Shacham1, Josh Sommer2,
Michael J. Wick3, Joan Levy2 and Yosef Landesman1*

1Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States,
2Department of Research, Chordoma Foundation, Durham, NC, United States, 3Department of
Research, XenoSTART, San Antonio, TX, United States
Chordoma is a rare cancer that grows in the base of the skull and along the

mobile spine from remnants of embryonic notochord tissue. The cornerstone

of current treatments is surgical excision with adjuvant radiation therapy,

although complete surgical removal is not always possible. Chordomas have

high rates of metastasis and recurrence, with no approved targeted agents.

Selinexor and eltanexor are selective inhibitors of nuclear export (SINE) that

prevent the karyopherin protein exportin-1 (XPO1) from shuttling its cargo

proteins through nuclear pore complexes out of the nucleus and into the

cytoplasm. As cancer cells overexpress XPO1, and many of its cargos include

tumor suppressor proteins and complexes bound to oncogene mRNAs, XPO1

inhibition can suppress oncogene translation and restore tumor suppressor

protein activity in different cancer types. SINE compounds have exhibited anti-

cancer activity in a wide range of hematological and solid tumor malignancies.

Here we demonstrate the preclinical effectiveness of SINE compounds used as

single agents or in combination with either the proteasome inhibitor,

bortezomib, or the CDK4/6 inhibitor, abemaciclib, against various patient-

derived xenograft (PDX) mouse models of chordoma, which included clival and

sacral chordomas from adult or pediatric patients with either primary or

metastatic disease, with either differentiated or poorly differentiated

subtypes. SINE treatment significantly impaired tumor growth in all five

tested chordoma models, with the selinexor and abemaciclib combination

showing the strongest activity (tumor growth inhibition of 78-92%).

Immunohistochemistry analysis of excised tumors revealed that selinexor

treatment resulted in marked induction of apoptosis and reduced cell

proliferation, as well as nuclear accumulation of SMAD4, and reduction of

Brachyury and YAP1. RNA sequencing showed selinexor treatment resulted in

differences in activated and repressed signaling pathways between the PDX

models, including changes in WNT signaling, E2F pathways and glucocorticoid

receptor signaling. This is consistent with SINE-compound mediated XPO1
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inhibition exhibiting anti-cancer activity through a broad range of different

mechanisms in different molecular chordoma subsets. Our findings validate the

need for further investigation into selinexor as a targeted therapeutic for

chordoma, especially in combination with abemaciclib.
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Introduction

In humans, the notochord is a transient structure present in

embryonic development that is a major regulator of spatial

patterning. The notochord releases critical signaling molecules

such as sonic hedgehog (SHH) (1) to direct surrounding cells

into structures including the neural tube. Later in life, primitive

notochord cells, which have lodged within bones of the skull and

spine can become oncogenic (2, 3). This results in a rare type of

sarcoma called chordoma, which is clinically identified by

overexpression of the T-box transcription factor, Brachyury

(4). Chordomas can arise along the entirety of the spinal axis,

with sacral accounting for about 50% followed by base of skull

(30%) and spine (20%) (5, 6). Although pediatric cases exist,

chordomas are predominantly diagnosed in older populations

(7, 8). Standard frontline treatment includes aggressive surgical

intervention (9, 10), which has a high mortality rate due to

tumor integration within complex spinal and neurovascular

architecture (9, 11). Adjuvant systemic chemotherapies and

radiotherapy are frequently used (12–14). Despite recent

advances, there remains a high rate of recurrence and

metastasis unsuitable for further surgical intervention (9, 14,

15), and, therefore, alternative treatment options are urgently

needed. Molecularly, chordoma growth is perpetuated by

aberrant growth factor signaling pathway components,

overexpression of cell cycle checkpoint proteins (especially

CDK4), and aberrant activity of transcription factors including

NF-kB (16–18). Patient-derived cell lines and a xenograft model

showed sensitivity to blocking NF-kB through use of the

proteasome inhibitor bortezomib (18, 19). CDK4/6 inhibitors

such as abemaciclib and palbociclib have also shown promising

preclinical activity (20) and are being evaluated in clinical trials

(21). However, there are currently no clinically approved

targeted therapies for chordoma. Selinexor and eltanexor are

selective inhibitor of nuclear export (SINE) compounds that

specifically inhibit the exportin-1 (XPO1, or CRM1) protein, a

karyopherin that is often upregulated in human cancers (22–24).

XPO1 mediates the nuclear export of multiple tumor suppressor

proteins (TSPs) (25), and its inhibition causes TSP nuclear

retention leading to decreased cancer cell proliferation and
02
cancer cell apoptosis, while sparing healthy tissue (26–28).

XPO1 also interacts with IkB, the endogenous inhibitor of NF-
kB, and SINE-mediated inhibition of XPO1 suppresses NF-kB
signaling. Selinexor has demonstrated anti-cancer activity in

both solid and hematological malignancies (29), has been

clinically approved for treatment of multiple myeloma (30)

and diffuse large B-cell lymphoma (31), and is in advanced

clinical trials for dedifferentiated liposarcoma and glioblastoma

multiforme (32, 33). In this study, the XPO1 inhibitors, selinexor

and eltanexor, were investigated as anti-cancer agents in five

different chordoma patient-derived xenograft (PDX) models,

as single agents or in combinations with bortezomib

or abemaciclib.
Materials and methods

In vivo studies

In vivo studies were conducted through the Chordoma

Foundation’s Drug Screening Program at XenoSTART (San

Antonio, Texas) under International Animal Care and Use

Committee (IACUC) approved protocols. Five chordoma PDX

models were used: CF382 (recurrent clival chordoma, 57-year

old female); CF466 (metastatic lumbar chordoma, 58-year old

male); SF8894 (recurrent clival chordoma, 59-year old male);

CF459 (primary clival chordoma, <20-year-old male); and

CF365 (poorly differentiated metastatic clival chordoma, 11-

year-old male). PDX fragments from host animals (~70mg) were

implanted subcutaneously into the right flank of 6~12-week-old

female NSG mice (NOD.CgPrkdc(scid)ll2rg(tm1Wjl)SzJ)

purchased from The Jackson Laboratory or athymic nude mice

(Crl : NU(NCr)-Foxn1nu) purchased from Charles River

Laboratories. Tumor volume (TV) and animal weight data

were collected twice a week electronically using a digital

caliper and scale, respectively. Mice were housed under

standard conditions (Teklad 2919 irradiated feed and water

given ad libitum; 30-60% humidity; 21- 24°C; 12h light daily).

All animal studies were carried out under protocols approved by

the XenoSTART IACUC Committee. Once tumors reached a
frontiersin.org
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TV of at least 150-300 mm3, animals were matched by TV and

randomized to control (untreated) and treatment groups (n=5

mice per group). Mice were dosed by oral gavage using an 18-

gauge curved ball-bearing syringe tip with selinexor (5 mg/kg, 4

times weekly, PO), or eltanexor (10 mg/kg; 5 times weekly PO),

as single agents or in combination with the proteasome inhibitor

bortezomib (0.3 mg/kg, twice weekly, IV [tail vein injection]) or

the CDK4/6 inhibitor abemaciclib (50 mg/kg, daily, PO) for 6

weeks. Significance for differences in tumor size was determined

by one-way ANOVA. After 6 weeks, tumors were collected for

gross and histological biomarker analyses as well as gene

expression profiling.
Compounds

Selinexor was obtained from Karyopharm Therapeutics.

Bortezomib (#S1013) was purchased from Selleckchem.

Abemaciclib was purchased by XenoSTART.
Histological and immunohistochemistry
analysis

Tumor samples from mouse PDX models were fixed in 10%

neutral buffered formalin, processed and paraffin embedded.

Four-micron sections were stained with hematoxylin & eosin

(H&E, Richard-Allen Scientific) for routine histology. For

immunohistochemistry (IHC), 4 µm sections were baked on

slides at 65°C for 30 min, deparaffinized and rehydrated, placed

in Declare working buffer, steam-cooked for antigen retrieval,

cooled, and transferred to 3% hydrogen peroxide to block

endogenous hydrogenase activity. Protein block was applied

before primary antibodies were incubated with slides. Cell

Marque Hi-Def Polymer Amplifier and secondary antibody

were applied sequentially at room temperature as per

manufacturer’s instructions. DAB chromogen was used for

color reaction. Slides were counterstained with hematoxylin,

dehydrated, mounted, and cover-slipped. IHC staining was

performed on a Biogenex I6000 automated stainer. Digital

images of the slides were obtained through an Aperio AT

Turbo slide scanner at 20×. Primary antibodies against XPO1

(Bethyl Laboratories, A300-469A, 1:15k), Brachyury (Abcam,

ab209665, 1:30k), APC (Abcam, ab15270, 1:3k), FOXO3A (Cell

Signaling Technology, 12829, 1:1k), eIF4E (Protein Tech, 11149-

1-AP, 1:500), Survivin (Abcam, ab76424, 1:1k), SOX9 (Sigma-

Aldrich, HPA001758, 1:1k), YAP1 (Cell Signaling Technology,

14074, 1:500), PARP1 (Santa Cruz, sc-8007, 1:1k), Ki67 (Biocare,

Prediluted), SMAD4 (Santa Cruz, sc-7966, 1:600), and cleaved

Caspase 3 (Cell Signaling Technology, #9661, 1:1k) were used for

IHC analysis. Cell number and IHC staining intensity were

quantified with Aperio image analysis algorithms. H-Score was

calculated for nuclear-stained biomarkers.
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Western blotting

Cells were seeded in 6-well plates at a density of 0.5×106

cells/well and allowed to adhere overnight. Post-treatment, the

cells were washed with PBS and then lysed with RIPA buffer

(#89901, Thermo Scientific) supplemented with protease

inhibitors (# 05892791001, Roche) and phosphatase inhibitors

(#04906837001, Roche). The protein level of each sample was

quantified and normalized using BCA assay (#23225, Thermo

Scientific). 20 mg of each sample were run in 4-12% Bis-Tris Gel

(Life Technologies) and later transferred to nitrocellulose

membrane using iBlot Gel Transfer Kit (Life Technologies).

The membranes were blocked using LI-COR blocking buffer

(#927-40000, LI-COR), probed with the indicated antibodies

(XPO1 [sc-5595], MDK1 [sc-46701] and b-actin [sc-81178],

Santa Cruz Biotechnology; PLCD1 [#3832], Cell Signaling

Technology) and analyzed using Licor Odyssey.
Gene expression profiling
and analysis

RNA extraction from formalin-fixed paraffin-embedded

tumors and sequencing were performed by Novogene

Corporation, Ltd. (Beijing, China) or Psomagen, Inc. (Rockville,

MD). Reads were assessed for quality using FastQC (Babraham

Bioinformatics, Cambridge, UK) then aligned to the human

genome build 38 using HISAT2 (34). Raw gene-level counts

were determined using FeatureCounts (35). Normalization and

differential expression analysis was performed by fitting a negative

binomial model using DeSeq2 (36). As a quality control, variance

stabilizing transformation was applied to the norm counts, then

principal components were visualized to confirm that no samples

were technical outliers. Each drug treatment group was compared

to the vehicle-treated group of the same PDX model to calculate:

base mean expression, log2 fold change and corresponding

standard error, Wald statistic, Wald test p-value and Benjamini-

Hochberg adjusted p-value. Pathway analysis was performed using

Ingenuity Pathway Analysis (IPA) software (Qiagen, Hilden,

Germany) to compare selinexor-treated tumors to vehicle treated

tumors by using the adjusted p-value and log2 fold changes from

DeSeq2. Cut offs of Padj < 0.05 and fold change > 0.5 or < -0.5 were

applied for the analysis. Gene Set Enrichment Analysis was

performed to compare the selinexor treated vs. vehicle treated

tumors by using rank-ordered lists of the Wald statistics for all

expressed genes. The MSigDB canonical pathways from Pathway

Interaction Database were used as the reference pathway set (37).
Statistical analysis

Tumor size comparisons were performed on the final day of

measurements (day 42) using one-way ANOVAs and Sidak’s
frontiersin.org
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multiple comparisons tests, comparing all treatment groups.

Differences in H-scores were determined using t-tests. For

RNAseq data, gene-level Benjamini-Hochberg adjusted p-

values are presented showing significance for differences

between each treatment group and the corresponding control

group. The top five pathways are presented from the IPA

analysis, regardless of overall raw p-value enrichment of

the pathway.
Results

SINE compounds and combinations
reduced PDX tumor growth

Five PDX models of different chordoma subtypes were used

to assess in vivo efficacy of SINE compounds, with molecular

characterization of post-treatment tumors (Supplemental Figure

S1). First, mice bearing CF382 recurrent clival xenografts were

treated using selinexor alone. After six weeks, selinexor treated

mice had tumors that were significantly smaller than control

untreated mice, with an average growth reduction of 70%, and

minimal weight loss associated with drug toxicity (Figure 1A and

Supplemental Figure S2A). As selinexor and the proteasome

inhibitor bortezomib both act on the NF-kB pathway, and

bortezomib can inhibit chordoma cell line proliferation (18,

19), we explored the possibility of additive/synergistic effects of

combining these treatments. The CF466 model of metastatic

sacral chordoma was obtained for these combination
Frontiers in Oncology 04
experiments to assess effectiveness against a different type of

chordoma. Mice treated with selinexor alone or in combination

with bortezomib had significantly smaller tumors after 6 weeks

than control untreated mice, whereas bortezomib alone caused

no difference in tumor volume compared to controls (Figure 1B).

We next evaluated a model of recurrent clival chordoma,

SF8894, using bortezomib combinations with 2 different SINE

compounds, selinexor and eltanexor, which, at the time of the

preclinical experiments, had just entered clinical evaluation.

Similar to CF466, the SINE compounds alone and in

combination with bortezomib significantly reduced tumor

volume compared to untreated mice. Interestingly, animals

bearing SF8894 tumors treated with selinexor as a single agent

showed greater reduction in tumor growth compared to those

with the selinexor/bortezomib combination, although this was

not statistically significant (Figure 1C). Although eltanexor

significantly reduced tumor volume compared to controls in

the SF8894 model, eltanexor-treated tumors were larger than

selinexor-treated tumors, and thus eltanexor was not explored

further. Neither selinexor, eltanexor, nor bortezomib treated

animals had significantly lower body mass compared to

controls in these models (Supplemental Figures S2B, C). As

CDK4/6 inhibitors act synergistically with other targeted

therapies against chordoma in vitro (38), the efficacy of SINE

compound combinations with the CDK4/6 inhibitor,

abemacic l ib , was also assessed. Again, to al low a

comprehensive evaluation of multiple types of chordoma, two

additional models were used for these experiments the

metastatic poorly differentiated pediatric clival chordoma
A B

D E

C

FIGURE 1

Selinexor inhibits chordoma growth in five patient derived xenograft models. Tumor volume over time determined in (A) CF382; (B) CF466; (C)
SF8944; (D) CF459; and (E) CF365 PDX models under untreated control, selinexor (sel), or eltanexor (elt) treatment either as single agents or in
combination with bortezomib (bort) or abemaciclib (abe). Dosing: selinexor, 5 mg/kg, 4 times weekly, PO; eltanexor, 10 mg/kg; 5 times weekly,
PO; bortezomib, 0.3 mg/kg, twice weekly, IV; abemaciclib, 50 mg/kg, daily, PO. Data are shown as mean +/- SEM. Relative percent change to
control at termination of study is shown for each condition in inset tables. Significance determined using ANOVA with Bonferroni post-test
comparing each experimental group to control. *p < 0.05; **p < 0.01; ***p < 0.001.
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model, CF365, and the primary pediatric clival chordoma model

CF459. Mice that were treated with selinexor or abemaciclib as

single agents had smaller volume tumors compared to vehicle,

with no loss in total animal mass (Figures 1D, E and

Supplemental Figures S2D, E). The selinexor and abemaciclib

combination resulted in the greatest tumor growth inhibition,

demonstrating an additive (or synergistic) effect between the

compounds (Figures 1D, E).
Selinexor treated tumors showed nuclear
retention of tumor suppressors and
reduction in oncoprotein levels

IHC and histological examination was performed on excised

tumors from several of these PDX models. Cell density was

assessed in the CF466, SF8894, and CF365 models, and in all

cases the tumors from selinexor treated mice had reduced

density in addition to reduced tumor volume (Figure 2). In the

CF466 PDX model, selinexor treated tissue shows increased

expression of the apoptosis marker cleaved caspase 3 and

decreased expression of cell proliferation marker Ki67 (n=3,

p=0.088) (Figure 3A). As expected, XPO1 (n=4, p=0.15) protein

expression was reduced and showed nuclear sequestration in

treated samples (Figure 3A). The XPO1 cargo proteins SMAD4,

APC, FOXO3A and eIF4E also showed an increase in nuclear

localization, consistent with inhibition of XPO1 nuclear export

activity (Figure 3B). SOX9 (n=4, p=0.04), whose knockdown was
Frontiers in Oncology 05
previously shown to inhibit chordoma cell growth and induce

apoptosis (39), and PARP1 (n=5, p=0.004) and Survivin (n=3,

p=0.047), also critical to chordoma cell growth (40), all show

decreased expression with selinexor treatment (Figure 3C).

Selinexor treatment may have led to a decrease in expression

of Brachyury (n=4, p=0.037), a key driver of chordoma (41), as

well as its downstream target YAP1 (Figure 3C). Quantification

of IHC analysis is presented in Supplemental Figure S3.
RNAseq revealed SINE compounds alter
different pathways in different chordoma
models

In addition to the focused assessment of protein levels and

subcellular localization, we performed total transcriptome RNA

sequencing on excised tumors from the CF466, SF8894, and

CF365 PDX models to identify differentially expressed genes

between control untreated mice with those treated with either

selinexor alone, abemaciclib alone, or the combination. Principal

component analysis (PCA) of vehicle treated tumors showed the

CF466 and SF8894 cells had similar transcriptional profiles and

the CF365 (poorly differentiated subtype) clustered separately

(Figure 4A). Selinexor as a single agent induced altered

expression of a substantial number of genes, with 488, 162 and

44 differentially expressed genes in the CF466, SF8894 and

CF365 models, respectively (multiple test correction adjusted

P-value [Padj] <0.01, Figure 4B, Supplementary Tables 1–3).
A B

C

FIGURE 2

Selinexor treatment reduces both tumor size and tumor cell density in three different chordoma preclinical PDX models. (A) Tumor volume at
termination of six week treatment; CF466 model, p=0.02, n=5; SF8894 model, p=0.01, n=4; CF365 model, p=0.007, n=5. Data shown as
mean +/-SEM. (B) Tumor cell density at termination of six-week treatment, CF466 model, p=0.004, n=5; SF8894 model, p=0.003, n=4; CF365
model, p=0.0009, n=5. Data shown as individual data points, (C) H&E images of indicated tumor models and treatments at low and high
magnifications with 1 mm and 50 um scale respectively. All P-values calculated using t-tests. *p < 0.05, **p < 0.01, ***p < 0.001.
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Comparison of genes differentially expressed in selinexor treated

mice that were common across two or more models revealed

some similarities (Figures 4C–E). XPO1 was one of the strongest

upregulated genes in selinexor treated tumors, consistent with a

known feedback loop that results from successful inhibition of

XPO1 protein shuttling. Additionally, selinexor-treated tumors

showed an increase in levels of tumor suppressor genes PLCD

and ARRDC3, many solute carriers, the growth factorMDK, and
Frontiers in Oncology 06
the cell cycle regulator CCNG2, among others (Supplementary

Tables 1–3, Figures 4C–E). The increase in the levels of PLCD

and MDK was corroborated using chordoma cell lines by

western blotting (Supplementary Figure S4). In abemaciclib-

treated CF365 PDX tumors, we found 1335 differentially

expressed genes compared to untreated control; the most

significant were downregulation of the DNA topoisomerase

TOP2A, the centromeric chaperone HJURP and the cell
A B D

E

C

FIGURE 4

Differential expression analysis in treated xenografts compared to matched vehicle controls. (A) Principal component analysis (PCA) analysis of
gene-level expressions in vehicle treated control tumors for the indicated PDX models. Each dot represents one tumor. (B) Venn diagram
indicating the number of genes differentially expressed in selinexor treated tumors compared to match vehicle controls. (C–E) Volcano plots
show comparison of all expression of genes between indicated treatment group and vehicle control for CF466 (C) SF8894 (D) and CF365 (E)
models. Y-axis is significance and x-axis is fold change. Top significant genes are labeled. XPO1 is indicated with a box.
A B C

FIGURE 3

Effect of selinexor on indicators of cell health, chordoma markers, and XPO1 cargo proteins. Immunohistochemistry analysis of tumor samples
from CF466 PDX models treated for six weeks with either vehicle control or selinexor. (A) Markers of cell survival (cleaved caspase 3) and
proliferation (Ki67), as well as the selinexor target XPO1. (B) XPO1 cargo proteins APC, FOXO3A, eIF4E and SMAD4. (C) Proteins involved in sonic
hedgehog signaling pathways such as SOX9, and YAP1, and regulators of chordoma cell growth, Brachyury and Survivin, as well as DNA repair
enzyme PARP1.
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proliferation marker MKI67 (Figure 4D, Supplementary

Table 3). Notably, many genes differentially expressed in single

agent selinexor or abemaciclib treated CF365 PDX models were

also differentially expressed in the combination treatment

(Supplementary Table 3), indicating the treatments likely did

not interfere with each other’s mechanisms of action. Pathway

analysis revealed that selinexor-treated CF365 tumors had

upregulation of the b-catenin degradation pathway, modulated

WNT signaling and androgen receptor signaling, which is in line

with the known effects of XPO1 inhibition in cancer cells (42)

(Figure 5A, top panels). The top pathways affected by selinexor

treatment in the CF466 model were the E2F pathway, IL8/

CXCR2 inflammatory cytokine pathway and canonical NF-kB
signaling, which are also known targets of XPO1 (43–45)

(Figure 5A, middle panels). Interestingly, selinexor treatment

of SF8894 cells also induced changes in IL8/CXCR2 signaling in

addition to the glucocorticoid receptor (GR) pathway, which is

in line with previous reports that selinexor up-regulates GR

expression (46) (Figure 5A, bottompanels). Similar assessments

with Ingenuity Pathway Analysis (Qiagen) revealed that the top

canonical pathway changes in selinexor treated CF365 cells were

related to interferons and senescence, in CF466 cell cycling and

in SF8894 auto-immunity (systemic lupus signaling) and protein

kinase A signaling (Figure 5B).
Discussion

Our work demonstrated the effectiveness of the SINE

compounds selinexor and eltanexor in reducing growth of

PDX models of chordoma, when used as single agents or in
Frontiers in Oncology 07
combination with abemaciclib or bortezomib and identified

specific RNA- and protein-level changes that occur in treated

cells. These data highlight that selinexor could be an effective

overall anti-cancer agent for treatment of chordoma patients,

despite substantial underlying molecular heterogeneity

between chordoma subtypes. Due to this heterogeneity, it is

likely that the anti-cancer effects of selinexor are achieved

through regulation of multiple pathways. IHC analysis of the

metastatic sacral chordoma model CF466 showed increased

nuclear retention of the XPO1 cargo SMAD4, which is an

upstream regulator of Brachyury (47), and slightly reduced

expression of both Brachyury and its downstream target YAP1,

a hippo signaling pathway member that can control tumor

stemness and aggressiveness (48). Expression of the Brachyury

gene TBXT was also reduced by selinexor at the RNA level in

the CF365 cells (Supplementary Table 1). Selinexor treatment

led to increased nuclear retention and upregulation of the

tumor suppressor proteins eIF4E and FOXO3A, and

downregulation of an oncogene in the SHH signaling

pathwaySOX9. Survivin and the DNA repair enzyme PARP1

were also downregulated after selinexor treatment in CF466

PDX models. Thus, SINE compounds likely exhibit multiple

anti-cancer mechanisms in chordoma, consistent with their

compound mechanisms of action in other malignancies.

Compared with previous murine studies of selinexor’s anti-

cancer activity, the experiments here used lower doses of

selinexor administered more frequently, with animals dosed

at 5 mg/kg four days per week, compared to previous studies

using doses of 10 mg/kg two-three times weekly (49–52),

12.5mg/kg twice weekly (53), or 15 mg/kg two-three times

weekly (54–56). This dosing schedule was effective at reducing
A B

FIGURE 5

Top altered pathways in selinexor treated tumors. (A) Heatmaps of gene set enrichment analysis (GSEA) show altered disease and function
pathways and sub-pathways in CF466, SF8894 and CF365 xenografts treated with selinexor. Size of individual boxes are inversely proportional
to P-value. Color is according to z-score. Produced using Ingenuity Pathway Analysis software. (B) IPA analysis of top modified pathways; top
panel, CF365; middle panel, CF466; bottom panel, SF8894.
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tumor volumes when used alone or in combination with

abemaciclib or bortezomib, and importantly, did not result in

animal weight loss, a marker of adverse toxicity. Though

eltanexor was able to significantly inhibit the growth of the

SF8894 tumor model as a single agent, selinexor showed better

efficacy than eltanexor. As a result, we moved forward with

assessment of selinexor in additional models of chordoma.

SINE compounds have synergistic effects in combination with

bortezomib in multiple cancer types, yet the lack of synergy

observed in the SF8894 and CF466 models was unexpected.

Seeking to explore an additional combination agent,

abemaciclib was selected as it is an approved CDK4/6

inhibitor, and chordomas have a near universal loss of

CDKN2A and p16 resulting in activation of CDK4/6. We

were able to obtain two additional PDX models for assessing

the efficacy of this combination, as described. A strength of

SINE compounds is simultaneous attenuation of multiple

oncogenic pathways and overcoming cancer heterogeneity to

a certain degree. The fact that selinexor can inhibit tumor

growth of multiple subtypes of chordoma aligns with the

specific mechanisms of action of SINE compounds. Taken

together, a diverse spectrum of chordoma models played an

important part in dissecting the anti-tumor activity of these

compounds. RNA sequencing revealed differences in the

baseline untreated transcriptional profiles of the three cell

lines that were sequenced. The CF365 cell line, which was

derived from a poorly differentiated chordoma characterized

by loss of the BAF complex gene SMARCB1, clustered

separately from the CF466 and SF8894 cells, both of which

express SMARCB1 (57–59). Selinexor treatment of these

tumors revealed both similarities and differences between the

models. The tumor suppressor gene ARRDC3 was markedly

upregulated in all three models after selinexor treatment

(Figure 4, Supplementary Table 1 consistent with previous

studies performed in triple negative breast cancer cells (60).

Likewise, treatment resulted in upregulation of several solute

carriers including the choline transporter SLC44A2, which was

observed in prior investigations of selinexor effects on the

transcriptome (61, 62). However, it remains unclear if this is

a direct or indirect effect of XPO1 inhibition, and the role

solute carries, or their substrates may have in selinexor-

mediated anti-tumor effectiveness. Examining the levels of

XPO1 RNA in vehicle-control tumors showed that the CF365

model had lower expression compared to the CF466 and

SF8894 models. However, selinexor had similar effectiveness

in all models, indicating the effectiveness of the drug is not

dependent on baseline RNA levels of XPO1. Notably,

biomarker studies of selinexor have not shown a direct

relationship between efficacy and baseline XPO1 RNA

expression in any investigated tumor type. Interestingly,

discrepancies between RNA and protein expression may be

attributed to a cellular feedback loop that senses the inhibition
Frontiers in Oncology 08
of nuclear export activity and induces XPO1 mRNA

expression. However, this increased expression of XPO1

mRNA does not translate into additional XPO1 protein. This

explains how selinexor treatment reduced the level of XPO1

protein (Supplementary Figure S4) and at the same time

increased XPO1 mRNA (Figure 4). In fact, XPO1 mRNA

induction is commonly used as the pharmacodynamic

marker for selinexor-mediated XPO1 inhibition in humans.

Despite the similarities of some transcriptional changes

between the three cell lines on which expression profiling

was performed, the most significant pathway differences

between control and selinexor treated mice were different for

each of the three PDX models, with CF365 cells showing

changes in WNT signaling, CF466 in E2F signaling, and

SF8894 in GR signaling. Each of these pathways can drive

oncogenesis when dysregulated, and interestingly, E2F and GR

signaling have been shown to be targetable by XPO1 inhibitors

(43, 46, 63). Specific to the CF466 sacral chordoma model,

TGFA was among the most significantly reduced genes, which

is notable because it encodes an EGFR ligand, and SINE

compounds are effective against cancer cells with engineered

resistance to EGFR-tyrosine kinase inhibitors (64). Notably,

direct EGFR inhibitors have shown promise as anti-cancer

agents in chordoma and are being clinically evaluated (65). Our

findings demonstrate clinical stage XPO1 inhibitors may be

effective agents for treatment of effectiveness when combined

with the CDK4/6 inhibitor abemaciclib. Clinical investigation

of a selinexor and abemaciclib combination for treatment of

patients with chordoma is warranted.
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